Abstract
| A thermal mapping system is one of the most useful diagnostic tools to identify the mechanisms responsible of performance degradation in superconducting radio frequency (SRF) cavities. Unlike most of the thermal mapping systems currently in operation, we want to develop a system for mapping copper coated SRF cavities. This thermal mapping system, based on contact thermometry, will operate in both superfluid and normal liquid helium for the study of thin film cavities on copper built at CERN. This paper describes the R&D; studies to design and develop the system. The characterisation of thermometers and the validation of their thermal contact are presented. Thanks to the use of some heaters with the aim of reproducing the presence of heat losses in a SRF cavity, temperature profiles on a copper surface will be shown at different conditions of the helium bath. In addition, preliminary results on magnetic field sensors, based on the anisotropic magnetoresistance effect, will be reported in view of their possible implementation in the thermal mapping system. |