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Abstract We consider higher-order QCD corrections to the
production of high-mass systems in hadron collisions within
the transverse-momentum (qT ) subtraction formalism. We
present a method to consistently remove the linear power cor-
rections in qT which appears when fiducial kinematical cuts
are applied on the final state system. We consider explicitly
the case of fiducial cross sections for Drell–Yan lepton pair
production at the Large Hadron Collider up to next-to-next-
to-next-to-leading order (N3LO) in QCD. We have imple-
mented our method within the DYTurbo numerical pro-
gram and we have obtained perturbative predictions which
are in agreement at the permille level with those obtained
with local subtraction formalisms up to the next-to-next-to-
leading order (NNLO). At the N3LO we are able to provide
predictions for fiducial cross sections with numerical accu-
racy at the permille level.

Hard scattering processes at high-energy colliders, such
as the Large Hadron Collider (LHC), characterized by large
scales of energy (M) transferred, allows us to probe the
dynamics of fundamental interactions at short distances. In
this regime, theoretical predictions for cross sections can be
evaluated with perturbative techniques. In particular accurate
results require the inclusion of the dominant effects from
strong interactions through the calculation of the higher-
order terms in Quantum Chromodynamics (QCD) as a series
expansion in the coupling αS(M). In order to match the
experimental kinematical cuts on the measured final states,
it is essential to obtain predictions for fiducial cross sections
and corresponding differential distributions.

The computation of higher-order QCD corrections at
fully-differential level is complicated by the presence of
infrared singularities at intermediate stage of the calcula-
tion which prevents a direct implementation of numerical
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techniques and enforce the use of an hybrid analytic and
numerical approach. At the next-to-leading order (NLO) gen-
eral subtraction algorithms, which exploit the universality
properties of soft and collinear emissions in QCD, have
been developed [1–4]. These methods have been success-
fully implemented in general purpose Monte Carlo programs
which satisfy the needs for the analysis of experimental data.
Beyond the NLO, a widely used extension of the subtrac-
tion method is the so called transverse-momentum (qT ) sub-
traction formalism originally proposed in Ref. [5]. In fact,
thanks to its relative simplicity and generality, the method
has been successfully applied to fully differential QCD cal-
culations for several hard-scattering processes at the next-to-
next-to-leading order (NNLO) (see Ref. [6] and references
therein) and, more recently, also at the next-to-next-to-next-
to-leading order N3LO [7–9].

In the case of the qT subtraction formalism, a source of
numerical uncertainty which is particularly difficult to quan-
tify in a robust way is due to the unphysical power corrections
of the type O(qcut

T /M), where qcut
T is the technical param-

eter necessary to separate the qT resolved and unresolved
parton emissions. Power corrections ambiguities are particu-
larly severe in the case of fiducial selection cuts which yield
an acceptance that has a linear dependence on qcut

T [10–12].
In principle the effect of these perturbative power corrections
can be reduced setting the value of the technical parameter
qcut
T sufficiently small. However, very small values of qcut

T
require an extremely precise numerical control of cross sec-
tions in the infrared region qT → 0 which are typically very
challenging and time consuming.

In the case of the production of colourless high mass sys-
tems, sufficiently inclusive cross sections (such as total cross
section in absence of fiducial selection cuts) computed within
the qT subtraction method have a residual dependence on
qcut
T of order O((qcut

T /M)2) originated from the integration
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of the corresponding scattering amplitudes over the final state
kinematics in the small qT region [13,14]. In the case of the
production of coloured systems the residual dependence on
qcut
T is linear even in absence of fiducial cuts [15–17]. In this

case, in order to remove the linear power corrections in qcut
T ,

it is necessary to take care of both the dependence related
to the fiducial selection cuts and the dependence which is
present at the inclusive level.

Linear fiducial power corrections have been connected
with alternating sign factorial growth of the perturbative
expansion in Ref. [18] and modifications of the selection cuts
typically used in experimental analysis have been proposed
in order to eliminate the linear dependence of the acceptance.
In Ref. [19], an experimental procedure has been proposed to
remove from cross section measurements the effect of selec-
tion cuts which are responsible for linear fiducial power cor-
rections. In Ref. [11] it has been shown that linear fiducial
power corrections can be consistently removed through the
qT resummation formalism, if the qT recoil due to multi-
parton emission is correctly taken into account. Nevertheless
fixed-order calculations have a great relevance in precision
physics at colliders: they can be computed (in principle) in
a definite and unambiguous way, and they are an essential
ingredient for all-order resummed predictions. Therefore the
goal of having at disposal fixed-order calculations at high
numerical accuracy is very relevant, regardless of the effec-
tive physical precision of such predictions.

In this paper we consider standard fixed-order calculations
and we discuss a method to remove linear fiducial power
corrections (FPC) within the qT subtraction formalism. Our
method, which is equivalent to the one proposed in Ref. [11]
based on a Lorentz decomposition for hadronic and leptonic
tensors, introduces an additional subtraction exploiting the
recoil procedure of Ref. [20] and it allows us to obtain fiducial
fixed-order predictions with a residual uncertainty of the type
O((qcut

T /M)2) which can be brought down at sub-permille
level. We stress that in this paper we are dealing with the
linear power corrections to the qT subtraction formalism [5]
by using the subtraction counterterms related to the specific
qT resummation formalism of Refs. [21,22] and to the use
of the class of recoil prescriptions which were introduced
in Ref. [20]. Therefore the strict validity of our results and
the novelty with respect to the previous results in the litera-
ture [8,11] are related to the particular implementation of the
subtraction procedure within the formalism of Refs. [20–22].

Our results turn out to be crucial in the case of the N3LO
extension of the qT subtraction formalism [7,9] where it is
particularly challenging to obtain precise perturbative pre-
dictions for very small values of qcut

T .
We consider explicitly the case of fiducial cross sections

for Drell–Yan lepton pair production at the Large Hadron
Collider up to the N3LO in QCD. We have implemented
our method within the DYTurbo [23] numerical program

and we have obtained perturbative predictions which are in
agreement at permille level with those obtained with local
subtraction formalism at NLO and NNLO.

We consider the hard-scattering process

h1(p1) + h2(p2) →
∑

i

Fi (qi ) + X, (1)

where Fi denotes the (colourless) final states with momenta
qi produced by the colliding hadrons h1 and h2 which we
collectively identify as the system F(q), with momentum
q = ∑

i qi , invariant mass M = √
q2 and transverse momen-

tum qT .
We start from the master formula of the qT subtraction

formalism for the hadronic cross section [5]

dσ F = dσ F
LO ⊗ HF +

[
dσ F+jets − dσCT

]
, (2)

where σ F
LO is the Born level cross section, HF (αS) is the

process-dependent hard-collinear function [24,25] with the
following perturbative expansion

HF = 1 + αS

π
HF (1) +

(αS

π

)2 HF (2) +
(αS

π

)3 HF (3)

+
∞∑

n=4

(αS

π

)n HF (n), (3)

dσCT is the subtraction counter-term [21]

dσCT = dσ F
LO ⊗ �F (qT /M)d2qT (4)

and the symbol ⊗ stands for convolutions over momentum
fractions and sum over flavour indices of the partons. The
second term in the r.h.s. of Eq. (2), dσ F+jets, is the differen-
tial cross section for the production of F(q) in association
with jets and it has to be evaluated at the previous perturba-
tive order with respect to dσ F. The subtraction counter-term
dσCT has the same singular behaviour of dσ F+jets in the
limit qT → 0 which functional form is known from the qT
resummation formalism [21,22].

The terms dσ F+jets and dσCT in Eq. (2) are separately
divergent due to infrared singularities at qT = 0 and a tech-
nical parameter qcut

T has to be introduced. For qcut
T > 0 the

sum of the terms in the square bracket of Eq. (2) is IR finite
(or, more precisely, integrable over qT ) and it should be eval-
uated in the limit qcut

T → 0 to obtain the “exact” (free form
residual qcut

T dependence) value of the cross section. How-
ever for finite value of qcut

T the cross section in Eq. (2) con-
tains power correctionsO((qcut

T /M)p), with p > 0 [10]. The
exact value of the exponent p depends by the cuts on the final
states which define the fiducial cross section

σ F
fid =

∫

cuts
dσ F , (5)
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we thus have

σ F
fid =

∫

cuts
dσ F

LO ⊗ HF +
∫

cuts

[
dσ

F+jets
qT >qcut

T
− dσCT

qT >qcut
T

]

+O (
(qcut

T /M)p
)
. (6)

In Ref. [12] has been shown that, in the case of Drell–
Yan lepton pair production, typical cuts on the transverse
momenta and rapidities of the final state particles Fi (qi ) leads
to linear power corrections (p = 1), which corresponding
systematic uncertainty may spoil the accuracy of fixed-order
calculations within the qT subtraction formalism.

Clearly the effect of perturbative power corrections
O((qcut

T /M)p) can be reduced setting the value of the tech-
nical parameter qcut

T sufficiently small. However, very small
values of qcut

T lead to large cancellations among the terms in
the square bracket of the r.h.s. of Eq. (2), which in turns give
rise to larger numerical integration uncertainties. These can-
cellations are particularly challenging at NNLO and N3LO
where the precise knowledge of the fully differential cal-
culations of F in association with jets at NLO and NNLO
is respectively required. Eventually a trade-off between the
systematical and statistical uncertainties of the computation
have to be found and, more importantly, a robust systematic
uncertainty to the missing perturbative power corrections has
to be computed. The systematic uncertainty can be estimated
by evaluating the cross section at different values of qcut

T and
carrying out a qcut

T → 0 extrapolation [6]. This is not a trivial
task due to the large numerical uncertainties associated to the
qcut
T → 0 limit.

We now discuss the method which enable us to consis-
tently remove the FPC within the qT subtraction formalism
thus leaving a quadratic residual uncertainty O((qcut

T /M)2).
The starting point is the observation that the FPC have a kine-
matical origin [10–12]. They are generated by the selection
cuts on the final state particles and they are indeed absent
in fixed-order [10,14,26,27] or qT resummed calculations
inclusive over the final state F decay products [28] and also
in the case of qT resummation with fiducial cuts when the
qT recoil due to multi-parton emission is correctly taken into
account [11]. According to the qT resummation formalism
of Refs. [21,22] the fiducial cross section in Eq. (6) can be
schematically written in the following form:

σ̃ F
fid =

∫

cuts
dσ̃ F

LO ⊗ HF × S(qT , M)

+
∫

cuts

[
dσ

F+jets
qT >qcut

T
− dσ̃CT

qT >qcut
T

]
+ O

(
(qcut

T /M)2
)

,

(7)

where

S(qT , M) =
∫ ∞

0
db

b

2
J0(bqT ) exp(G(αS)) (8)

and

dσ̃CT = dσ̃ F
LO ⊗ �F (qT /M)d2qT. (9)

The first term on the r.h.s. of Eq. (9) is the resummed
component of the cross section which collects in the gener-
alized form factor exp (G(αS)) and resums to all orders (in
the Fourier–Bessel conjugated impact-parameter b space) the
enhanced logarithmic corrections of the type αn

S lnm(M2/q2
T )

which are present in the transverse momentum distribution
at small qT [21]. The second term on the r.h.s. of Eq. (9)
is the fixed-order finite component of the cross section and
qcut
T represents the minimum value of qT used to compute

such term. In the resummed formula in Eq. (7) the underly-
ing amplitude of the Born level cross-section dσ̃ F

LO , which
enters also in the term dσ̃CT, differs from the corresponding
quantity dσ̂ (0) in Eqs. (2) and (4) for the fact that it is not
evaluated with the leading order (LO) kinematics but follow-
ing the prescription introduced in Appendix A of Ref. [20],
which takes into account the qT recoil originated from the
multiple radiation of soft and collinear partons in a kinemat-
ically consistent way.

Exploiting the resummation formula in Eq. (7) we are
thus able to construct the following modified qT subtrac-
tion formula which is free from linear fiducial power correc-
tions [8,11]:

σ F
fid =

∫

cuts
dσ F

LO ⊗ HF +
∫

cuts

[
dσ

F+jets
qT >qcut

T
− dσCT

qT >qcut
T

]

+
∫

cuts
dσ FPC + O

(
(qcut

T /M)2
)

, (10)

where

dσ FPC =
[
dσ̃CT

qT <qcut
T

− dσCT
qT <qcut

T

]
. (11)

The inclusion of the additional term dσ FPC for qT < qcut
T

allows us to produce the correct behavior of the fiducial cross
section up to quadratic power corrections in qcut

T . The terms
dσCT and dσ̃CT differ for the fact that they are respectively
evaluated with the LO (qT = 0) and with the recoil (qT �= 0)
kinematics. We note that the term dσ FPC is universal (i.e.
process independent) and it is IR finite (albeit the two terms
on the r.h.s. of Eq. (11) are separately divergent). Further-
more the contribution of dσ FPC can be treated as a local sub-
traction: the difference of the terms in Eq. (11) is evaluated
pointwise at integrand level and therefore the integration for
qT < qcut

T can be extended up to (virtually) arbitrary small
value of qT . In the current numerical implementation [29]
we extended the qT integration of the term dσ FPC down to
qT /M ∼ 10−6 GeV (this value is comparable with the typi-
cal technical cuts used in local subtraction methods).
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Fig. 1 Fiducial cross section for the production of l+l− pairs from
Z/γ ∗ decay at the LHC (

√
s = 13 TeV). NLO results with the qT

subtraction method (blue squared points) and qT subtraction method

without FPC (red circled points) at various values of qcut
T , and with a

local subtraction method (black line). Error bars indicate the statistical
uncertainties from Monte Carlo numerical integration

We have encoded the formula in Eq. (10), by using the
recoil prescription of Ref. [20],1 in the public numerical pro-
gram DYTurbo [23] which implements the qT subtraction
formalism for Drell–Yan processes. We stress that within
our method we are able to correctly remove the linear fidu-
cial power corrections which originates from a mismatch
between the real and the counterterm (Born-like) kinemat-
ics in the standard implementation of the qT subtraction
method. In this way the inclusion of fiducial selection cuts
does not introduce additional linear power corrections in qcut

T
with respect to the ones present at inclusive level. Moreover,
within our numerical implementation in DYTurbo, we are
able to confirm numerically, up to the N3LO, that our method
correctly removes the linear power corrections and to quan-
tify the residual systematic uncertainty from the qcut

T techni-
cal parameter in the Drell–Yan fiducial cross section.

We consider the production of l+l− pairs from Z/γ ∗
decay at the LHC (

√
s = 13 TeV) with the following fidu-

cial cuts [31]: the leptons are required to have transverse
momentum pT > 25 GeV, pseudo-rapidity |η| < 2.5 while
the lepton pair system is required to have invariant mass
66 < M < 116 GeV and transverse momentum qT <

100 GeV. We use parton densities functions (PDFs) from
the NNPDF3.1 set [32] at NNLO with αS(m2

Z ) = 0.118,
and we have evaluated αS(μ

2
R) at (n + 1)-loop order at

NnLO accuracy. Factorization and renormalization scales

have been set to μF = μR =
√
M2 + q2

T . We use the so

1 In particular within the class of qT -recoil prescriptions introduced in
Ref. [20] we use the choice defined by setting the transverse momentum
of the colliding partons equal to qT /2, which corresponds to evaluate
the Born level cross-section in Eq. (9) in the Collins–Soper rest frame
[30].

called Gμ scheme for EW couplings with input parameters
GF = 1.1663787 × 10−5 GeV−2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV [31]. We then com-
puted the fiducial cross section for the Drell–Yan process at
the LHC with the original qT subtraction formula Eq. (2) and
with the improved formula Eq. (10).

The results presented in this paper have been obtained
by including the hard-collinear functions (see Eq. (3)) from
Refs. [24,33–36] while the Z + jets results have been
obtained from Refs. [31,37,38]. The counter-term in Eq. (4)
have been obtained by analytic expansion of the resumma-
tion formula of Ref. [21] using the coefficients calculated in
Refs. [39,40]

In Fig. 1 we show the NLO fiducial cross section calcu-
lated for different values of the qcut

T technical parameter with
the original qT subtraction method (blue squared points) and
with the modified formula in Eq. (10) (labeled as recoil qT
subtraction, red circled points). As a reference, we also show
the result obtained with a local subtraction formalism (black
line) which represents the exact (free from significant sys-
tematic uncertainties) prediction. The local result is obtained
independently with the dipole subtraction formalism [1,2] as
implemented in MCFM [41–43]. Error bars in Fig. 1 indicate
the statistical uncertainties from Monte Carlo numerical inte-
gration which turns out to be completely negligible. From
Fig. 1 we observe that the systematic uncertainty (defined as
the deviation from the local subtraction result) of the origi-
nal qT subtraction results increase linearly with qcut

T and it is
around 0.3% at qcut

T = 0.5 GeV, 0.6% at qcut
T = 1 GeV, 1%

at qcut
T = 2 GeV and 2% at qcut

T = 4 GeV. In order to obtain
a systematic uncertainty below 0.1% level a calculation with
qcut
T � 0.1 GeV is necessary. Conversely the results obtained
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Fig. 2 Fiducial cross section for the production of l+l− pairs from
Z/γ ∗ decay at the LHC (

√
s = 13 TeV). NLO results with the qT

subtraction method (blue squared points) and the qT subtraction with-

out FPC (red circled points) at various values of qcut
T , and with a local

subtraction method (black line). Error bars indicate the statistical uncer-
tainties from Monte Carlo numerical integration

with the qT subtraction without FPC have a systematic uncer-
tainty for qcut

T = 1 GeV which is smaller than the statistical
uncertainty of the local-subtraction result, which is 0.01%.
In Fig. 1 an interpolation of the qcut

T dependence of the modi-
fied (original) qT -subtraction obtained with quadratic (linear
and quadratic) terms is represented by the red dashed (blue
solid) line.

In Fig. 2 we show the fiducial cross section at NNLO with
the original qT subtraction method (blue squared points) and
with the modified formula in Eq. (10) (red circled points)
together with the result obtained with a local subtraction
formalism (black line). The local result is obtained with
the sector improved subtraction formalism [44,45] as imple-
mented in FEWZ [46,47]. Error bars in Fig. 2 indicate the
statistical uncertainties from Monte Carlo numerical inte-
gration. Statistical uncertainties are at the level of 0.1% for
the local subtraction results and at the level of 0.1% or larger
(smaller) for the qT subtraction results with qcut

T � 0.1 GeV
(qcut

T � 0.1 GeV). The qcut
T systematic uncertainty of the qT

subtraction results is around 0.3% at qcut
T = 0.5 GeV, 0.6%

at qcut
T = 1 GeV and 0.7% at qcut

T = 2 GeV and 0.2% at
qcut
T = 4 GeV. As in the case of the NLO results, in order

to obtain a systematic uncertainty below 0.1% level a cal-
culation with qcut

T � 0.1 GeV is necessary. However this is
exactly the IR region where large cancellations give rise to
sizable statistical uncertainties due to numerical integration.
Conversely the results obtained with the qT subtraction with-
out FPC have a systematic uncertainty which is smaller than
0.04% for qcut

T = 1 GeV. As in Fig. 1 also in Fig. 2 we have
shown an interpolation of the qcut

T dependence of the results.
Finally, in Fig. 3 we show the fiducial cross section at

N3LO with the original qT subtraction method (blue squared

10  [GeV]cut
T

q
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760
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780

790

800

 [p
b]

σ
N3LO
standard qt-subtr.
FPC qt-subtr.

Fig. 3 Fiducial cross section for the production of l+l− pairs from
Z/γ ∗ decay at the LHC (

√
s = 13 TeV). NLO results with the qT

subtraction method (blue squared points) and the qT subtraction without
FPC (red circled points) at various values of qcut

T

points) and with the modified formula in Eq. (10) (red circled
points) for different values of qcut

T with the interpolation of
the results as in Figs. 1 and 2. No local subtraction results are
available at this perturbative order. Moreover in this case we
are not able to show results for qcut

T < 4 GeV. In fact we have
checked that our analytic expression for the counter-term
dσ̃CT agrees with the small-qT limit of the NNLO fixed-
order results for the production of a Z/γ ∗ boson in associ-
ation with jets reported in Ref. [31] at permille level down
to qT ∼ 4 GeV while below that threshold such agreement
deteriorates.

We observe, in the case of the qT subtraction without
FPC, a strong reduction of the dependence from qcut

T also at
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Fig. 4 Production of l+l− pairs from Z/γ ∗ decay at the LHC (
√
s =

13 TeV). Power correction contributions at O(αS), O(α2
S) and O(α3

S)

at various values of qcut
T

the N3LO and we have quantified the residual qcut
T depen-

dence by performing an extrapolation fit of the sublead-
ing power corrections at NLO, NNLO and N3LO. We per-
formed an interpolation fit for qT > qcut

T of the known
structure of subleading power corrections [8,14,26] and we
estimated the uncertainty on the extrapolated cross section
for qcut

T → 0. The interpolation curves have been shown in
Figs. 1, 2 and 3. The uncertainty on the extrapolated results
is below 0.01% level at the NLO and NNLO (interpolation
range 0.05 ≤ qcut

T ≤ 20 GeV) and of 0.18% at the N3LO
(interpolation range 4 ≤ qcut

T ≤ 20 GeV).2 At the NLO and
NNLO, this uncertainty is smaller than statistical errors of
our results, which is consistent with the agreement between
our predictions and the local results reported in Table 1. In the
N3LO case the interpolation convergence is less good and we
obtain an uncertainty on the extrapolated cross section which
is of the same order of the statistical error quoted in Table 2.

In order to quantify the impact of the calculated fiducial
power corrections, we show in Fig. 4 the contribution of the
FPC (Eq. (10)) as a function of qcut

T . First of all we observe
that the sign of the FPC contribution changes from O(αS) to
O(α2

S) and from O(α2
S) to O(α3

S). This behaviour is consis-
tent with the observation that linear power corrections in the
small qT region (produced by the fiducial cuts) results in an
alternating-sign factorial growth of the fixed-order perturba-
tive series [18]. The second observation is that the impact of
the FPC is not numerically reduced at higher orders and it turn
out to be particularly sizable at N3LO up to very small value
of qcut

T : for qcut
T = 0.05 GeV the impact of the N3LO FPC is

about −0.4% and it is the result of a +0.3% contribution at
O(α2

S) and a −0.7% at O(α3
S) (the O(αS) FPC contribution

2 We note that at N3LO the difference between the cross section with
qcut
T = 4 GeV and the cross section extrapolated for qcut

T = 0 is smaller
than the uncertainty on the extrapolated result.

Table 1 Fiducial cross sections at the LHC (
√
s = 13 TeV): fixed-

order results at NLO and NNLO. The uncertainties on the values of
the cross sections refer to the statistical uncertainties from Monte Carlo
numerical integration

Order NLO NNLO

qT subtr. (qcut
T = 1 GeV) 768.8 ± 0.1 pb 753.3 ± 0.3 pb

qT subtr. (qcut
T = 0.5 GeV) 766.8 ± 0.1 pb 753.8 ± 0.2 pb

Recoil qT subtr. 764.4 ± 0.1 pb 759.1 ± 0.3 pb

Local subtraction 764.4 ± 0.1 pb 759.0 ± 0.7 pb

Table 2 Fiducial cross sections at the LHC (
√
s = 13 TeV): fixed-

order results at N3LO. The uncertainties on the values of the cross
sections refer to the statistical uncertainties from Monte Carlo numerical
integration

Order N3LO

qT subtr. (qcut
T = 4 GeV) 747.1 ± 0.7 pb

Recoil qT subtr. 745.7 ± 0.7 pb

turns out to be negligible at qcut
T = 0.05 GeV). This means

that when standard selection cuts are implemented within the
original qT subtraction, a permille level systematic accuracy
for NNLO and N3LO fiducial cross sections cannot be easily
reached even with extremely low values of qcut

T .
In Table 1 we report the predictions for the cross section

in the fiducial region at NLO and NNLO with the qT sub-
traction method for qcut

T = 0.5 GeV and qcut
T = 1 GeV, with

the recoil qT subtraction for qcut
T = 1 GeV and we compare

with the local subtraction results.3 Errors indicate the statis-
tical uncertainties from Monte Carlo numerical integration.
In the case of the recoil qT subtraction the results are nearly
independent by qcut

T for qcut
T � O(GeV).

From the results of Table 1 we observe that the differ-
ences between the recoil qT subtraction results and the local
subtraction results are of O(0.01%). Thus the modified qT
subtraction formula in Eq. (10) allows us to obtain accurate
permille level predictions for fiducial cross section with val-
ues of qcut

T ∼ O(GeV).
In Table 2 we report the predictions for the cross section in

the fiducial region at N3LO with the qT subtraction method
and with the recoil qT subtraction for qcut

T = 4 GeV. Local
subtraction results are not available at this order.

From the results shown in Fig. 4 we could expect that a
value of qcut

T ∼ 4 GeV is associated with a systematic uncer-
tainty due to the FPC of around 2%, which is of the same
order of the size of the α3

S corrections and thus challenge the

3 Since the numerical code FEWZ does not allow to set μF = μR =√
M2 + q2

T the NNLO local result has been obtained with μF = μR =
M . We have estimated the effect of the different scales with DYTurbo
and it turn out to be at the level of 0.5 pb. This effect has been included
in the numerical uncertainty.
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reliability of the qT subtraction results.4 However the cancel-
lation of the alternating sign linear fiducial power corrections
shown Fig. 4 makes the impact of the N3LO FPC for the par-
ticular value of qcut

T = 4 GeV to be around 0.2% which is
indeed the difference between the qT subtraction and recoil
qT subtraction results reported in Table 2.

We finally note that any numerical implementation of
the subtraction method, including the local versions, con-
tains and depends on various technical parameters necessary
to avoid the numerical evaluation of singular points. These
parameters cannot be arbitrarily large and their actual value
has to be chosen in order to make the numerical result inde-
pendent (within the required numerical accuracy) from their
actual value. From this viewpoint the independence by qcut

T
observed within our method is similar to the one observed in
the local version of the subtraction method.

In this paper we have considered higher-order QCD cor-
rections to the production of high-mass systems in hadron
collisions within the qT subtraction formalism. We have pre-
sented a method to consistently remove the linear power
corrections in qT of the type O(qcut

T /M), where qcut
T is

the technical parameter necessary to separate resolved and
unresolved parton emission regions, which appears when
fiducial kinematical cuts are applied on the final state sys-
tem. As a first application we have implemented our method
within the DYTurbo numerical program and we have con-
sidered explicitly the case of fiducial cross sections for Z/γ ∗
boson production at the LHC up to N3LO in QCD. We have
obtained perturbative predictions which are in excellent (per-
mille level) agreement with those obtained with local subtrac-
tion formalism at NLO and NNLO and we have computed
N3LO predictions with a residual qcut

T systematic uncertainty
at the permille level.

Our results can be helpful in increasing the numerical
precision of the existing numerical codes based on the qT
subtraction formalism and also on improving their time per-
formances. In particular we were able to remove the source
of systematic uncertainty at the origin of the discrepancies
observed in Ref. [12]. Moreover our method is particularly
important in the cases where fully local perturbative calcula-
tions for cross section are not available or when large numer-
ical integration uncertainties are associated to the qT → 0
limit such as in the case of N3LO predictions in hadron
collisions.

Finally, we make some observations about some con-
sequences of our findings on resummed calculations. Our
results show that resummed fiducial cross sections calculated
by correctly taking into account theqT recoil effects [20] (e.g.
the resummed cross sections calculated in Ref. [9]) are free

4 To reduce such uncertainty at the few permille level in Ref. [9] the
value of qcut

T ∼ 4 GeV have been used for the α3
S terms only with a

lower value of qcut
T ∼ 0.5 GeV for the αS and α2

S contributions.

from significant numerical systematic uncertainties due to
the minimum value of qT used to compute the finite compo-
nent of the cross section in Eq. (9). Moreover our results show
that the matching between the resummed and finite (fixed-
order) calculations in the small qT region has an impact of
O((qT /M)2) and it is expected to have a very small (negli-
gible) effect for qT /M � O(10−1) (qT /M � O(10−2)).
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