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We report the results of the first joint observation of the KAGRA detector with GEO 600.
KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser
interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British–
German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600
and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the
results of the joint analysis of the GEO–KAGRA data for transient gravitational-wave sig-
nals, including the coalescence of neutron-star binaries and generic unmodeled transients.
We also perform dedicated searches for binary coalescence signals and generic transients
associated with gamma-ray burst events observed during the joint run. No gravitational-
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wave events were identified. We evaluate the minimum detectable amplitude for various
types of transient signals and the spacetime volume for which the network is sensitive to
binary neutron-star coalescences. We also place lower limits on the distances to the gamma-
ray bursts analyzed based on the non-detection of an associated gravitational-wave signal
for several signal models, including binary coalescences. These analyses demonstrate the
feasibility and utility of KAGRA as a member of the global gravitational-wave detector
network.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index F31, F32, F33, F34

1. Introduction
The first direct observation of gravitational waves (GWs) [1] opened a new branch of astron-
omy. In their first three observing runs, Advanced LIGO and Advanced Virgo have identified
90 candidates with probability of astrophysical origin greater than 50% [2–5], all of which were
consistent with being produced by the inspiral and merger of compact-object binaries com-
prised of black holes (BHs) or neutron stars (NSs). During the most recent observing run,
signals were detected at a rate of greater than one event per week [3,5], and this rate is ex-
pected to grow rapidly as detector sensitivity improves [6]. There is also the potential to detect
GWs from other sources, such as core-collapse supernovae [7,8], cosmic strings [9,10], and long
gamma-ray bursts (GRBs) [11–14], which would provide probes into the astrophysics of these
objects [15,16] and further insights into fundamental physics [15,17,18].

Optimal use of GW data relies on observations by a network of detectors. Laser interferom-
eter GW detectors are essentially all-sky monitors but have low sky-localization accuracy for
short-duration transients. Determining the source position or host galaxy for short transients
relies mostly on triangulation between widely separated detectors [6,19–23]. Multiple detectors
with different orientations are also required to disentangle the two wave polarizations, which in
turn is required, for example, for some tests of general relativity [1,17,24–26]. Measuring both
polarizations is also required for determining the source orientation, which is needed to deter-
mine the distance to binary sources (vital for measurements of the Hubble constant [27–30]). It
can also give information on GRB beaming [31]. Multiple detectors also provide redundancy
against detector downtime and improve the sky coverage of the network.

In this paper we report the results of the first joint observation of a new detector in the
global network: KAGRA. The KAGRA detector [32] took scientific data from April 7 through
April 20, 2020, at the end of the third observing run (O3) of the LIGO–Virgo–GEO network.
The LIGO and Virgo detectors were forced to terminate operations prematurely due to the
COVID-19 pandemic, but the GEO 600 (abbreviated in this paper as GEO) detector continued
operations and collected data jointly with KAGRA over this period. We present the results
of analyses of this joint GEO–KAGRA run data for transient GW signals. We perform four
of the searches that are standard for LIGO–Virgo observing runs. Two of these scan all of
the data for signals arriving from any direction at any time: a search for binary NS (BNS)
coalescences [2,3,33,34], and a search for generic unmodeled short transients (bursts) [35–37].
The other two analyses are dedicated searches for binary coalescence signals and GW bursts
associated with GRB events observed during the joint run [38–41]. No significant candidate
GW events are identified, which is expected given the sensitivity of KAGRA at this early stage
in its commissioning. However, the sensitivity of KAGRA is expected to improve by more than
two orders of magnitude over the coming years as its design sensitivity is achieved [6]. These
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analyses demonstrate the value KAGRA will have as a member of the global network as its
sensitivity increases.

This paper is structured as follows. In Sect. 2 we describe the KAGRA and GEO detectors,
and the joint observing run. In Sect. 3 we present the all-sky search for BNS coalescences. In
Sect. 4 we present the all-sky search for generic bursts. In Sect. 5 we present the compact binary
coalescence (CBC) and burst searches following up GRBs observed during the joint run. We
conclude with a discussion of the prospects for future joint observations in Sect. 6.

2. GEO–KAGRA observing run
2.1 KAGRA
KAGRA [32,42,43] is a laser interferometer GW detector with 3 km arms, located in Kamioka,
Gifu, Japan. KAGRA is built underground, and uses cryogenic mirrors for four test masses in
two arms. Those features help to reduce seismic and thermal noise. KAGRA uses sapphire test
masses whose diameter, thickness, and mass are 22 cm, 15 cm, and 22.8 kg, respectively.

The construction of KAGRA started in 2010. However, the start of tunnel excavation was
delayed until 2012 due to a major earthquake on March 11, 2011. The tunnel excavation was
completed by May 2014, then the installation of the laser interferometer started [32,44]. The
initial test of KAGRA with room-temperature mirrors was completed by March 2016, and
the first operation of the 3 km Michelson interferometer was done from March to April 2016
[32,44]. After the cryogenic systems and mirrors were installed, test operation of the interfer-
ometer with one cryogenic mirror was performed from April 28 to May 6, 2018 [45].

By April 2019 most of the interferometer components had been installed, and the commis-
sioning work started. In August 2019, the first lock of the Fabry–Perot Michelson interferom-
eter configuration was achieved. The first lock of the power-recycled Fabry–Perot Michelson
interferometer (PRFPMI) configuration was accomplished in January 2020. The signal read-
out scheme was upgraded from a conventional radio-frequency (RF) readout to a direct-current
(DC) readout with an output mode cleaner in February 2020. The injected laser power was 5 W.
The power recycling gain for the carrier field in the PRFPMI configuration was measured to be
around 11–12. The circulating power in the Fabry–Perot arm cavities was 21–25 kW per arm.

Over the course of six months from August 2019, the detector noise floor was reduced by
3–4 orders of magnitude. A standard measure of interferometer sensitivity is the volume- and
angle-averaged distance to which the inspiral of a 1.4 M�–1.4 M� binary system can be de-
tected with a matched-filter signal-to-noise ratio (SNR) of at least 8 [6,46]. From February 25
to March 10, 2020, KAGRA conducted observations with a BNS observable range of about
600 kpc. After further commissioning work, the sensitivity of KAGRA was improved to reach a
BNS observable range of approximately 1 Mpc by the end of March. KAGRA then performed
an observation run jointly with GEO from April 7 through 20, 2020. Since the thermal noise
was not a major noise source at this point, the test-mass mirrors were not cooled during this
run. Further details of the detector design and construction history are given in Ref. [32].

The sensitivity of KAGRA during the joint GEO–KAGRA run was limited at low frequen-
cies (below 100 Hz) by the local control noise of the mirror suspensions, arising from insuf-
ficiently optimized damping control filters. Above 400 Hz, the sensitivity was limited by laser
shot noise. At intermediate frequencies the noise is not well-modelled but shows some coher-
ence with environmental acoustic noise, which may arise from scattered light coupling.
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During the joint run, data is flagged as being in observing mode when the PRFPMI config-
uration is locked with DC readout. Fixed-frequency lines are added to the test-mass feedback
control signals to calibrate the data. The feedback control signals are monitored for saturations
or other anomalies, and the data acquisition system is checked offline for errors. If any anoma-
lies are found in these checks, the observing mode flag is removed. The GW searches presented
in this paper are performed exclusively on data that are flagged as observing mode, except for
the analysis of GRB 200415A in Sect. 5. At the time of GRB 200415A the detector was locked,
but there were a few personnel still near the detector following earlier maintenance work. Thus,
the data at this time was not flagged as observing mode. However, subsequent investigation of
the data found no anomalies, and we conclude that we can use the data around the time of
GRB 200415A for GW searches.

2.2 GEO 600
GEO [47–49] is a British–German interferometric GW detector with 600 m arms located near
Hannover, Germany. Similar to other GW detectors, the design is based on a Michelson inter-
ferometer with a number of features to enhance the sensitivity. The GW signal is read out by
controlling the differential arm length slightly off of the dark fringe in order to couple the differ-
ential arm motion to the direct-current power at the output. At high frequencies, the detector
is limited by quantum shot noise. The shot noise originates as vacuum fluctuations entering
the interferometer at the output. By replacing the normal vacuum fluctations with a squeezed
vacuum, the quantum noise is reduced in the measurement quadrature [50].

In contrast to the KAGRA detector, the test masses of GEO are made of fused silica and
operate at room temperature [51]. Their diameter, thickness, and mass are 18 cm, 10 cm, and
5.6 kg, respectively. The power injected is about 3 W, which leads to about 3 kW of circulating
power in the power recycling cavity, which is then 1.5 kW circulating power per arm. GEO uses
folding in the arms to give an optical length of 1200 m for each arm [48,49].

Normally, the GEO detector is operated in data-taking astrowatch mode when the detector
is not being used for instrument science research. For the joint GEO–KAGRA run period, the
detector was operated in a stable configuration that included squeezed vacuum injection for
increased sensitivity. The squeezer has a high duty cycle; squeezing was applied for 97.9% of
the observation time.

2.3 Joint observing run and data quality
The GEO–KAGRA joint run period was between April 7 2020 08:00 UTC and April 21 2020
00:00 UTC. Figure 1 shows representative sensitivities of the detectors during the run, as mea-
sured by the amplitude spectral density of the calibrated strain output, and the evolution of
the detectors’ sensitivity over time, as measured by the BNS inspiral range.

Table 1 shows the observing times and the duty cycles for two interferometers, the latter de-
fined as the percentage of the total run duration in which the instruments were observing. The
duty cycle of KAGRA was lower than that of GEO for several reasons. One was that alignment
sensing and control using wavefront sensors was not implemented by the time of the run, so
that the interferometer could not be operated for long periods. Furthermore, following loss of
lock of the interferometer it often took a long time to adjust the alignment in order to recover
lock.
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Fig. 1. Left: Noise amplitude spectral density of GEO (black) and KAGRA (yellow) during the joint
observing run. The solid curves show the mean sensitivity for each frequency bin and the shaded regions
show the 5th and 95th percentiles over the period. The narrow peaks in the spectra are due to such sources
as resonances of the suspension system (violin modes) and harmonics of the electrical grid frequency
(50 Hz for GEO and 60 Hz for KAGRA) [52,53]. Right: BNS inspiral ranges for GEO and KAGRA
over the joint run. The gap around days 6 and 7 was caused when both detectors were affected by bad
weather and were unable to lock.

Table 1. The time length of the observing mode and the duty cycle for GEO and KAGRA for the period
April 7 2020 08:00 UTC to April 21 2020 00:00 UTC.

Observing time (days) Duty cycle

GEO 10.90 79.8%
KAGRA 7.29 53.3%
Coincident 6.39 46.8%

While the quiet underground environment of KAGRA provides advantages in the operation
of the instrument, KAGRA is not completely free from the effects of bad weather. The nearest
coastline is approximately 40 km away. Ocean waves crashing on the shoreline constantly ex-
cite ground vibrations around ∼0.2 Hz, which become about one order of magnitude stronger
during storms. The gap between days 6 and 7 in the BNS range time series data shown in Fig. 1
is a period when KAGRA could not operate due to a storm caused by a low-pressure system
that passed through Japan at that time.

Following the joint run the vibration isolation control system has been improved and addi-
tional environmental monitors and the wavefront sensor system have been installed. This has
led to an increase in KAGRA’s duty cycle.

The strain data from each interferometer is generated by processing and combining raw elec-
tronic signals coming from the differential arm length control using a detailed model of the
control system including the optical response of the interferometer. Any errors in the measure-
ments which inform the model will lead to a systematic error in the calibration. In general,
systematic error is complex-valued, and frequency and time dependent. The calibration uncer-
tainty of the data used in this paper are within ±10% in amplitude and within ±10 deg in phase
(68% C.L.) between 30 Hz and 1500 Hz and between 40 Hz and 6 kHz for KAGRA and GEO,
respectively. In addition, a cleaning process [54] using auxiliary channels is applied to the GEO
data to remove some bilinear noise from the gravitational wave strain data.

We have observed many short, transient noise fluctuations, known as glitches, in each de-
tector. During the joint observing period, the median rates of glitch triggers generated by the
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data-monitoring program Omicron [55,56] with SNR larger than 6.5 were 10.3 per minute for
GEO and 6.8 per minute for KAGRA. These values are significantly larger than the glitch
rates during the first and the second parts of O3 (O3a and O3b) of LIGO–Virgo, which were
0.29–0.32 per minute, 1.1–1.2 per minute, and 0.47–1.1 per minute for LIGO–Hanford, LIGO–
Livingston, and Virgo, respectively [3,5]. On the other hand, the glitch rates of GEO and KA-
GRA were comparable with the rate of 14 per minute in Virgo during the second observing run
(O2) [3], which was the first observing period for the Advanced Virgo project. The investigation
of sources of glitches in GEO and KAGRA is ongoing by identifying statistical coincidences
and physical couplings between the auxiliary channels and the strain channel.

One method to reduce the impact of glitches on GW searches is through the use of data-
quality flags, lists of time segments that identify the status of detectors or the likely presence
of a particular instrumental artefact. Three categories of data-quality flags are used in GW
searches [57,58]. Category 1 flags indicate that the data have been severely affected by noise
and should not be used for astrophysical searches. Category 2 flags indicate that the data are
predicted to contain non-Gaussian artefacts based on glitches in auxiliary channels and known
physical couplings to the strain data. Category 3 flags indicate that the data are predicted to
contain non-Gaussian artefacts based on glitches in auxiliary channels and statistically signif-
icant correlations between glitches in auxiliary channels and glitches in the strain data. GEO
has introduced data-quality flags corresponding to Category 1 and Category 3. KAGRA had
not introduced data-quality flags by the time of the joint run; they are planned to be introduced
before the next observing run.

3. All-sky binary search
To search for compact binary coalescence (CBC) signals, we first perform a matched-filter
search and then rank candidate events with a multi-dimensional classifier using the Gst-
LAL library [59–61]. Because of their short duration, high-mass binary coalescences are dif-
ficult to distinguish from glitches. In this search, it was found that the brief observation period
did not provide a sufficiently large data set to train the ranking statistic, leading to noise fea-
tures being incorrectly assigned high statistical significance. In contrast, because of their longer
duration, BNS waveforms are easier to distinguish from noise transients, and despite the short
observation period there is sufficient data to train the GstLAL detection system to perform well
for this class of GW source. For this reason we restrict the search to BNS sources only.

Except for restricting the mass parameter range to BNS sources, the GstLAL configuration
for this search is the same as those for our most recent GW transient catalogs, GWTC-2.1 [4]
and GWTC-3 [5], and for the O3a subsolar-mass binary search [62], with one change: the event
clustering based on the matched-filter SNR is disabled, and instead a data reduction step based
on SNR and the signal-consistency test statistic is newly introduced. This change improves the
GEO–KAGRA sensitive range by approximately 10%. This new finding will also help improve
future LIGO–Virgo–KAGRA analyses.

Matched filtering is done by comparing the data to a set of template waveforms called a
template bank [63–66]. We use the same template bank as the first Advanced LIGO observ-
ing run (O1) [67,68] but with the component masses restricted to the range 1 M� to 3 M� ,
which conservatively covers the range expected for NSs [5]. Templates are parametrized in
terms of their chirp mass M, which is related to the individual component masses m1, m2 by
M = (m1m2)3/5/(m1 + m2)1/5. For templates with a chirp mass less than 1.73 M� the TaylorF2
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waveform approximant [64,69,70] is used, while for higher masses the reduced-order model
of the SEOBNRv4 approximant [71] is used. This subset of the O1 template bank was tested
against a set of BNS signals with masses distributed uniformly across the search mass range
and using noise power spectral densities typical of GEO and KAGRA during their joint run.
The fitting factor [72] was above 0.9 for >99% of simulated signals, with the exceptions being
simulations for a chirp mass larger than 2.4 M�. The fitting factor was above 0.97 (the thresh-
old commonly used in LIGO–Virgo searches [5]) for all signals with chirp masses below 2 M� ,
corresponding to component masses below 2.3 M� for an equal-mass binary.

GstLAL defines triggers as the maximum of SNR over 1 s windows which exceed a thresh-
old of 4. It defines coincident triggers as triggers from each detector associated with the
same template and with coalescence times within 32.5 ms of each other. This time window
accounts for the maximum light-travel time (27.5 ms) between GEO and KAGRA as well
as the uncertainty in the inferred coalescence time at each detector. Candidate events com-
prise both coincident and non-coincident triggers. We define the network SNR as the root-
sum-square of the SNRs for coincident triggers, and simply the SNR for non-coincident trig-
gers. We discard candidate events that have network SNR below 7 because there are so many
noise background events at those low SNRs that it is hard to distinguish true signals from
noise.

GstLAL ranks candidate events based on the logarithm of the likelihood ratio L, which is
a measure of how signal-like a given event is. The likelihoods used in this analysis are con-
structed using the SNR, a signal-consistency test, the differences in time and phase between
the triggers from different detectors when the candidate event consists of coincident trig-
gers, the information of which set of detectors ({GEO}, {KAGRA}, or {GEO, KAGRA})
form the event, the sensitivity of the detectors to the exact template masses at the time of
the event, the rate of triggers in each of the detectors at the time of the event, and the
relative frequency with which signals are expected to be recovered by each template given
the assumption that astrophysical sources are distributed uniformly in the logarithm of the
masses.

GstLAL uses Monte Carlo techniques to estimate the distribution function f (lnL) for the
log-likelihood ratios assigned to candidates resulting from the noise process. From f (lnL),
the total number of candidates collected in the experiment, and the experiment’s duration
we compute the mapping from a log-likelihood-ratio threshold lnLth to the false-alarm rate,
FAR(lnLth), which is the rate at which the noise process yields candidates at or above the given
threshold.

3.1 Search results
For the GEO–KAGRA search, the total amount of data analyzed for each detector com-
bination was 4.59 days for GEO-only, 0.90 days for KAGRA-only, and 6.21 days for two-
interferometer observations, for a total of 11.70 days (0.032 years).

Figure 2 shows the event count as a function of the threshold on the inverse false alarm rate
(iFAR). We see no significant deviation of the observed distribution from our noise model and
conclude that no signal of interest has been detected. The most significant candidate is found
as a coincident trigger in GEO and KAGRA at April 20 2020 14:03:28 UTC with an iFAR of
0.033 years.
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Fig. 2. Event count versus threshold on iFAR. The predicted distribution due to noise is shown as the
dashed line along with its 50% and 90% statistical error regions. The observed distribution is shown as
the solid line.

Fig. 3. Sensitive spacetime volume to BNS coalescences with component masses drawn from
N (1.4 M� , [0.01 M� ]2) as a function of the threshold on iFAR for the GstLAL binary search. The equiv-
alent range (right axis) is also shown. The bands show the 50% and 90% error regions, estimated as the
Wilson score interval [78].

3.2 Search sensitivity
We estimate the sensitive spacetime volume (product of sensitive volume and livetime) of this
search to CBCs by adding simulated signals to the data and repeating the analysis [73]. Since
GEO and KAGRA were not sensitive enough to constrain the BNS merger rate beyond the lim-
its already set by LIGO and Virgo [16], we do not use an astrophysically motivated distribution
for BNS masses. Instead, we measure the search sensitivity around a canonical BNS mass of
1.4 M� . Specifically, the simulated signals are generated so that each component mass is nor-
mally distributed with a mean of 1.4 M� and a standard deviation of 0.01 M� ; i.e. according to
N (1.4 M� , [0.01 M� ]2). The waveform approximant used for the simulated signals is TaylorT4
to 3.5 post-Newtonian order [74–77]. The signals are spaced uniformly in time with an average
spacing of 10 s. Their sources are distributed uniformly in distance between 0.1 Mpc and 3 Mpc
and isotropically across the sky and in orientation. Figure 3 shows the sensitive spacetime vol-
ume as a function of the iFAR threshold. This volume is computed by integrating detection
efficiency over distance with appropriate weighting, where the efficiency is defined as the frac-
tion of simulated signals that exceed the iFAR threshold within each distance bin. When we
compute this fraction, we include GEO–only, KAGRA-only, and GEO–KAGRA times. The
spacetime volume is a decreasing function of the threshold, approximately 3 × 10−2 Mpc3 years
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to 2 × 10−2 Mpc3 years for iFARs from one per year to one per million years. Figure 3 also
shows the equivalent sensitive range, defined as the radius of a sphere of the same average spa-
tial volume, which may be compared to Fig. 1. The iFAR of the most significant candidate
corresponds to a range of ∼0.6 Mpc, which can be taken as the approximate sensitive range of
this analysis.

4. All-sky burst search
The search pipeline coherent WaveBurst (cWB) [79,80] is an algorithm for the detection and
reconstruction of GW transient signals with durations of typically up to a few seconds. The
algorithm searches for coincident excess signal power in a network of GW detectors without
assuming specific waveform models, and therefore is suitable for searching for GW transients
from a range of different sources. It is used in all-sky burst searches [35,36,81], as well as, for
example, in searches for GWs from binary coalescences [2,3,5] and core-collapse supernovae
[82].

Analyses with cWB are performed in a wavelet domain [83] on normalized data transformed
at various resolution levels. Wavelets with amplitudes above the typical fluctuations of detector
noise are selected and grouped into clusters. Clusters that are correlated in multiple detectors
are identified as coherent events. For coherent events, waveforms are reconstructed based on
maximum-likelihood-ratio statistics [79]. Events are ranked by their coherent network SNR ηc

[79], and those with ηc > 5 are stored for further processing.
Due to the high rates of glitches and a large number of noise coincidences found in the GEO–

KAGRA network, we apply an additional constraint in which only one polarization component
of a GW candidate event is reconstructed. This constraint has been employed in other LIGO
and Virgo searches [35,36,81,82]. It is effective in mitigating the background event rate, and
allows the analysis to search for the GW polarization to which the network has maximum sen-
sitivity from each sky direction [84,85]. However, for non-aligned detectors, such as GEO and
KAGRA, each detector can be sensitive to different polarizations at any given sky location.
In this case the constraint may lead to the rejection of real events. Also, where the network
is sensitive to both polarizations, a significant portion of the signal energy contributes to the
noise estimate. In extreme cases, the contribution may be so large that the signal becomes unde-
tectable. While reconstructing both polarizations may help reduce the false negative rate, lifting
this constraint would substantially increase the background event rate as well as the computa-
tional cost.

To reduce further the rate of noise events falsely identified as GW signals, we apply additional
selection cuts. In this work we use the network correlation coefficient cc [79], which is a ratio
between correlated and total energy of the signal. GW signals have cc ≈ 1; we exclude events
with cc < 0.55. We also employ the effective number of time–frequency resolution levels used
for event detection and waveform reconstruction [86], nf . In total, 14 resolution levels are used
in this analysis. For noise events the typical values of nf are low; we exclude events with nf

< 8.9. These thresholds are selected based on separating background events and simulated
signals (described in Sects. 4.1 and 4.2). We further exclude events with central frequency in the
range 118–124 Hz because a significant number of background events with central frequency
near 120 Hz were observed during the run. An analysis of these glitches with Omicron (Sect. 2)
indicates they are likely associated with a single unknown noise source in KAGRA.
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Fig. 4. The rate of background events as a function of coherent network SNR ηc for the cWB all-sky burst
search. The dashed line shows the rates for all the events. The solid line shows the rate after application
of the cc, nf , and central-frequency selection cuts.

Fig. 5. Cumulative number of events with central frequency in 64–1024 Hz versus iFAR found by the
cWB all-sky burst search. Only a single event is identified (triangle). The shaded regions show the 50%
and 90% Poisson uncertainties.

4.1 Background and search results
Given that the GEO–KAGRA network sensitivity is limited for frequencies �100 Hz and
�1 kHz (see Fig. 1), our analysis spans the frequency range of 64–1024 Hz. The data is down-
sampled and periods of poor data quality are removed, similar to the all-sky searches for burst
signals in O1 and O2 [35,36]. Intervals with at least 600 s of continuous coincident data are re-
quired, and the total analyzed coincident time between GEO and KAGRA is equal to 4.38 days.
The background event distribution is estimated by artificially time-shifting the data from one
detector with respect to the other. The time shifts are multiples of 1 s, larger than the time re-
quired for a GW signal to travel between the detectors, so that any identified signal is not of
astrophysical origin. In total, a background livetime of 7.2 years is obtained.

Figure 4 shows the background distribution before and after application of the cc, nf , and
central-frequency selection cuts. The post-selection-cut distribution is considered the back-
ground distribution of events for this analysis.

Figure 5 shows the event count as a function of the threshold on the iFAR. Only one can-
didate event is identified, at April 12 2020 18:10:15 UTC with an iFAR of 0.097 years. It is
consistent with the background and is not significant enough to be considered a GW event.
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Table 2. The GW morphologies used to quantify the search sensitivity. The first column shows the wave-
forms used. The second and third columns show the hrss values at which 50% and 90% detection efficien-
cies are achieved at an iFAR of 1 year. For the astrophysical waveforms the second and third columns
show the luminosity distance at which these efficiencies are achieved.

Morphology 50% 90%

Gaussian pulses (linear) hrss (10−20 Hz−1/2)
τ = 0.1 ms 5.3 N/A
τ = 2.5 ms 15.0 N/A

sine–Gaussian wavelets (circular)
f0 = 100 Hz, Q = 9 4.9 11.0
f0 = 235 Hz, Q = 9 1.0 1.9
f0 = 361 Hz, Q = 9 0.9 1.7

sine–Gaussian wavelets (elliptical)
f0 = 70 Hz, Q = 3 28.0 94.0
f0 = 153 Hz, Q = 9.0 4.0 14.0
f0 = 235 Hz, Q = 100 1.4 4.7
f0 = 554 Hz, Q = 9.0 1.5 4.3
f0 = 849 Hz, Q = 3 3.5 12.0

White-noise bursts
f low = 150 Hz, �f = 100 Hz, τ = 0.1 s 1.9 N/A
f low = 300 Hz, �f = 100 Hz, τ = 0.1 s 1.1 N/A
f low = 700 Hz, �f = 100 Hz, τ = 0.1 s 1.2 N/A

Astrophysical signals distance (kpc)
GW150914 809 N/A
Supernova SFHx 0.08 0.01

4.2 Search sensitivity
We estimate the search sensitivity to potential GW transients by adding simulated signals to the
detector data and repeating the analysis. Similarly to other observing runs [35,36,81], we use
a variety of ad hoc waveforms including sine–Gaussian wavelets (SG), Gaussian pulses (GA),
and band-limited white noise bursts (WNB), with frequencies and duration spanning a range of
possible values. SG signals are defined by their central frequency f0 and quality factor Q, which
determines the duration of the signals. The GA signals are described by their duration τ . The
WNB signals are described by their lower-frequency bound f low, bandwidth �f, and duration
τ . The parameter values chosen are listed in Table 2. In addition to these ad hoc signals, two
astrophysically motivated signals are used: the reconstructed signal of GW150914 [1] and a
simulated core-collapse supernova waveform referred to as SFHx [87].

The simulated signals are distributed uniformly over the sky and in polarization angle. For
SG waveforms we use both elliptical and circular polarizations: the sources of circular SGs
are assumed to be optimally oriented, while the sources of elliptical SGs have isotropically
distributed orientations. GA waveforms are linearly polarized, while WNB waveforms have
uncorrelated equal-amplitude polarizations. For SFHx we use the optimal orientation as the
waveform is only available at this observing angle. Each signal is simulated at a wide range of
amplitudes, characterized by the root-sum-squared strain hrss:

hrss =
{∫ ∞

−∞
[h2

+(t) + h2
×(t)] dt

}1/2

. (1)
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Fig. 6. The GW emitted energy in units of solar masses (M�c2) that correspond to a 50% detection
efficiency with cWB at an iFAR of ≥1 year, for a source located at 10 kpc. The circular SG waveforms
are indicated by triangles, the elliptical SG waveforms by squares, and the WNB waveforms by crosses.

These signals are then recovered using the search method described above and the detection
efficiency is defined as the fraction of signals that produce an event which passes the selection
cuts and has an iFAR ≥1 year.

Table 2 shows for each waveform type the hrss amplitude at which the detection efficiency
reaches 50% and 90%. As mentioned earlier, the constraint employed in cWB affects the sen-
sitivity of networks of two detectors. This effect is more prominent when the reconstructed
waveform energy is distributed across different polarization components. As a result, the de-
tection efficiencies for these waveforms are less than 90% even for large values of hrss. For these
waveforms we put N/A in the column corresponding to 90% detection efficiency. These hrss

limits follow the network noise spectra (Fig. 1).
Assuming isotropic and narrow-band emission by a source, the energy emitted in GWs is

given by [81]

EGW = π2c3

G
r2 f 2

0 h2
rss, (2)

where r is the distance to the source and f0 is the central frequency. This equation is valid for
unpolarized signals such as WNBs, while for SG signals the rotating system emission has to be
accounted for by multiplying the right-hand side of Eq. (2) by a factor of 2/5 [88]. Using Eq. (2)
and the hrss limits from Table 2, we can estimate the minimum energy needed to be radiated by
a population of standard-candle sources at a distance of r = 10 kpc to give a 50% detection
efficiency. The results are shown in Fig. 6. Again, the general behavior is determined by the
power spectral density of the network (Fig. 1).

5. Gamma-ray burst analyses
GRBs are targets of interest in GW astronomy because the astrophysical processes that power
them, specifically massive stellar core collapse [7,8,11–14] and CBCs [31], may also emit de-
tectable GWs. By targeting GRBs with tailored search methods we can potentially detect
weaker associated GWs than would be identified with non-targeted analyses [85,89].

GRBs display a bimodality in their joint duration–spectral-hardness distribution [90]. Long–
soft GRBs (duration �2 s) are associated with massive stellar core collapse [91–93]. The physics
governing the bulk motion of matter during these events is complex, so we do not have robust
models of the resulting GW emission, though a number of speculative models for strong GW
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Table 3. GRBs observed during GEO–KAGRA run times when both detectors were taking science-
quality data. GRB 200415A and GRB 200420A were short-duration GRBs, and so are analysed by both
searches.

GRB name Data source Type Analysis

200412A Fermi-GBM Long X-Pipeline
200415A Fermi-GBM, IPN Short X-Pipeline & PyGRB
200418A Fermi-GBM Long X-Pipeline
200420A Fermi-GBM Short X-Pipeline & PyGRB

emission have been proposed, such as long-lived bar-mode instabilities and disk fragmentation
instabilities [11–14]. We therefore use a minimally modeled search algorithm X-Pipeline [85,94]
to target these GRBs.

Short–hard GRBs (duration < 2 s) can be produced by NS binary coalescences, a connection
that has long been proposed [95–98] and was observationally confirmed by the multimessenger
studies of GW170817/GRB 170817A [31,33,99–104]. We therefore target them with a modeled
CBC search algorithm PyGRB [89,105] in addition to the more generic minimally modeled X-
Pipeline .

During the joint GEO–KAGRA run, four GRBs were detected coinciding with science
data-taking in both GEO and KAGRA; see Table 3. Our minimally modeled search al-
gorithm was able to analyze all of these given its data requirements. GRB 200415A and
GRB 200420A were short duration, therefore our modeled search algorithm was also used to
analyze them. GRB 200415A was subsequently associated [106,107] with a magnetar giant flare
in the nearby galaxy NGC 253 at 3.5 Mpc based on its sky position, temporal and spectral prop-
erties, and inferred energy. All GRB properties were taken from the Fermi Gamma-ray Burst
Monitor (GBM) Catalog [108–112], with one exception: the minimally modeled analysis of
GRB 200415A took sky position data from a preliminary InterPlanetary Network (IPN) tri-
angulation [113] for practical reasons. Given the coarse angular sensitivity of the GW detector
network, the very small difference does not affect the results in any significant way.

5.1 Binary coalescence search targeting short GRBs
By targeting the times and sky positions of short GRBs, we can perform a deep, coherent
matched filter analysis for associated GWs from BNS and NS–BH (NSBH) binaries. This anal-
ysis is called PyGRB [89,105], and forms part of the larger PyCBC analysis toolkit [114] with key
components in the LALSuite library [115]. This approach has been used in many previous ob-
serving runs of the LIGO and Virgo detectors [38–41], and here we deploy a PyGRB analysis
that is functionally identical to that used in the most recent LIGO–Virgo analyses [40,41], with
only some changes to the configuration that are appropriate for the data being analyzed, as
outlined below.

The PyGRB search performs a matched filter coherently across the operational GW detector
network around the time of each short GRB. In this analysis we filter in the frequency range
40–1000 Hz with a bank of template waveforms [66,116] generated with an aligned-spin point-
particle model, IMRPhenomD, that includes inspiral, merger, and ringdown phases [117,118].
The bank includes waveforms representing BNS and NSBH systems, where NSs have dimen-
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sionless spins ≤0.05.1 Within these bounds, NSBH templates are further constrained to the
region in parameter space where the combination of masses and spins could give rise to tidal
disruption of the NS, and therefore potentially produce a GRB [121,122], assuming a very stiff
2H equation of state [123] and requiring a non-zero remnant mass. Additionally, we place an
inclination constraint motivated by the expected [124–127] small inclination angles for GRB
progenitors due to GRB beaming. This is imposed by filtering with only circularly polarized
templates [89], corresponding to binary systems with inclination angles θJN between the total
angular momentum axes Ĵ and the line-of-sight N̂ of 0 deg or 180 deg. This constraint im-
proves sensitivity to signals with small inclinations (�30 deg or �150 deg).

We tile the reported sky error region of each GRB and filter at each sky point with our con-
strained template bank [89] to obtain a coherent SNR statistic for the network. We place thresh-
olds of 4 on single detector SNRs and 6 on the coherent network SNR. Surviving triggers
are then re-weighted or cut according to signal consistency checks [89,105,128] to produce the
search detection statistic.

We consider a 6 s window spanning [−5, +1) s about the reported GRB Earth-crossing time
as the on-source window where an associated GW event may be found. This is compared to
an off-source window that is used to characterize the search background, which typically con-
tains up to ∼90 min of data surrounding the on-source time. The loudest (most significant)
candidate event in the on-source window, as defined by the detection statistic, is compared to
a list containing the most significant background events from each of the 6 s background trials
within the off-source window. Additional background trials are obtained by time-shifting the
data streams relative to one another by amounts greater than the light travel time between the
detectors [89], similar to the approach described in Sect. 4. This comparison between on-source
and background trials results in a p-value for the candidate on-source event.

The short GRB triggers during the analysis period with available data from both interfer-
ometers were GRB 200415A and GRB 200420A. The loudest candidates within the on-source
windows had p-values of 0.43 and 0.45 respectively, consistent with being due to background
noise.

The sensitivity of the search is evaluated through the use of simulated GW signals in-
serted throughout the off-source data and spread across the region(s) of the sky corre-
sponding to the positional uncertainty of the GRB trigger. These simulated signals corre-
spond to events drawn from three potential astrophysical populations: NSBH with aligned
spins, NSBH with isotropically oriented spins, and BNS with isotropically oriented spins.
We draw NS masses from normal distributions centered on 1.4 M� with standard devia-
tions of 0.2 M� and 0.4 M� for BNS and NSBH systems respectively [129,130], limited
within the range [1.0, 3.0] M� . The wider NSBH distribution reflects the greater uncertainty
surrounding NSBH system properties. NS dimensionless spin magnitudes are drawn uni-
formly in the range [0, 0.4], with the upper limit corresponding to the fastest spinning pul-
sar observed [119]. BH masses are drawn from N (10 M� , [6 M� ]2), limited within the range

1The fastest known spinning pulsar has a dimensionless spin magnitude of ∼0.4 [119] and masses
bounded by [1.00, 2.83] M� , and BHs have dimensionless spins ≤0.998 and masses bounded by
[2.83, 25.00] M� . We restrict our template bank to NS spin magnitudes of ≤0.05 because it has been
demonstrated [68,120] that due to the balance between signal recovery and false alarm rate, the overall
search sensitivity for BNS systems with spins <0.4 is larger when the template bank is restricted to spins
<0.05 than when it is expanded to include spins <0.4.
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Fig. 7. Exclusion distance curves for GRB 200415A. We show the curves for each of our three injection
populations: BNSs (blue solid), isotropically spinning NSBHs (orange dashed), and aligned-spin NS-
BHs (green dot-dashed). The respective 90% confidence exclusion distances of 0.91 Mpc , 1.08 Mpc ,
and 1.45 Mpc are marked, as are the confidence levels corresponding to the distance to NGC 253
(3.5 Mpc; black dotted), which are 0%, 2%, and 9% respectively. Thus, the search sensitivity is not suf-
ficient to confidently exclude a binary merger in NGC 253 as the progenitor based on the available
GW data.

[3, 15] M� , and dimensionless spin magnitudes uniformly in the range [0, 0.98] [131]. Spins
are isotropically oriented except for the aligned-spin NSBH population. Inclination angles
θJN are drawn uniformly in cos θJN for θJN ∈ [0, 30◦]∪[150◦, 180◦]. NSBH systems are then
rejected if they do not meet the same NS disruption condition as applied to the template
bank [121,122]. NSBH signals are generated with a point-particle effective-one-body model for
the inspiral–merger–ringdown phases that incorporates orbital precession effects and is tuned
to numerical-relativity simulations, SEOBNRv3 [132–134]. BNS signals are generated with a
time-domain approximation to 3.5 post-Newtonian order for the inspiral phase, SpinTaylorT2
[63,135–140].

In the case of no compelling candidate event being identified in the on-source window,
these simulated signals allow for exclusion distances to be quoted. A 90% exclusion dis-
tance corresponds to the distance within which 90% of a population of simulated signals
were recovered with a detection statistic at least as large as the loudest on-source candi-
date event; at greater distances the recovered fraction of signals drops. For GRB 200415A
we report 90% exclusion distances of 0.91 Mpc for BNS systems, 1.08 Mpc for isotropically
spinning NSBH, and 1.45 Mpc for aligned-spin NSBH. At a distance of 3.5 Mpc, corre-
sponding to NGC 253, exclusion confidences for these three populations are 0% , 2% , and
9% respectively, too low to be able to confidently exclude any such binary merger as the pro-
genitor of GRB 200415A. These exclusion curves are shown in Fig. 7. For GRB 200420A
we report 90% exclusion distances of 0.15 Mpc for BNS systems, 0.21 Mpc for isotropically
spinning NSBH, and 0.17 Mpc for aligned-spin NSBH. The injection recovery was limited
in this case by the large sky error of the GRB. The reported GBM 1 σ statistical un-
certainty (averaged over the error ellipse [111]) was 27.3 deg [141], and was used to gen-
erate a two-dimensional normal distribution on the sky from which injection sky posi-
tions were drawn. This resulted in a population of injections spanning a large area on
the sky within which the interferometer sensitivities varied significantly, including regions
with severely reduced range. As a result, a non-negligible fraction of nearby injections were
undetectable.
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5.2 Search for generic bursts associated with GRBs
X-Pipeline [85,94] is an analysis package that combines data from multiple detectors coherently
to detect minimally modeled GW transient signals associated with events such as GRBs, core-
collapse supernovae, and fast radio bursts. It is used regularly for such searches of LIGO–Virgo
data [31,38–40,142–144].

For each GRB, X-Pipeline constructs a grid of sky positions covering that GRB’s sky local-
ization error box. For this analysis linear grids are used, which have been shown to be a compu-
tationally efficient way to cover large error boxes for two-detector networks without significant
loss of sensitivity [145]. For each grid point a coherent analysis is performed. The frequency
range of the search is increased from the standard values of [20, 500] Hz to [30, 1100] Hz to
account for GEO’s better sensitivity at higher frequencies. The on-source window is [−600 s,
+max(60 s, T90)] about the GRB Earth-crossing time, where T90 is the reported GRB duration.
This window is large enough to account for any reasonable time delay between the GW and
gamma-ray emission [146–155]. An exception to this window choice is made for GRB 200415A,
for which KAGRA was not operating in a stable locked state until less than 600 s before the
GRB event. For this GRB we use an on-source window of [−519, +60] s. The off-source win-
dow consists of all data within ±90 min of the GRB, including time shifts similar to those used
by cWB. The total amount of off-source data analyzed is between 5 × 103 and 3 × 104 times
the on-source duration for each GRB, allowing p-values of order 10−4 to be measured. Finally,
simulated signals are added to the on-source window; these are used both for estimating the
sensitivity of the search and for automated tuning of X-Pipeline ’s background rejection tests.

The same procedure is used for the on-source, off-source, and simulation analyses. The data
are whitened, then Fourier transformed with transform durations of [1/256, 1/128,..., 2] s. The
Fourier-transformed data are combined to form time–frequency maps for each detector. From
these maps the highest 1% of pixels are grouped into clusters. For each cluster the data from
the different detectors is combined in multiple combinations to estimate the signal energy con-
sistent with different GW polarizations and to give various measures of correlation between
detectors. When clusters from different sky positions or Fourier transform durations overlap
in time–frequency, the most significant is retained. The clusters are then checked for coherency
between detectors to reduce the background. The thresholds for these background rejection
tests are selected to maximize the detection efficiency at a user-specified false-alarm probability
(10−4 for this analysis), using a subset of the off-source and simulation clusters. The optimized
thresholds are then applied to the on-source clusters and to the remaining off-source and sim-
ulation clusters. The surviving on-source clusters are our candidate events. Each is assigned
a p-value by comparing to the distribution of surviving off-source events. The sensitivity as a
function of signal amplitude or source distance is evaluated as the fraction of simulated signals
that give surviving events with p-values lower than the lowest p-value of the on-source events.

Of the four GRBs analyzed, the lowest p-value for any on-source event was p = 0.132 for
GRB 200412A . This is consistent with the null hypothesis given the number of GRBs analyzed.
We therefore conclude that there is no evidence for GW emission associated with any of the four
GRBs analyzed. Figure 8 shows the 90% confidence level lower limit on the distance for each of
the GRBs for several emission models: the accretion-disk instability model A of Refs. [156,157];
and circularly polarized sine–Gaussian [38] signals with central frequencies of 150 Hz, 500 Hz,
and 1000 Hz, where we assume an energy emission of 10−2 M�c2 (1.8 × 1052 erg) in GWs. We
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Fig. 8. The 90% confidence-level exclusion distances for each of the GRBs analyzed by the X-
Pipeline generic burst search, for the accretion disk instability (ADI) signal model A and for circular
sine–Gaussian (CSG) signals at 150 Hz, 500 Hz, and 1000 Hz. For a given GRB and signal model this is
the distance within which 90% of simulated signals inserted into off-source data are recovered passing
all background rejection tests and with a significance greater than the loudest on-source candidate event
(if any).

see that in each case our exclusion distances are of order 100 kpc (the analyses of GRB 200412A
and GRB 200420A did not produce 90% exclusion distances for the 1000 Hz sine–Gaussians
above 10 kpc). This is not enough to test the magnetar giant flare hypothesis for GRB 200415A
[107].

6. Summary and discussion
We have presented the results of the first joint observation of the KAGRA detector with GEO,
performed during April 7–20, 2020. The coincident observational data from GEO and KA-
GRA were analyzed jointly to look for transient GW signals, including neutron-star binary co-
alescences and generic unmodeled transients. We also performed dedicated searches for CBC
signals and generic transients associated with GRBs observed during the joint run. No candi-
date GW events were identified.

In the all-sky BNS search, the most significant candidate from the analysis of 0.032 years of
data has an iFAR of 0.033 years, consistent with background. The spacetime volume sensitive
to BNS coalescences was estimated as a function of iFAR, and we found that the iFAR of
the most significant event corresponds to a sensitive distance of ∼0.6 Mpc, comparable to that
expected from the noise spectra.

In the all-sky burst search, the most significant candidate from the analysis of 0.012 years of
data has an iFAR of 0.097 years, which is not significant enough to be considered a likely GW
event. The sensitivity of the search was estimated in terms of the minimal detectable root-sum-
square signal amplitude and minimum detectable signal energy at a fixed distance. We find
minimal detectable energies of around 10−6 M�c2 to 10−3 M�c2 for sources at 10 kpc. These
sensitivities are consistent with the amplitude spectral densities of the detectors.

The searches for CBCs and generic transient signals associated with GRBs found no can-
didate events, with the lowest p-value for any GRB being 0.132 . For GRB 200415A, the ded-
icated CBC search set a 90% exclusion distance of 0.91 Mpc for BNS systems, 1.08 Mpc for
generically spinning NSBH, and 1.45 Mpc for aligned-spin NSBH. At a distance of 3.5 Mpc,
corresponding to NGC 253, the exclusion confidences for these populations are 0% , 2% , and
9% respectively. The sensitivity of the generic burst search was evaluated for several GW emis-
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sion models, giving 90% exclusion distances of order 100 kpc for sources emitting 10−2 M�c2

energy in GWs. These results are not strong enough to test the binary merger or magnetar
hypotheses for the progenitor of GRB 200415A.

The lack of detected GWs in this run is expected given the sensitivity of the GEO–KAGRA
network at the time. However, the sensitivity of KAGRA is expected to improve by more than
two orders of magnitude later this decade [6], becoming comparable to that of the LIGO and
Virgo detectors. Our analyses have demonstrated the ability to incorporate KAGRA data into
standard transient search pipelines that have been used to detect GWs in LIGO and Virgo data.
Adding KAGRA to the LIGO–Virgo network will improve the sky-localization accuracy and
increase the number of events detected with three or more detectors simultaneously [21,158].
KAGRA is planning to join the fourth observing run of the advanced-detector network. We
look forward to KAGRA’s scientific contributions in the coming years as a member of the
global GW detector network.

The full O3GK detector strain data and data products associated with this paper are available
through the Gravitational Wave Open Science Center [159].
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