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We present a model explaining both the 4.2 σ muon g − 2 anomaly and the relic density of dark
matter (DM) in which DM interacts with the Standard Model (SM) via a scalar portal boson ϕ
carrying both dark and SM leptonic numbers, and mediating a nondiagonal interaction between
the electron and muon that allows e ↔ µ transitions. The ϕ could be produced in high-energy
electron scattering off a target nuclei in the reaction eZ → µZϕ followed by the prompt invisible
decay ϕ → DM particles and searched for in events with large missing energy accompanied by a
single outgoing muon in the final state. Interestingly, several events with a similar signature have
been observed in a data sample of ' 3× 1011 electrons on target collected during 2016-2018 for the
search for light dark matter in the NA64 experiment at the CERN SPS [PRL 123, 121801 (2019)].
Attributing so far these events to background allows us to set first constraints on the ϕ mass and
couplings while leaving at the same time decisively probing the origin of these events and a large
fraction of the remaining parameter space to a near exiting future with the upgraded NA64 detector
or other planned experiments.

PACS numbers:

The recent precise determination of the anomalous
magnetic moment of the positive muon aµ = (g − 2)µ/2
from the experiment E989 at FNAL [1] confirmed the
previous measurements of Ref.[2], and gives result which
is about 4.2σ higher than the Standard Model (SM) pre-
diction, see, e.g., [3–14]

aexpµ − aSMµ = (251± 59)× 10−11 (1)

This result may signal the existence of new physics
(NP) below the electroweak scale (� 100 GeV), see e.g.,
Ref.[15]. For example, one of the most attractive expla-
nations of the anomaly suggests the existence of a sub-
GeV gauge boson, which can be probed in a near future
at a fixed-target experiment, see e.g. [16–26].

Another motivation for searches of NP in the low-mass
range come from the dark matter (DM) sector. Despite
many intensive searches at the accelerator and in nonac-
celerator experiments, still little is known about the ori-
gin and dynamics of the dark sector itself. One difficulty
so far is that DM can be probed only through its grav-
itational interaction. Thus, sensitive searches for pos-
sible portals that could transmit new feeble interaction
between the ordinary and dark matter are crucial and,
indeed, they have received significant attention in recent
years [27–31].

The goal of this work is to show that both the 4.2 σ
muon g− 2 anomaly and the relic density of dark matter
(DM) could be explained by a model in which DM inter-
acts with the Standard Model (SM) via a scalar portal
boson ϕ carrying SM Le and Lµ leptonic numbers. The ϕ
mediates a nondiagonal interaction between the electron
and muon that allows e ↔ µ transitions, while the lep-
tonic numbers are conserved. Similar models were con-
sidered in the recent past, but unlike the present model
they considered diagonal interactions transmitted by a
mediator carrying different quantum numbers, see, e.g.

Ref. [32–36]. It is assumed that the ϕ decays predom-
inantly invisibly, Γ(ϕ → invisible)/Γtot ' 1, e.g., into
dark sector particles, thus escaping stringent constraints
placed today on the visible decay modes of the ϕ into
SM particles from collider, fixed-target, and atomic ex-
periments [37]. The most stringent limits on the invisible
ϕ in the sub-GeV mass range are obtained, so far, for the
case of scalars ϕ coupled to electron and muon by the low-
energy experiments searching for the muon decay µ→ eϕ
[37], leaving a large area of the parameter space for the
leptonic ϕ still unexplored. Therefore in the following we
assume that mϕ & mµ.

FIG. 1: One-loop contribution of the leptonic scalar ϕ to ∆aµ.

Consider the interaction of a complex scalar mediator
ϕ(x) with electrons and muons, namely

Lϕµe = −hµeēLµRϕ+H.c. , (2)

where eL = ( 1−γ5
2 )e, µR = ( 1+γ5

2 )µ, The interac-
tion (2) is invariant under the Le, Lµ flavor global
transformations ϕ(x) → exp(iαe + iαµ)ϕ(x), µ(x) →
exp(−iαµ)µ(x), and e(x) → exp(iαe)e(x). Due to the
postulated global symmetry, the Lagrangian (2) contains
only nondiagonal terms like −hµeēLµR, and flavor diag-
onal terms −heeēeϕ and −hµµµ̄µϕ are prohibited. As
a consequence, for massless neutrino the interaction (2)
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transmitted by the leptonic ϕ conserves both muon and
electron lepton numbers. The interaction (2) leads to ad-
ditional contributions to the electron and muon (g − 2).
One-loop contribution to aµ is shown in Fig. and it reads
[38]

∆aµ =
h2
µe

16π2

m2
µ

m2
ϕ

L , (3)

L =
1

2

∫ 1

0

dx
2x2(1− x)

(1− x)(1− λ2x) + (ελ)2x
, (4)

where ε = me
mµ

and λ =
mµ
mϕ

. For electron magnetic mag-

netic moment we must replace mµ to me and me to mµ

in formulas (3), (4). For mϕ � mµ one can find [38] that

∆ae(µ) =
h2
µe

48π2

m2
e(µ)

m2
ϕ

, (5)

and ∆ae
∆aµ

= (memµ )2. If we assume that the additional

interaction explains the muon anomaly (1), then

hµe = (1.1± 0.1)× 10−3(
mϕ

mµ
) . (6)

for mϕ � mµ. As it was mentioned previuosly in the rest
of the paper we assume that mϕ > mµ. This assump-
tion allows us to prohibit the decay µ → eϕ for which
experimental data restrict rather strongly the coupling
constant hµe. For our estimates we shall use the conven-
tional point mϕ = 3mµ resulting in

hµe = (3.3± 0.3)× 10−3 . (7)

for explaining the value (1).
The SUL(2)⊗ U(1) invariant generalization of the in-

teraction (2) is

Lµe,gen = −h1h2

M
(ν̄e, ē)LHϕµR +H.c. , (8)

where h1h2<H>
M = hµe, and < H >= 174 GeV is the

vacuum expectation value of the Higgs isodoublet H. In
the unitary gauge H = (0, h√

2
+ < H >), where h is the

Higgs field. Note that the complex scalar mediator ϕ(x)
is a singlet under the SUc(3)⊗SUL(2)⊗U(1) SM gauge
group. Due to possible interaction L = −λHφH+Hϕ∗ϕ
of the scalar ϕ with the Higgs isodoublet, Higgs boson
would decay invisibly into a ϕ pair, h → ϕϕ∗, with a

rate given by Γ(h → ϕϕ∗) =
λ2
Hϕv

2

16πmh
(1 − 4m2

ϕ

m2
h

)1/2 assum-

ing that the invisible decay ϕ → DM particles is domi-
nant (see below). Here mh is the Higgs boson mass and
v = 246 GeV . From the existing bounds on the Higgs
boson invisible decay width [37] one can obtain an upper
bound on the coupling constant λHϕ ≤ 0.01. The inter-
action (8) is nonrenormalizable and it conserves both Le
and Lµ flavor numbers in the approximation of massless

neutrino. One can obtain the effective nonrenormalizable
interaction (8) from the renormalizable interaction with
vectorlike fermion E, namely

LERµe = −(h1(ν̄e, ē)LHER + h2ĒLµRϕ+H.c.)−MĒE
(9)

Suppose the ϕ-boson interacts with dark mater parti-
cles. Several models can be considered. First, the ϕ(x)
field could have interaction with two dark matter com-
plex scalars s1(x) and s2(x) given by

Lϕs1s2 = gϕs1s2ϕs1s2 +H.c. (10)

Note that the coupling constant gϕs1s2 has the dimen-
sion of the mass. The interaction (10) is invariant un-
der global transformations ϕ → exp(iα1 + iα2))ϕ, and
si → exp(−iαi)si, with i = 1, 2. As a consequence in
the approximation of massless neutrino both Le and Lµ
lepton flavors are conserved.

Consider another model, when the scalar ϕ interacts
with two light dark matter fermions ψ1 and ψ2 with the
Lagrangian

Lϕψ1ψ2 = gϕψ1ψ2ϕψ̄1ψ2 +H.c. (11)

Again interaction (11) conserves both Le and Lµ lepton
flavors. For the Lagrangians (10) and (11) the ϕ decay
rate into s1, s2 and ψ1, ψ2 DM particles is

Γ(ϕ→ s1s2) =
g2
ϕs1s2

8π

p1

m2
ϕ

, (12)

and

Γ(ϕ→ ψ1ψ2) =
g2
ϕψ1ψ2

p1

4π
(1− (m1 +m2)2

m2
ϕ

) (13)

respectively, and p1 =
[(m2

ϕ−(m1+m2)2)(m2
ϕ−(m1−m2)2)]1/2

2mϕ

is the momentum of the particle 1 in the rest frame of the
ϕ, and m1 and m2 are the masses of particles 1 and 2.
Here, we assume that mϕ > m1 +m2. The decay width
of ϕ into µ+e− is given by

Γ(ϕ→ µ+e−) =
h2
µepe

8π
(1−

m2
e +m2

µ

m2
ϕ

), (14)

where pe is the electron momentum in the center of mass
frame. The annihilation cross sections of s1, s2 into µe
pair in the nonrelativistic approximation in s-wave is

σan(s1s2 → e+µ−)vrel = σan(s1s2 → e−µ+)vrel

= |M |21
pecm

16π(m1 +m2)m1m2
(15)

where

|M |21 = g2
ϕs1s2h

2
µe

((m1 +m2)2 −m2
e −m2

µ)

(m2
ϕ − (m1 +m2)2)2

(16)
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FIG. 2: Schematic illustration of the setup to search for the ϕ → invisible decay of the leptonic scalar ϕ produced in the
reaction eZ → µZϕ of 100 GeV e−’s incident on the active ECAL target of the NA64e experiment.

and pecm is the momentum of electron in the center of
mass frame[59] For the simplest case of dark matter parti-
cles with equal masses, m1 = m2 � mµ, the annihilation
cross section is

σan(s1s2 → e+µ−)vrel =
h2
µeg

2
ϕs1s2

8π(m2
ϕ − 4m2

1)2
(17)

The treatment of general case with nonequal masses is
straightforward and does not qualitatively changes our
main conclusions. For fermions ψ1, ψ2 in the non-
relativistic approximation the annihilation cross section
σan(ψ1ψ2 → e−µ+)vrel is given by the formula (15)
where

|M |22 =
g2
ϕψ1ψ2

2
h2
µe

1

(m2
ϕ − (m1 +m2)2)2

×((m1 +m2)2 −m2
e −m2

µ)m1m2v
2
rel (18)

The total annihilation cross section is given by

σan,totvrel =
h2
µeg

2
ϕψ1ψ2

m2
1v

2
rel

8π(m2
ϕ − 4m2

1)2
, (19)

where σan,tot = σan(ψ1ψ2 → e−µ+) + σan(ψ1ψ2 →
e+µ−). Thus, we see that in the nonrelativistic limit
model with scalar DM particles has s-wave behavior that
contradicts to the Planck data [39][60]

For the model with fermionic DM, we have p-wave be-
havior for the annihilation cross section that allows us to
escape Planck restrictions [39]. We assume that at the
early Universe light DM is in equilibrium with ordinary
matter. From the requirement that the relic density of
DM is explained by the model, we can estimate the cou-
pling constant gϕψ1ψ2

using standard formulae for cal-
culations of the DM density [40–44]. For this estimate
we assume that the p-wave annihilation cross section
< σanvrel >= O(1) pb, and the average relative velocity
of annihilating DM particles < vrel >∼ c/3 which corre-
sponds to the observed DM density of the Universe [45].
Consider the simplest example with m1 = m2 � mµ. As
a consequence of the formula (19) we find that

h2
µeg

2
ϕψ1ψ2

m2
1

4π(m2
ϕ − (m1 +m2)2)2

= O(10 pb) (20)

For the case mϕ = 3m1 we find

hµegϕψ1ψ2
∼ 10−3(

mϕ

GeV
) (21)

In the assumption that the model explains muon g−2 we
find that gϕψ1ψ2

∼ 0.1 and it depends rather weakly on
the ϕ mass. As a consequence we obtain that gϕψ1ψ2

≥
hµe for mϕ ≤ 10 GeV and the mediator ϕ decays mainly
invisibly into DM particles. So we find that our model
can explain both the (g−2)µ anomaly and the dark mat-
ter relic abundance.

Let us briefly discuss constraints on the model from the
existing data. Note, that as both Le and Lµ lepton num-
bers are conserved the muonium to antimuonium conver-
sion, µ+e− → µ−e+, is prohibited. As we already men-
tioned, assuming the invisible ϕ boson decay is predomi-
nant, i.e. Γ(ϕ→ all) ' Γ(ϕ→ DM), the constraints on
coupling hµe from Higgs boson decays are quite modest.
The interaction (2) would also result in LFV-like semivis-
ible Z-boson decays Z → e±e∓ → e±µ∓ϕ;ϕ→ invisible
and Z → µ±µ∓ → µ±e∓ϕ;ϕ → invisible. For mϕ �
mZ the branching ratio Γ(Z→µ±e∓ϕ)

Γ(Z→e+e−) ∼
h2
µe

4π2 . Assuming

mϕ = 3mµ and hµe = 3.3×10−3, one gets Γ(Z→µ±e∓ϕ)
Γ(Z→all) ∼

10−8. This can be compared with the best experimental

constraint Γ(Z→µ±e∓)
Γ(Z→all < 7.5 × 10−7 [37] which is much

weaker. Assuming that for the missing mass ∆mmiss . 5
GeV, which is the experimental resolution of the Z-mass
peak [46], the decays Z → e±µ∓ϕ and Z → e±µ∓

are indistinguishable, one could get hµe . 3 × 10−2 for
the sub-GeV mϕ region . Our model also predicts the
K → µν → eνϕ decay chain with the branching ratio

Br(K → eνϕ) ∼ O(
h2
µe

8π2 ) ∼ 2 × 10−7. By using the ex-

perimental constraints Br(K → eννν) < 6×10−5 for the
momentum range 220-230 MeV/c [47] and a phase-space
spectrum for the K → eνϕ decay one can obtain modest
bounds hµe . 7 × 10−2 for the mass range mϕ . 200
MeV. For mK −mϕ & 250 MeV bound from K → eνϕ
decay does not work due to kinematics constraints of
Ref.[47].

The stronger limits on coupling hµe comes from
anomalous magnetic moment of muon. By using Eq.(1)
we obtain that at 3σ level the contribution of new physics
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to (g − 2)µ is ∆aµ = aexpµ − aSMµ . 428 × 10−11. Us-
ing Eqs.(3 - 5) one gets for mϕ > mµ, that hµe .
1.42 × 10−3(

mϕ
mµ

) at 3σ level. For mϕ = 3mµ we find

that hµe ≤ 4.26× 10−3. Note that bound from ∆aµ gets
weaker proportionally to mϕ, and for large masses mϕ &
a few GeV the ATLAS bound from the Z-decays becomes
stronger.

Additional constraints can be obtained from the
NA64e experiment. For the sensitivity estimate we will
use NA64e results on the search for light DM production
in invisible decays of dark-photon (A′) mediator obtained
with nEOT = 2.84 × 1011 100 GeV electrons on target
(EOT) [48–50]. If the ϕ exists, it could be produced in
the reaction

eZ → µZϕ;ϕ→ invisible (22)

of high-energy electrons scattering off nuclei of an ac-
tive target of a hermetic NA64e detector, followed by the
prompt invisible ϕ decay into DM particles, which carry
away part of the beam energy. A more detailed descrip-
tion of the NA64e detector can be found in Refs.[49, 50].
Below, its main relevant features will be briefly men-
tioned. The detector schematically shown in Fig.2 em-
ployed a 100 GeV pure electron beam, using the H4
beam-line of the CERN’s North Area with intensity of
up to ' 107 electrons per spill. The beam electrons
impinging the target are measured by a magnetic spec-
trometer consisting of two successive dipole magnets and
a low-material-budget tracker chambers T1 − T4 [51].
The beam electrons are tagged by detecting the syn-
chrotron radiation (SR) emitted by them in the magnets
with the SRD counter [52]. The active target is an elec-
tromagnetic calorimeter (ECAL), followed by a hermetic
hadronic calorimeter (HCAL) consisting of three consec-
utive modules. The HCAL and the counters MU1-MU3,
located between the modules, are used as an efficient veto
against hadronic secondaries and also for identification of
muons produced in the primary e− interactions in the fi-
nal state.

The signature of the reaction (22) would be an event
with a fraction of the beam energy deposited in the ECAL
accompanied by a single muon outgoing from the target
and passing the three HCAL modules, as shown in Fig.2.
In these searches a sample of ' 104 rare dimuon events
from the QED production in the target, dominated by the
hard bremsstrahlung photon conversion into the µ+µ−

pair on a target nucleus, e−Z → e−Zγ; γ → µ+µ− was
accumulated. Differently from the reaction (22) shown
in Fig.2, these events are accompanied by two muons in
the final state passing though the HCAL modules. They
exhibit themselves as a narrow strip in the measured dis-
tribution of events in the (EECAL;EHCAL) plane corre-
sponding to the double MIP (minimum ionizing particle)
HCAL energy EHCAL ' 12 GeV [49, 50], see, e.g. Fig.
2 (left panel) in Ref.[50] (region I). Using these samples
we define the signal region for events from (22) to be
(EECAL < 50 GeV; EHCAL ' 6 GeV) where the first
cut is on the missing energy in the ECAL carried away

by the ϕ and the muon, also used in Ref. [50] for the
search for invisible decays of A′s [49, 50]); while the sec-
ond requirement is for the total energy in three HCAL
modules to be equal the MIP energy deposited by a single
muon.

Interestingly, several events are observed in the sig-
nal region, the origin of which is the subject of further
detailed analysis beyond the scope of this work. Con-
servatively attributing these events to background, we
estimated the NA64 sensitivity with a generic DM sim-
ulation package DMG4 [53] used for the signal yield, the
efficiency of the signal muon detection and detector ac-
ceptance calculations, e.g., as in Ref.[54].

FIG. 3: The current constraints on the coupling hµe in the
(mϕ, hµe) plane (dark dashed area) from the µ → eϕ [37],
K → eννν decays [47], the ATLAS experiment [46], and (g−
2)µ anomaly (3σ level). The 90% C.L. exclusion regions from
NA64e with ' 2.8 × 1011 EOT and projection from NA64e
with ' 2 × 1012 EOT and NA64µ with ' 5 × 1012 MOT
[17, 19] are also shown (areas above dashed curves). The
(g− 2)µ favored parameter region (dashed blue area) and the
curve explaining the DM relic abundance for fermionic case
calculated with gϕψ1ψ2 = 0.08 assuming

mψ
mϕ

= 1
3

are also

shown.

The combined 90% C.L. exclusion limits on the cou-
pling parameter hµe as a function of the ϕ mass. are
shown in Fig. 3. For the region mϕ . 0.5 GeV, NA64
bounds are more stringent than those derived from the
(g − 2)µ and ATLAS experiment, excluding part of the
parameter space favored by the muon anomaly.

For further searches, NA64e is planned to be upgraded
with a magnetic spectrometer downstream the HCAL for
the measuring of both, the outgoing muon momentum
and, in combination with the ECAL, the missing energy
carried away by the ϕ, thus allowing significantly improve
the search sensitivity.

Another complementary search could be performed
with the NA64µ experiment at M2 muon beam of the



5

CERN SPS [17, 19] by using the ϕ production in the
inverse reaction

µZ → eZϕ;ϕ→ invisible (23)

of 100-160 GeV muon scattering on heavy nuclei. The
projection sensitivity for the ϕ searches with reactions
(22) and (23) is shown in Fig.3 for the background-free
case. One can see that with the statistics increased by
an order of magnitude one can decisively probe the pa-
rameter space explaining the (g − 2)µ and the current
density of dark matter. The (mϕ, hµe) region of interest
could also be effectively tested with the planned M3[23]
and LDMX [55–57] experiments by using the missing mo-

mentum technique.

Finally, note that the model additionally predicts con-
tribution to the anomalous electron magnetic model at
the level ∆ae = 0.6 × 10−13. This value is a factor five
less then the current error on ∆ae = (4.8± 3.0)× 10−13

determined from the recent precise measurements of the
fine-structure constant [58], and hopefully can be probed
in the near future.

We are grateful to our colleagues from the NA64 Col-
laboration for their interest, useful discussions, and valu-
able comments. We would also like to thank A.N.
Toropin for his help in handling the data sample and D.V.
Kirpichnikov for the discussion on limit calculations.
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