Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

Article
Report number arXiv:2001.10235
Title In-beam γ -ray and electron spectroscopy of $^{249,251}$Md
Author(s) Briselet, R. (IRFU, Saclay) ; Theisen, Ch. (IRFU, Saclay) ; Sulignano, B. (IRFU, Saclay) ; Airiau, M. (IRFU, Saclay) ; Auranen, K. (Jyvaskyla U.) ; Cox, D.M. (Jyvaskyla U. ; Liverpool U.) ; Déchery, F. (IRFU, Saclay ; Strasbourg, IPHC) ; Drouart, A. (IRFU, Saclay) ; Favier, Z. (IRFU, Saclay) ; Gall, B. (Strasbourg, IPHC) ; Goigoux, T. (IRFU, Saclay) ; Grahn, T. (Jyvaskyla U.) ; Greenlees, P.T. (Jyvaskyla U.) ; Hauschild, K. (CSNSM, Orsay) ; Herzan, A. (Jyvaskyla U.) ; Herzberg, R.-D. (Liverpool U.) ; Jakobsson, U. (Jyvaskyla U.) ; Julin, R. (Jyvaskyla U.) ; Juutinen, S. (Jyvaskyla U.) ; Konki, J. (Jyvaskyla U. ; CERN) ; Leino, M. (Jyvaskyla U.) ; Lopez-Martens, A. (CSNSM, Orsay) ; Mistry, A. (Liverpool U.) ; Nieminen, P. (Jyvaskyla U.) ; Pakarinen, J. (Jyvaskyla U.) ; Papadakis, P. (Jyvaskyla U. ; Liverpool U.) ; Peura, P. (Jyvaskyla U.) ; Rahkila, P. (Jyvaskyla U.) ; Rey-Herme, E. ; Rubert, J. (Strasbourg, IPHC) ; Ruotsalainen, P. (Jyvaskyla U.) ; Sandzelius, M. (Jyvaskyla U.) ; Sarén, J. (Jyvaskyla U.) ; Scholey, C. (Jyvaskyla U.) ; Sorri, J. (Jyvaskyla U.) ; Stolze, S. (Jyvaskyla U.) ; Uusitalo, J. (Jyvaskyla U.) ; Vandebrouck, M. (IRFU, Saclay) ; Ward, A. (Liverpool U.) ; Zielínska, M. (IRFU, Saclay) ; Bally, B. (IRFU, Saclay) ; Bender, M. (IP2I, Lyon) ; Ryssens, W. (Yale U.)
Publication 2020-07-09
Imprint 2020-01-28
Number of pages 16
In: Phys. Rev. C 102 (2020) 014307
DOI 10.1103/PhysRevC.102.014307 (publication)
Subject category nucl-th ; Nuclear Physics - Theory ; nucl-ex ; Nuclear Physics - Experiment
Abstract The odd-$Z$ $^{251}$Md nucleus was studied using combined $\gamma$-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, another rotational structure has been identified using $\gamma$-$\gamma$ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of $\simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using $\gamma$-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $\Delta l = \Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2020-2024 American Physical Society



Corresponding record in: Inspire


 Record creato 2022-01-25, modificato l'ultima volta il 2024-05-08


Testo completo:
Scarica documento
PDF