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Quantum machine learning could possibly become a valuable alternative to classical machine learning for
applications in high energy physics by offering computational speedups. In this study, we employ a support
vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics
analysis: t t̄H (Higgs boson production in association with a top quark pair). In our quantum simulation study
using up to 20 qubits and up to 50 000 events, the QSVM-Kernel method performs as well as its classical
counterparts in three different platforms from Google Tensorflow Quantum, IBM Quantum, and Amazon
Braket. Additionally, using 15 qubits and 100 events, the application of the QSVM-Kernel method on the IBM
superconducting quantum hardware approaches the performance of a noiseless quantum simulator. Our study
confirms that the QSVM-Kernel method can use the large dimensionality of the quantum Hilbert space to replace
the classical feature space in realistic physics data sets.
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I. INTRODUCTION

In 2012, the ATLAS and CMS experiments discovered
the Higgs boson [1,2] using proton-proton collision data
at the Large Hadron Collider (LHC). This discovery com-
pleted the fundamental particle spectrum of the standard
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model and was a major achievement in high energy physics
(HEP). As the LHC experiments enter the post-Higgs discov-
ery era, physicists strive to refine the understanding of the
standard model and pursue new physics beyond the standard
model. Machine learning has become one of the most power-
ful tools for exploring the full physics potential of the huge
amount of data collected by the LHC experiments. In HEP,
the important usage of machine learning techniques [3–7]
includes simulation, event reconstruction, and data analyses.
As an example, the ATLAS and CMS experiments utilized
supervised machine learning algorithms in the recent data
analyses to achieve the observation of the t t̄H process [8,9], a
very rare Higgs production mode.
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Quantum machine learning, where machine learning is
performed using quantum algorithms, has the potential to
improve the computational complexity of classical machine
learning algorithms and obtain computational speedups when
being executed on quantum computers [10]. Some of the
quantum algorithms will benefit from exponential improve-
ments in speed. For classification problems, it may also lead
to better separation power than classical machine learning.
A recent result [11] demonstrates a significant advantage in
prediction accuracy for a quantum algorithm over some clas-
sical algorithms on engineered data sets. A key component of
quantum machine learning algorithms is exploiting the high
dimensional quantum state space through the actions of su-
perposition and entanglement. With the progress of quantum
technologies, quantum machine learning could possibly be-
come a valuable alternative to classical machine learning for
processing big data (including simulation, reconstruction, and
analyses) in high energy physics [12]. Recent projections from
IBM [13], Google [14], and IonQ [15] suggest that quantum
computers with thousands of qubits capable of performing
practical computational tasks may become available within
the next ten years. This coincides with the high luminosity
upgrades of the LHC (HL-LHC) [16], bringing a massive
increase in not only the amount of collected physics data,
but also the computational power needed to process that data.
Present research on quantum machine learning algorithms
could be implemented on those future devices, thereby ensur-
ing the timely exploitation of quantum advantages for physics
applications, and possibly even contributing to the discovery
of new physics.

The challenges we face for the future include working
with large numbers of events in the millions, applying large
numbers of qubits in the thousands to obtain stellar perfor-
mance, and achieving excellent computational speeds. It is
the purpose of this publication to inch one step closer to con-
quering those challenges, even under the present limitations
of existing quantum computer technology.

Previous studies [17–19] have investigated quantum an-
nealing or quantum classifiers trained with variational circuits.
A quantum machine learning algorithm, the support vector
machine with a quantum kernel estimator (QSVM-Kernel),
was proposed to solve classification problems [20,21]. This
algorithm was experimentally implemented with two qubits
on a superconducting quantum computer and found to be ac-
curate for artificial data sets [20]. QSVM-Kernel leverages the
quantum state space as a direct representation of the feature
space, which can give rise to kernel functions that are hard to
evaluate classically [20,22]. However, any potential quantum
advantage does not lie solely in the high dimensionality of
the quantum state space, as it is well known that classical
kernels can map into feature space of arbitrary high dimen-
sions. Rather, a path towards quantum advantage is found in
the computational complexity of the quantum circuits used to
compute the quantum kernel. Namely, these circuits must be
hard to estimate classically. A recent result [23] establishes
an exponential quantum speedup for QSVM-Kernel using a
fault-tolerant quantum computer to estimate the kernel func-
tion for a classically hard classification problem. Although
this particular problem was not practically motivated, the re-
sult rigorously formalizes the intuition that quantum feature

maps can identify patterns classical machines are unable to
capture. From this foundation, quantum feature maps can be
designed and tested on practical data sets, potentially leading
to better classification results than classical feature maps and
kernels.

It is therefore interesting to study the QSVM-Kernel al-
gorithm with a larger number of qubits and evaluate its
performance on real-world data sets. In our study, we success-
fully employ the QSVM-Kernel algorithm in the t t̄H analysis,
a recent LHC flagship physics analysis, using up to 20 qubits
on quantum computer simulators and up to 15 qubits on
quantum computer hardware. Furthermore, we compare the
classification result of the QSVM-Kernel algorithm to a few
popular classical algorithms that are commonly used by the
LHC experiments.

II. tt̄H PHYSICS ANALYSIS AT THE LHC

The observation of t t̄H (Higgs boson production in as-
sociation with a top quark pair) by the ATLAS and CMS
experiments [8,9] was one of the LHC flagship physics re-
sults following the Higgs boson discovery. It established a
direct observation of the Higgs boson’s interaction with the
top quark, the heaviest known fundamental particle. Study
of the Higgs-top interaction may provide a crucial test for
the Higgs mechanism of the standard model and essential
clues for new physics beyond the standard model. Due to the
small t t̄H production rate at the LHC, its observation was
highly challenging. To achieve the desired sensitivities to t t̄H
production, the ATLAS and CMS collaborations combined re-
sults from a number of decay channels. The physics analyses
in many of these channels utilize machine learning techniques.
For example, classifiers based on machine learning are con-
structed to analyze kinematic variables of the collision events
and distinguish between signal and background.

In our study, we focus on an important t t̄H analysis
channel where the Higgs boson decays into two photons
(H → γ γ ) and the two top quarks decay into hadrons. The
dominant background in this analysis channel is nonresonant
two-photon production. See Fig. 1 for representative Feynman
diagrams for t t̄H production, H → γ γ decay, and nonreso-
nant two-photon production.

III. METHOD

The support vector machine (SVM) [24,25] is one of the
most commonly used supervised machine learning algorithms
for data classification. Here for a data event, �x denotes the
vector of its input features and y ∈ {0, 1} denotes its class label
(0 for background and 1 for signal). The SVM algorithm maps
�x into a higher dimensional feature space, where it measures
the similarity between any two data events [denoted as “kernel
entry,” k(�xi, �x j )]. The SVM algorithm then optimizes a hyper-
plane that separates signal events from background events and
classifies a new data event �x′ by

y′ = sgn

(
t∑

i=1

αiyik(�xi, �x′) + b

)
, (1)
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FIG. 1. Representative Feynman diagrams for (a) t t̄H pro-
duction, (b) H → γ γ decay, and (c) nonresonant two-photon
production. In these diagrams, H denotes a Higgs boson, g denotes a
gluon, q denotes a quark, t denotes a top quark, b denotes a bottom
quark, W denotes a W boson, and γ denotes a photon.

where sgn is the sign function, t is the size of the training
dataset with known labels yi, and (αi, b) defines the separating
hyperplane. Furthermore, a continuous SVM discriminant can

FIG. 2. (a) Quantum circuit for evaluating the kernel entry for
data events �xi and �x j used in our study. H is a Hadamard gate and
U�( �xi ) is a unitary operator that encodes data from a classical event in
its parameters. (b) Quantum circuit of the unitary operator U�( �xi ). It
is constituted by single-qubit rotation gates (A, B, and A′), as well as
two-qubit CNOT entangling gates.

be obtained by computing the probabilities of being in the
signal class. A main limitation of the classical SVM algorithm
is that evaluating kernel entries in a large feature space can
be computationally expensive. Three different popular clas-
sical kernels are considered to benchmark the performance
of the classical SVM method in our study: the linear kernel
�xT

i �x j , the polynomial kernel (γ �xT
i �x j )d , and the RBF kernel

exp(−γ ‖�xi − �x j‖2) (γ and d are hyperparameters).

A. Quantum kernel estimation

A quantum version of the SVM with a quantum kernel
estimator (QSVM-Kernel) was introduced in Refs. [20,21],
which leverages the quantum state space as a feature space
to efficiently compute kernel entries. This algorithm maps the
classical data event �x nonlinearly to a quantum state of N
qubits by applying a quantum feature map circuit U�(�x) to the
initial state |0⊗N 〉:

|�(�x)〉 = U�(�x)|0⊗N 〉. (2)

It then calculates the kernel entry for data events �xi and �x j

based on the inner product of their quantum states:

k( �xi, �x j ) = ∣∣〈�( �xi )|�( �x j )〉|2 = |〈0⊗N |U†
�( �xi )

U�( �x j )|0⊗N 〉∣∣2
.

(3)
The kernel entry can be evaluated on a quantum computer
by measuring the U†

�( �xi )
U�( �x j )|0⊗N 〉 state in the computational

basis with repeated measurement shots and recording the
probability of collapsing the output into the |0⊗N 〉 state. In our
study, the general design of the quantum circuit for evaluating
the kernel entries is inherited from Ref. [20] and shown in
Fig. 2(a).

033221-3



SAU LAN WU et al. PHYSICAL REVIEW RESEARCH 3, 033221 (2021)

B. Quantum feature map

As suggested in Ref. [20], the mathematical properties
of the quantum feature map should be complex enough to
be hard to simulate on a classical computer, and simple
enough to be executable on noisy intermediate-scale quan-
tum computers. Furthermore, the classification performance
of the QSVM-kernel method is highly dependent on the kernel
matrix, which is calculated from the quantum states of the
feature map. Therefore, choosing a suitable feature map is
essential for optimizing the classification performance of the
QSVM-kernel method.

The quantum feature map U�(�x) gives rise to a 2N di-
mensional feature space (N is the number of qubits) that is
conjectured to be hard to estimate classically [22]. Following
Ref. [20], the quantum feature map in our study has two
repeated layers:

U�(�x) = U�(�x)H
⊗NU�(�x)H

⊗N , (4)

where H is a Hadamard gate and U�( �xi ) is a unitary operator
that encodes data from a classical event in its parameters. We
analyzed various quantum circuit candidates for the unitary
operator U�(�x) and found that the quantum circuit shown in
Fig. 2(b) performs the best for our t t̄H physics analysis. The
chosen quantum circuit is constituted by single-qubit rotation
gates (A, B, and A′), as well as two-qubit CNOT entangling
gates. On the kth qubit, given an input feature vector �x, an A
gate rotates the qubit around the z axis of the Bloch sphere
by xk (the kth element of �x), a B gate rotates the qubit around
the y axis by xd

k , and an A′ gate rotates the qubit around the z
axis by ( xk−1+xk

2 )d , where d = 3. The entangling operations are
arranged in an alternating pattern to yield short-depth circuits
for execution on noisy intermediate scale quantum computers.
The differences in the quantum feature map between here
and Ref. [20] are mainly the use of B gates, the different
parametrization of rotation angles, and the extension to more
qubits.

C. Separating hyperplane

In the training phase, the kernel entries are evaluated for all
data event pairs of the training sample and then used to find a
separating hyperplane. In the testing phase, the kernel entries
are evaluated between a new data event �x′ and each of the
data events from the training sample, which are then used to
classify the new data event �x′ according to the separating hy-
perplane. For both phases, quantum computers are only used
to evaluate the kernel entries. Using these kernel entries, the
optimization of the separating hyperplane and classification
of the new data event are done in classical computers, as for a
classical SVM.

D. Analysis data set

In our study for the t t̄H analysis, the signal and
dominant background processes are generated using
Madgraph5_aMC@NLO [26] and Pythia6 [27], and
simulated using Delphes [28]. To construct classifiers for
the physics processes, we utilize a total of 23 object-based
kinematic variables based on the ATLAS analysis [8]: the
transverse momentum (divided by the photon pair invariant

FIG. 3. Signal and background distributions for some of the most
powerful input variables to the t t̄H analysis: (a) the transverse mo-
mentum of the leading photon divided by the photon pair invariant
mass, and (b) the transverse momentum of the leading jet.

mass) and pseudorapidity of the two leading photons, the
transverse momentum, pseudorapidity, and b-tagging status
of up to six leading jets, as well as the missing transverse
momentum. The signal and background processes differ in
the distributions of these variables, providing discriminating
power for the machine learning algorithms. Examples of the
most powerful variable distributions are shown in Fig. 3. To
match the N qubits used by the QSVM-Kernel algorithm, the
23 kinematic variables are compressed into N variables, using
a principal component analysis (PCA) method [29,30]. In the
case of 15 qubits, for example, each of the 15 variables is
formed by combining the 23 original variables. Afterwards,
the N variables are rescaled by

xi → −1 + 2 × xi − xi,min

xi,max − xi,min
, (5)

where xi,min (xi,max) is the minimal (maximal) value of the
variable xi, so that the variable values range from −1 to +1.
This ensures that the rotation angles of A, B, and A′ gates are
within [−1,+1], which is found to be slightly more optimal
for the t t̄H analysis than [−π,+π ] used in Ref. [20].
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IV. RESULTS

A. Results from quantum computer simulators

To classify the signal and dominant background processes
for the t t̄H analysis, we employ the QSVM-Kernel algorithm
using up to 20 qubits on the qsim Simulator from the Google
TensorFlow Quantum framework [31], the StatevectorSimu-
lator from the IBM Quantum framework [32], and the Local
Simulator from the Amazon Braket framework [33]. From
this point on, they are referred to as the Google framework,
IBM framework, and Amazon framework. All three simu-
lators model the noiseless execution of quantum computer
hardware and evaluate the resulting quantum state vector.
They represent ideal quantum hardware that can perform in-
finite measurement shots and experience no hardware device
noise. With training variables processed by PCA, we perform
our analysis for a number of data set sizes. For a given data
set size, we prepare 60 statistically independent data sets to
reduce the impact of statistical fluctuations. Each of the data
sets consists of two samples of the same size: a training
sample and a test sample. (In this study, a data set of size
n indicates a training sample of n events and a test sample
of n events.) We have overcome the challenges of intensive
computing resources needed for processing the data sets of up
to 50 000 events on the quantum computer simulators. Using
the training sample, we adopt a cross-validation procedure
[34,35] to tune the SVM regularization hyperparameter that
controls the size of the margin between the separating hy-
perplane and the data points in the feature space. With the
same data sets and the same training variables, we also con-
struct a classical SVM [24,25] classifier using the scikit-learn
package [36] and a classical BDT [37,38] classifier using the
XGBoost package [39]. The classical SVM and BDT serve
as benchmarks for classical machine learning algorithms. We
again perform cross validation on the training sample to tune
the hyperparameters of the two classical algorithms. For the
classical SVM, we optimize the choice of the classical kernel,
the unique hyperparameters for each kernel, and the SVM reg-
ularization hyperparameter. The optimized hyperparameters
for the classical BDT include the maximum tree depth and
the learning rate. The other BDT hyperparameters were found
to be irrelevant to our study.

To study the discrimination power of each classifier, we
produce receiver operating characteristic (ROC) curves that
plot background rejection versus signal efficiency, as well as
areas under the ROC curves (AUCs). ROC curves and AUCs
are standard metrics in machine learning applications. The use
of ROC curves and AUCs in this study is inspired by Ref. [17].
We first show the ROC curves of various classifiers using the
t t̄H analysis data sets of 20 000 events and 15 input variables
in Fig. 4. Each curve represents results averaged over 60 statis-
tically independent data sets. Figure 4(a) overlays the results
of the QSVM-Kernel algorithm (from the Google framework),
the classical SVM algorithm, and the classical BDT algo-
rithm. Figure 4(b) overlays the QSVM-Kernel results from
the Google framework, IBM framework, and Amazon frame-
work. Here the QSVM-Kernel classifiers employ 15 qubits on
the quantum simulators. We observe that, for these t t̄H anal-
ysis data sets, the QSVM-Kernel performances are similar to
the performances given by the two commonly used classical

FIG. 4. ROC curves of various classifiers using the t t̄H analysis
data sets of 20 000 events and 15 input variables. Each curve rep-
resents results averaged over 60 statistically independent data sets.
Panel (a) overlays the results of the QSVM-Kernel algorithm (on the
qsim Simulator from the Google TensorFlow Quantum framework),
the classical SVM algorithm, and the classical BDT algorithm. Panel
(b) overlays the QSVM-Kernel results on the qsim Simulator from
the Google TensorFlow Quantum framework, the StatevectorSimula-
tor from the IBM Quantum framework, and the Local Simulator from
the Amazon Braket framework. Here the QSVM-Kernel classifiers
employ 15 qubits on the quantum simulators.

machine learning algorithms. Furthermore, the three quan-
tum computer simulators, from the Google framework, IBM
framework, and Amazon framework, provide identical classi-
fication performances using the QSVM-Kernel algorithm.

Based on the classifier discriminant, we could perform an
event selection in order to maximize S/

√
(B), where S is the

number of selected signal events and B is the number of se-
lected background events. S/

√
(B) is an approximation of the

statistical significance of the signal process, and usually corre-
lated with the AUC of the classifier. For the above-mentioned
QSVM-Kernel classifier in the t t̄H analysis, if applying a
selection with a signal acceptance of 70%, approximately 92%
of background events will be rejected and hence S/

√
(B) will

be improved by around 150% with respect to no selection.
Our observation becomes more clear in Fig. 5, where we

study the AUC for various classifiers as a function of the
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FIG. 5. The AUC for various classifiers as a function of the
t t̄H analysis data set size (10 000–50 000 events). Panel (a) shows
the results of the QSVM-Kernel (on the qsim Simulator from the
Google TensorFlow Quantum framework), the classical SVM, and
the classical BDT. Panel (b) further shows the difference between
the QSVM-Kernel algorithm and the classical algorithms. Panel
(c) shows the QSVM-Kernel results on the qsim Simulator from the
Google TensorFlow Quantum framework, the StatevectorSimulator
from the IBM Quantum framework, and the Local Simulator from
the Amazon Braket framework. Here all the classifiers use the same
15 variables and the QSVM-Kernel classifiers employ 15 qubits
on the quantum simulators. The quoted AUCs are averaged over
60 statistically independent data sets and the quoted errors are the
standard deviations for the AUCs of the 60 data sets.

t t̄H analysis data set size (10 000–50 000 events). Figure 5(a)
shows the results of the QSVM-Kernel (from the Google
framework), the classical SVM, and the classical BDT.
Figure 5(b) further shows the difference between the QSVM-
Kernel algorithm and the classical algorithms. Figure 5(c)
shows the QSVM-Kernel results from the Google frame-
work, IBM framework, and Amazon framework. Here all the
classifiers use the same 15 variables and the QSVM-Kernel
classifiers employ 15 qubits on the quantum simulators. The

FIG. 6. AUCs of the QSVM-Kernel algorithm as a function of
the number of qubits (10–20 qubits). The number of qubits is equal
to the number of input variables. The 60 statistically independent
t t̄H analysis data sets of 20 000 events are used in this study. In
panel (a), we compare the results of the QSVM-Kernel classifier (on
the qsim Simulator from the Google TensorFlow Quantum frame-
work) with the results of the classical SVM and classical BDT
classifiers using the same input variables. In panel (b), we further
display the difference between the QSVM-Kernel results and the
classical machine learning results. In panel (c), we compare the
qsim Simulator from the Google TensorFlow Quantum framework,
the StatevectorSimulator from the IBM Quantum framework, and
the Local Simulator from the Amazon Braket framework for the
QSVM-Kernel results.

quoted AUCs are averaged over 60 statistically independent
data sets and the quoted errors are the standard deviations for
the AUCs of the 60 data sets. We find that the performance
of all methods improves with increasing data set size. For 15
qubits and up to 50 000 events, the QSVM-Kernel algorithm
performs similarly to the classical SVM and classical BDT al-
gorithms. Furthermore, the QSVM-Kernel performances from
the three different quantum computer simulators (Google,
IBM, and Amazon) are comparable.
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We also investigate the AUCs of the QSVM-Kernel algo-
rithm as a function of the number of qubits (10–20 qubits), as
shown in Fig. 6. The number of qubits is equal to the number
of input variables using PCA as described in Sec. III. The
60 statistically independent t t̄H analysis data sets of 20 000
events are used in this study. In Fig. 6(a), we compare the
results of the QSVM-Kernel (from the Google framework)
with the classical SVM and classical BDT using the same
input variables. In Fig. 6(b), we further display the difference
between the QSVM-Kernel results and the classical machine
learning results. In Fig. 6(c), again, we compare the Google
framework, IBM framework, and Amazon framework for the
QSVM-Kernel results. We find that the QSVM-Kernel result
with 15 qubits is better than 10 qubits and similar to 20 qubits.
For 10–20 qubits and 20 000 events, the performance of the
QSVM-Kernel algorithm is similar to that of the classical
SVM algorithm. Again, the three quantum computer simula-
tors (Google, IBM, and Amazon) yield the same classification
power.

B. Results from quantum computer hardware

After the studies using simulation of the ideal quantum
computers, it is now of great interest to assess the quantum
machine learning performances on today’s noisy quantum
computer hardware. For the t t̄H physics analysis, we employ
the QSVM-Kernel algorithm on the IBM ibmq_paris quan-
tum computer hardware. ibmq_paris is a 27-qubit quantum
processor based on superconducting electronic circuits. The
qubit map of the ibmq_paris quantum system [40] is shown
in Fig. 7. Due to limited access time available to us, we
performed six runs using 15 qubits on ibmq_paris. Each run
processes a statistically independent data set of 100 events.
For these six runs, the average running time on the quantum
hardware is approximately 680 min. With more advanced
quantum hardware in the future, the running time is expected
to be significantly reduced. The quantum circuit of the hard-
ware runs is kept the same as for the simulator runs, while
the SVM regularization hyperparameter is separately opti-
mized for hardware and simulator runs. To reduce statistical
uncertainties in evaluating kernel entries on quantum hard-
ware, we use 8192 measurement shots for every kernel entry.

In Fig. 8, we present the ROC curve of the QSVM-Kernel
classifier with the ibmq_paris quantum computer hardware
using the t t̄H analysis data sets of 100 events. For compari-
son, we overlay the ROC curve with the StatevectorSimulator
from the IBM Quantum framework using the same data sets.

FIG. 7. The qubit map of the ibmq_paris quantum system [40].
The (darker) colors indicate (lower) readout error rates of the qubits
and CNOT error rates of the connections. Our study uses qubits 3, 5,
8, 11, 14, 16, 19, 22, 25, 24, 23, 21, 18, 15, and 12.

FIG. 8. ROC curve of the QSVM-Kernel classifier with the
ibmq_paris quantum computer hardware using the t t̄H analysis data
sets of 100 events. For comparison, we overlay the ROC curve with
the StatevectorSimulator from the IBM Quantum framework using
the same data sets. The results are averaged over the six hardware
runs. All the QSVM-Kernel classifiers use 15 qubits and the same 15
variables.

The results are averaged over the six hardware runs. All
the QSVM-Kernel classifiers use 15 qubits and the same
15 variables. In Fig. 9, we compare the ROC curve with
the ibmq_paris quantum computer hardware and the ROC

FIG. 9. ROC curve with the ibmq_paris quantum computer hard-
ware and ROC curve with the StatevectorSimulator from the IBM
Quantum framework for each of the six hardware runs. Each run
processes a statistically independent dataset of 100 events. All the
QSVM-Kernel classifiers are using 15 qubits and the same 15
variables.
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curve with the StatevectorSimulator for each of the six hard-
ware runs. With small training samples of 100 events, the
performance achieved by the ibmq_paris quantum computer
hardware is promising and approaching the noiseless quantum
computer simulator. The difference between the hardware per-
formance and the simulator performance is likely due to the
effect of quantum hardware noise and fluctuates among our
hardware runs.

V. CONCLUSION

In this study, we have successfully employed the quantum
support vector machine kernel (QSVM-Kernel) method in the
t t̄H (Higgs boson production in association with a top quark
pair) physics analysis, a recent LHC flagship physics analysis,
on gate-model quantum computer simulators and hardware.
The simulation study has been performed using the Google
TensorFlow Quantum framework, IBM Quantum framework
and Amazon Braket framework. We have overcome the chal-
lenges of intensive computing resources in the cases of up to
20 qubits and up to 50 000 events on the quantum computer
simulators, in order to perform quantum machine learning
studies on physics data sets that closely resemble those used
in the official ATLAS publication [8]. The QSVM-Kernel
method achieves good classification performance that is sim-
ilar to the performances of the classical machine learning
methods currently used in LHC physics analyses, classical
SVM, and classical BDT for example. On the ibmq_paris
superconducting quantum computer hardware, we have also
employed the QSVM-Kernel algorithm using 100 events and
15 qubits to assess the effect of quantum hardware noise. The
performance achieved on the ibmq_paris quantum hardware
is promising and is approaching the performance from the
noiseless quantum simulators.

Our quantum simulation result gives an example that
quantum machine learning performs as well as its classical
counterpart using three different platforms (Google, IBM, and
Amazon) for realistic high energy physics analysis data sets.
Furthermore, our result on noisy quantum hardware provides
important validation for the result on noiseless quantum sim-
ulators. Our studies confirm that the QSVM-Kernel algorithm
can use the large dimensionality of the quantum Hilbert space
to replace the classical feature space. In the future, large
improvement in computational speed and reduction in device
noise on quantum computing hardware will likely be achieved
and lead to quantum advantage in quantum machine learning
applications. With the large investments in quantum comput-
ing and fierce competitions in technology, this expectation is
realistic. Therefore, we predict that quantum machine learning
will become a powerful tool for data analysis in high energy
physics.
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