Report number
| arXiv:2304.00056 ; FERMILAB-PUB-23-159-V ; JLAB-PHY-23-3799 |
Title
| A large area 100-channel PICOSEC Micromegas detector with time resolution at the 20 ps level |
Related title | A large area 100 channel Picosec Micromegas detector with sub 20 ps time resolution
|
Author(s)
|
Utrobicic, A. (Boskovic Inst., Zagreb) ; Angelis, Y. (Aristotle U., Thessaloniki) ; Aune, Stephan ; Bortfeldt, J. (Munich U.) ; Brunbauer, F. (CERN) ; Chatzianagnostou, E. (Aristotle U., Thessaloniki) ; Dehmelt, K. (SUNY, Stony Brook) ; Desforge, Daniel ; Fanourakis, G. (American Coll. of Greece) ; Floethner, K.J. (CERN ; Bonn U., HISKP) ; Gallinaro, M. (LIP, Lisbon) ; Garcia, F. (Helsinki Inst. of Phys.) ; Garg, P. (SUNY, Stony Brook) ; Giomataris, I. (IRFU, Saclay) ; Gnanvo, K. (Jefferson Lab) ; Gustavsson, T. (LIDYL, Saclay) ; Iguaz, F.J. (IRFU, Saclay) ; Janssens, D. (Boskovic Inst., Zagreb ; Brussels U., IIHE) ; Kallitsopoulou, A. (IRFU, Saclay) ; Kovacic, M. (Zagreb U.) ; Legou, P. (IRFU, Saclay) ; Lisowska, M. (CERN ; IRFU, Saclay) ; Liu, J. (Hefei, CUST) ; Lupberger, M. (Bonn U., HISKP ; Bonn U.) ; Malace, S. (Jefferson Lab) ; Maniatis, I. (CERN ; Aristotle U., Thessaloniki) ; Meng, Y. (Hefei, CUST) ; Muller, H. (CERN ; Bonn U.) ; Oliveri, E. (CERN) ; Orlandini, G. (CERN ; Erlangen - Nuremberg U.) ; Papaevangelou, T. (IRFU, Saclay) ; Pomorski, M. (LIST, Saclay) ; Ropelewski, L. (CERN) ; Sampsonidis, D. (Aristotle U., Thessaloniki) ; Scharenberg, L. (CERN ; Bonn U.) ; Schneider, T. (CERN) ; Sohl, L. (IRFU, Saclay) ; van Stenis, M. (CERN) ; Tsipolitis, Y. (Natl. Tech. U., Athens) ; Tzamarias, S.E. (Aristotle U., Thessaloniki) ; Veenhof, R. (CERN ; Uludag U.) ; Wang, X. (Hefei, CUST) ; White, S. (CERN ; Virginia U.) ; Zhang, Z. (Hefei, CUST) ; Zhou, Y. (Hefei, CUST) |
Publication
| 2023-07-12 |
Imprint
| 2023-03-31 |
Number of pages
| 10 |
Note
| Support by the EP R & D, CERN Strategic Programme on Technologies 168 for Future Experiments; the RD51 collaboration, in the framework of RD51 common projects; the 169 Cross-Disciplinary Program on Instrumentation and Detection of CEA, the French Alternative 170 Energies and Atomic Energy Commission; the PHENIICS Doctoral School Program of Université 171 Paris-Saclay, France; the Fundamental Research Funds for the Central Universities of China; 172 the Program of National Natural Science Foundation of China (grant number 11935014); the 173 COFUND-FP-CERN-2014 program (grant number 665779); the Fundação para a Ciência e a 174 Tecnologia (FCT), Portugal (CERN/FIS-PAR/0005/2021); the Enhanced 175 Eurotalents program (PCOFUND-GA-2013-600382); the US CMS program under DOE contract 176 No. DE-AC02-07CH11359 |
In:
| JINST 18, 07 (2023) pp.C07012 |
In:
| 7th International Conference on Micro Pattern Gaseous Detectors 2022 (MPGD 2022), Rehovot, Israel, 11 - 16 Dec 2022 |
DOI
| 10.1088/1748-0221/18/07/C07012
|
Subject category
| physics.ins-det ; Detectors and Experimental Techniques |
Abstract
| The PICOSEC Micromegas precise timing detector is based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplification structure. The first proof of concept single-channel small area prototype was able to achieve time resolution below 25 ps. One of the crucial aspects in the development of the precise timing gaseous detectors applicable in high-energy physics experiments is a modular design that enables large area coverage. The first 19-channel multi-pad prototype with an active area of approximately 10 cm$^2$ suffered from degraded timing resolution due to the non-uniformity of the preamplification gap. A new 100 cm$^2$ detector module with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for improved drift gap uniformity was developed. Initial measurements with 80 GeV/c muons showed improvements in timing response over measured pads and a time resolution below 25 ps. More recent measurements with a new thinner drift gap detector module and newly developed RF pulse amplifiers show that the resolution can be enhanced to a level of 17 ps. This work will present the development of the detector from structural simulations, design, and beam test commissioning with a focus on the timing performance of a thinner drift gap detector module in combination with new electronics using an automated timing scan method. |
Copyright/License
| preprint: (License: CC BY 4.0) publication: © 2023-2024 IOP Publishing Ltd and Sissa Medialab |