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Abstract We investigate the effect of longitudinal and
transverse calorimeter segmentation on event-by-event soft-
ware compensation for hadronic showers. To factorize out
sampling and detector effects, events are simulated in which
a single charged pion is shot at a homogenous lead glass
calorimeter, split into longitudinal and transverse segments
of varying size, and the total energy loss within each seg-
ment is used as the signal. As an approximation of an optimal
reconstruction, a neural network-based energy regression is
trained based on these signals. The architecture is based
on blocks of convolutional kernels customized for shower
energy regression using local energy densities; biases at the
edges of the training dataset are mitigated using a histogram
technique. With this approximation, we find that a longitu-
dinal and transverse segment size less than or equal to 0.5
and 1.3 nuclear interaction lengths, respectively, is necessary
to achieve an optimal energy measurement. In addition, an
intrinsic energy resolution of 8%/

√
E for pion showers is

observed.

1 Introduction

Both existing high-energy physics experiments, such as those
at the CERN LHC, and future experiments at future collid-
ers, like the Future Circular Collider (FCC), rely heavily on
the performance of hadron calorimeters and their particle
flow capabilities for measuring jet and missing transverse
momentum (pT ) [1–9]. Hadron calorimeters are currently
characterized not only in terms of their intrinsic energy res-
olution, but by their imaging capabilities, which allow for
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offline corrections using smart algorithms. Due to the diverse
composition of hadronic showers and the differences in the
calorimeter response, a correct energy measurement becomes
challenging. In general, the components of hadronic showers
can be divided into electromagnetic (EM) and hadronic parts.
The hadronic part of the shower consists of particles such as
neutrinos and neutrons which are partially invisible to the
detector. This can be affected by the chosen active detector
material, where, e.g., plastic scintillators allow for neutron
detection via strong interaction with the atomic nucleus. The
undetectable particles in the hadronic shower result in an
unequal detector response; that is, e/h �= 1, where e and h
are the calorimeter response to electromagnetic and hadronic
shower fractions, respectively.

Many hadronic calorimeters currently in use and planned
for future experiments are sampling calorimeters, which con-
sist of alternating active and passive absorber layers [10–13].
The sampling of the hadronic shower allows for tuning of the
hadronic and electromagnetic shower responses. In the past,
the e/h ratio has been adjusted closer to 1 by either sup-
pressing the electromagnetic response, e.g., by using high-
Z absorbers, or by enhancing the hadronic response, using
neutron-sensitive active materials. Calorimeters that have a
ratio e/h ∼ 1 are called “compensating” calorimeters. These
optimizations in the active and passive materials often require
a decreased sampling fraction (ratio of active/passive mate-
rial), which itself degrades the calorimeter energy resolution
by increasing the stochastic term α of

σE

〈E〉 = α√
E

⊕ c. (1)

The stochastic term is dominated by the sampling frac-
tion (per layer) and the frequency (the number of layers) for
sampling calorimeters, and expresses the dependence of the
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calorimeter resolution on the fluctuations of the number of
particles within the hadronic shower (following a Poisson
distribution). The constant term c expresses linearly energy-
dependent uncertainties, such as energy losses due to par-
ticles escaping the detector, caused by limited calorimeter
sizes. The fluctuations on the EM-to-hadronic shower frac-
tion increase logarithmically with energy and can thus con-
tribute to both terms. This contribution can be removed either
by intrinsic compensation, or by an event-by-event measure-
ment of the EM fraction, which is called software compen-
sation.

Due to the cost and mechanical stability benefits, absorbers
made of steel or lead are widely in use. These materials have
been found to require very small sampling fractions in, e.g.,
scintillator-steel calorimeters in order to achieve compen-
sating behavior. Since such low sampling fractions would
degrade the performance, especially for particles at low ener-
gies (< 50 GeV), the solution to correct for fluctuations in
the electromagnetic shower fraction is to use software com-
pensation techniques.

In order to allow algorithms to distinguish between the
dense electromagnetic shower core and other shower parts,
e.g., disappearing tracks, the granularity of the calorime-
ter plays a key role. The first attempt in so-called imaging
calorimetry has been made by the CALICE collaboration,
which started a R&D program of calorimeters for a future
e−e+ linear collider [14,15], where the calorimeter designs
have been optimised for particle flow algorithms [5]. These
algorithms allow for jet energy measurements using the best
suited sub-detector to reconstruct each jet particle. The pro-
totypes of these calorimeters have been realised with active
layers made of silicon for the EM shower part and scintillator
or resistive plate chambers for the measurement of hadronic
showers. The active layers were tested and interleaved within
both steel and tungsten absorber stacks [16,17] and achieved
such good results in test beams [18] that the CMS Col-
laboration decided to adopt this concept in a full silicon-
tungsten/scintillator-steel endcap calorimeter [12,19]. The
developments in, e.g., silicon photomultiplier (SiPM) tech-
nologies have been key to measuring the scintillation light
produced in calorimeter cell sizes of 3 × 3 × 0.5 cm3 [20].
The impact of software compensation techniques on the per-
formance of particle flow algorithms has been studied in a
specific detector design [9], and proven to provide a signif-
icant improvement to the jet energy measurement by using
a corrected calorimeter cluster which is matched to tracks in
the tracking system.

The next step towards a calorimeter design optimized for
the use of software compensation techniques is to study the
necessary granularity that allows an algorithm to determine
most accurately the hadronic shower energy.

In this paper, we will discuss the performance of a software
compensation technique using a deep neural network (DNN),

with a specific focus on the dependence on the transverse
and longitudinal granularity. For the purpose of this study,
we consider a homogeneous idealistic calorimeter simulated
with Geant4 [21]. The performance is evaluated in terms of
energy resolution and linearity for single charged pions. The
resolution of particle-flow algorithms is also limited by the
accuracy of the association between charged particle tracks
in the tracker and energy depositions in the calorimeter. In
this context it has been shown that DNNs can provide a new
avenue for particle flow in general [22,23]; this, however, is
beyond the scope of this paper. Here, we show how a DNN
can be utilised to approximate a generic close-to-optimal
reconstruction algorithm that can be optimised to the gran-
ularity in an automated fashion. This can help pave the way
towards a more ambitious global optimisation of detector
design parameters as suggested, e.g., in Ref. [24].

2 Calorimeter and dataset

The studied calorimeter is a homogeneous lead tungstate
calorimeter, which follows the EM calorimeter concept of
the CMS experiment [25]. In order to concentrate this study
on the capabilities of the DNN to correct e/h fluctuations, we
do not consider any passive absorber material in the follow-
ing. But the impact of sampling fluctuations has been tested
and the results are summarized in Appendix A for the exam-
ple of a full PbWO4 calorimeter with a passive layer fraction
of 95%. Qualitatively, the sampling calorimeter shows sim-
ilar behavior to the homogenous calorimeter studied, but at
present the effect of the sampling term in the resolution is not
sufficiently well measured to form any precise conclusions.

The dimensions are 1 × 1 × 2.5 m3, which ensures com-
plete shower containment within the calorimeter volume and
corresponds to 10.4 λ and 280 X0 of total depth. The trans-
verse segmentation is increased from no segmentation up to
30 × 30 segments in x and y (designated stages A–F), and
from 1 to 60 segments (designated stages 0–7) in the longi-
tudinal direction. A list of the configurations can be found in
Table 1.

The data set consists of approximately 5 × 106 charged
pion events, generated using the FTFP_BERT physics list of
Geant4 [21] 10.04 patch 0. The training data set comprises
pions with energies sampled from a flat distribution between
1 and 110 GeV. The test data set covers 11 discrete energies
of 5 to 105 GeV in 10 GeV steps. In both cases, pions are
shot at the calorimeter center with a normal incident angle.
The training data set covers a slightly larger energy range
to suppress bias effects caused by a difference between the
mean and the expectation value of the reconstructed energy at
the edges during training. The Geant4 simulation has been
performed in the highest granularity, while for the tests and
training of different segmentation configurations, the same
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Table 1 Granularity
configurations considered in this
analysis

Stage Longitudinal segments Depth of layers

in cm in λπ in X0

0 1 250 10.4 280

1 6 41.7 1.7 47

2 10 25 1.0 28

3 12 20.8 0.9 23

4 15 16.7 0.7 19

5 20 12.5 0.5 14

6 30 8.3 0.3 9

7 60 4.2 0.2 5

Stage Transverse segments Size of cells

in cm2 in λπ in X0

A 1 × 1 100 × 100 4.1 × 4.1 112 × 112

B 3 × 3 33 × 33 1.4 × 1.4 37 × 37

C 5 × 5 20 × 20 0.8 × 0.8 22 × 22

D 10 × 10 10 × 10 0.4 × 0.4 11 × 11

E 15 × 15 6.7 × 6.7 0.3 × 0.3 8 × 8

F 30 × 30 3.3 × 3.3 0.1 × 0.1 4 × 4

dataset has been used. For this purpose, the energy deposits
(sum of total energy losses over time of the event) in the
cells have been merged corresponding to the tested cell sizes.
This method avoids inconsistencies that are otherwise to be
expected due to the different number of surfaces and material
borders through which Geant4 propagates the particles.

3 Neural network architecture and training

At the core of the neural network architecture used here is
a software compensation block that uses convolutional neu-
ral network (CNN) layers [26] to achieve local identification
of the subshowers. Due to the regular grid-like structure of
the calorimeter, graph neural networks such as discussed e.g.
in Ref. [27] are not necessary. The architecture chosen here
is similar to the one introduced in Ref. [13], which is used
as a subblock in the overall model. This subblock consists
of 3 parallel paths: in the first path, the energy of all cells
within the kernel range K is summed up and forwarded to
the next block, while this kernel is moved with a stride of size
K ; the second path consists of a CNN layer with the same
kernel size and F = 16 filters; and the third path contains
in total three subsequent CNN layers, out of which the first
two have kernel sizes (in x, y, and depth) of Ka = (1, k, 3)

and Kb = (k, 1, 3), with no stride and 32 filters, each.
Here, k is an adjustable parameter depending on granularity,
as described later. The final layer of this path is a CNN layer
with a kernel size of K with a stride of K and F filters, such
that the output of all paths can be combined. This combi-

nation is done by adding the output of the CNN layers of
all paths feature by feature. All layers use a tanh activation
function. The weights of the layers in the third path are ini-
tialised with a Gaussian distribution centred at 0 with a width
of 10−3, and receive a small L2 regularisation of 10−5. This
structure is optimised to derive small corrections to the sim-
ple energy sum by detecting the different shower shape of
electromagnetic subshowers.

In the final model, the input is passed through a batch nor-
malisation layer [28], normalising all inputs except for the
per-cell energy. If fewer than 6 calorimeter layers are present
or the transverse granularity in either direction is less than 6,
the input is directly flattened and passed to 3 dense layers,
the first two of which contain 128 and 64 nodes using ELU
activation [29], before being finally passed to the energy pre-
diction layer with 1 node. In all other cases, the input is first
passed through a set of the subblocks described above before
being fed through the same structure with dense layers. These
subblocks adapt to the input: if the corresponding granularity
is less than 6 × 6 cells in the transverse directions, a stride of
1×1 is used, and the input k for the kernel size determination
is set to k = 1. Otherwise, a stride of 2 × 2 and k = 3 are
used in these directions. The subblock is repeated until the
dimensionality in x , y, or depth is less than or equal to 6. At
this point, the output is fed to the three final dense layers.

The model is trained using the Adam optimiser [30] using
TensorFlow [31] and Keras [32] within the DeepJetCore
framework [33]. The training consists of five steps: the first
four steps use a loss function Lcalo that follows the expected
calorimeter resolution:
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Lcalo = (Etrue − Epred)
2

Etrue
, (2)

where Epred is the energy of the particle predicted by the
DNN. These steps are trained for 1, 19, 60, and 20 epochs
with learning rates of 10−4, 10−4, 10−5, and 10−5, and batch
sizes of 256, 512, 1280, and 1280, respectively. Between the
third and fourth step, the batch normalisation is frozen.

The mean and expectation value for Etrue differ at the
edges of the training sample. This typically leads to edge
effects, which introduce a bias towards higher predicted val-
ues at the low edge, and towards lower predicted values at the
high edge. To mitigate this effect, we freeze all layers except
for the last dense layers, and introduce a loss that follows a
χ2 distribution taking the difference of the average predicted
and truth energy in bins of Etrue, and accounting for the num-
ber of samples in that bin. The bin boundaries are randomly
chosen for each batch to avoid a global bias. Using this loss,
the model is trained for another 50 epochs with a learning
rate of 10−5 and a batch size of 1280.

4 Results

The energy resolution is evaluated as the ratio of the width
to the most probable value of the distribution of the recon-
structed energy. These distributions, as shown for example in
Fig. 1a, follow a Gaussian function. The standard deviation
can thus be extracted from a fit. This fit is limited within 2σ

around the most probable value μ, following the procedure
widely used in calorimeter performance studies. As a com-
parison and validation, the energy resolution has also been
evaluated from the root mean square (RMS) and mean, which
is sensitive to the tails of the distribution. The energy resolu-
tion over the full available energy range is shown for stage 4,
which corresponds to a granularity of 15 longitudinal layers,
in Fig. 1b. The points are fitted following Eq. (1), and the
values of the stochastic and constant term are shown in the
legend. The constant term is set to 0 if the fitted value devi-
ates from 0 by less than its uncertainty. An overall 10–20%
degradation in energy resolution from the Gaussian fit to the
RMS method is observed. In the following, the energy res-
olutions obtained for different granularities will refer to the
results obtained from the Gaussian fit.

The results, in terms of the stochastic term α and constant
term c for all studied longitudinal and transverse granular-
ities, are summarized in Table 2. The theory of the differ-
ent contributions to the energy resolution of hadronic show-
ers [34] considers that the stochastic term is in fact a quadratic
sum of two major effects, α = αint ⊕ αsampl, where the first
intrinsic term is irreducible and determined by the fluctu-
ations of the initial energy that is transformed into ionis-
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Fig. 1 Results for a scenario with 15 longitudinal layers (stage 4) and
no transverse segmentation (stage A). a Energy distribution for 45 GeV
pions. The width as computed from the Gaussian fit (black line) and from
the RMS are shown. b Energy resolution as a function of the particle
energy. The resolution is computed two ways, using the Gaussian fit
(open circles) and using the RMS (filled squares)

ing shower particles, and the second is the term due to the
sampling fraction. These fluctuations are material dependent,
due to material-dependent nuclear binding energy losses, and
have been found to be on the order of 19%/11% in the ZEUS
uranium/lead-scintillator calorimeter prototypes [35].

We assume that the DNN is able to identify and re-weight
the electromagnetic and hadronic shower fractions, due to
the topological differences of EM and hadronic subshowers
(λπ/X0 ∼ 27). Thus, we expect the stochastic and constant
terms to improve with respect to an energy measurement
based on a simple sum over calorimeter cells, and to decrease
with increased granularity. Table 2 shows the resulting mea-
sured stochastic and constant terms (using both the Gaussian
fit and the RMS to obtain the resolution) for three different
sets of scenarios: first, the different longitudinal granularities
with no transverse segmentation, the results for which are
plotted in Fig. 2; second, longitudinal stage 0 with different
transverse granularities (Fig. 3); and third, longitudinal stage
5 with different transverse granularities (Fig. 4). For refer-
ence, we also compare the results obtained with the DNN
with a simple energy sum over all energy deposits in the
calorimeter cells. This does not include any further energy
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Table 2 Summary of energy
resolution fit results. The top set
shows the different longitudinal
segmentation scenarios with no
transverse segmentation, while
the other two sets show two
specific longitudinal stages with
different transverse
segmentation scenarios, as
described in Table 1. In the last
row the result of a simple energy
sum is given as reference

Stage Stochastic term (%) Constant term [%]
RMS Gauss RMS Gauss

0A 20.5 ± 0.2 17.4 ± 0.3 3.00 ± 0.04 2.56 ± 0.05

1A 19.8 ± 0.2 16.0 ± 0.3 2.19 ± 0.04 2.01 ± 0.05

2A 17.8 ± 0.2 14.1 ± 0.2 1.81 ± 0.04 1.50 ± 0.04

3A 17.2 ± 0.2 13.6 ± 0.2 1.66 ± 0.04 1.27 ± 0.04

4A 16.1 ± 0.2 12.9 ± 0.2 1.50 ± 0.03 1.05 ± 0.04

5A 15.4 ± 0.2 12.1 ± 0.2 1.31 ± 0.03 0.83 ± 0.05

6A 14.6 ± 0.1 11.6 ± 0.2 1.05 ± 0.03 0.63 ± 0.05

7A 13.1 ± 0.1 10.9 ± 0.2 1.04 ± 0.03 0.55 ± 0.05

0B 20.4 ± 0.2 15.1 ± 0.1 1.25 ± 0.05 0 ± 0

0C 20.0 ± 0.2 14.6 ± 0.1 1.20 ± 0.05 0 ± 0

0D 18.2 ± 0.2 13.6 ± 0.1 1.33 ± 0.04 0 ± 0

0E 18.7 ± 0.2 13.6 ± 0.1 1.13 ± 0.05 0 ± 0

0F 17.9 ± 0.2 13.4 ± 0.1 1.25 ± 0.04 0 ± 0

5B 11.4 ± 0.1 8.6 ± 0.1 0.60 ± 0.03 0 ± 0

5C 10.6 ± 0.1 8.1 ± 0.1 0.61 ± 0.03 0 ± 0

5D 11.0 ± 0.1 8.1 ± 0.1 0 ± 0 0 ± 0

5E 10.9 ± 0.1 7.9 ± 0.1 0 ± 0 0 ± 0

5F 10.9 ± 0.1 7.9 ± 0.1 0 ± 0 0 ± 0

7F w/o DNN 22.0 ± 0.3 18.9 ± 0.3 2.87 ± 0.04 2.40 ± 0.06

calibration, which is visible in a significant deviation from
unity in the linearity (compare Fig. 2a). This could however
easily be recovered with standard methods of energy calibra-
tion. The observed increase in the response with energy cor-
responds to the increasing EM fraction within the hadronic
shower. Overall, at the finest granularities, we observe that
the constant term goes to zero, while the stochastic term
decreases by approximately 50% with respect to the scenario
with no segmentation, reaching a minimum of 8%, which can
be considered as an upper limit on the intrinsic stochastic
term αint. The difference between the parameters from the
RMS and the Gaussian fit is indicative of a contribution from
moderately pronounced tails, which are also shown in Fig. 1.

The constant term is consistently removed as soon as the
first segmentation in transverse granularity into 3×3 cells is
implemented. Figure 5 shows an event display of a 35 GeV
pion shower; the bottom shows the impact of a 3 × 3 trans-
verse segmentation. We can see that already at this stage, a
significant enough energy fraction of about 12% (shown as
〈Eout/Etot〉 in the legend) is found in the outer quadrants.
In comparison, a single shower is represented in 3D on the
top, and visualises the imaging power of the finest chosen
granularity of the homogeneous PbWO4 calorimeter.

Figure 6 summarizes the energy resolution as a function of
longitudinal and transverse granularity. We observe that the
behavior of the resolution as a function of granularity exhibits
the same pattern regardless of the incident particle energy. For
the transverse granularity, the resolution reaches an optimal
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Fig. 2 Energy resolution (a) and linearity (b) for different longitudinal
granularities and no transverse segmentation, compared to a simple
energy sum. The curves correspond to the fit with Eq. (1)

value at a cell size of ≈ 1λπ , and finer segmentation does
not yield any appreciable further benefit. In the longitudinal
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Fig. 3 Energy resolution (a) and linearity (b) for different transverse
granularities with 1 longitudinal layer (stage 0). The curves show the
fit to the form given in Eq. (1)
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Fig. 4 Energy resolution (a) and linearity (b) for different transverse
granularities with 20 longitudinal layers (stage 5). The curves show the
fit to the form given in Eq. (1)
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Fig. 5 a A 3D view of a 35 GeV pion shower in the homogeneous
PbWO4 calorimeter at the finest granularity. The color code as well
as the box sizes correspond to the amount of energy recorded in the
calorimeter cells. b A front view of the average pion shower at 35 GeV
over 2646 events, with a grid overlaid corresponding to the coarsest
applied transverse segmentation and an original binning corresponding
to the finest segmentation

direction, the energy resolution continues to improve as the
layer size is decreased, reaching the minimum at the finest
granularity considered (≈ 0.2λπ or ≈ 5X0).

Figure 7 summarizes the fitted parameters α and c in the
energy resolution function in Eq. (1), as a function of longitu-
dinal and transverse granularity. In the transverse direction,
we observe that the constant term goes to zero at a cell size
of 1.4 λπ (37X0), and further decrease in the cell size does
not further improve the stochastic term α. In the longitudi-
nal case, a layer width smaller than 10 X0 results only a
minor improvement of about 10%, which suggests that layer
widths of about 10 X0 could offer a good balance between
the obtained resolution and the detector complexity.

5 Conclusions

When calorimeters are designed for new high-energy physics
experiments, often the approach has been to pick a tech-
nology before optimising the reconstruction of jet particles.
From the perspective of testing various options, this not only
requires significant computing power due to the introduced
details of signal processing (digitisation) in the simulations,
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Fig. 6 Energy resolution as a function of the longitudinal (a) and trans-
verse (b) granularity. Two different particle energies are considered:
15 GeV (black circles), and 85 GeV (red squares). In the upper plot, no
transverse segmentation is used, while on the bottom, two different lon-
gitudinal segmentations are shown: 1 layer (dashed lines) and 20 layers
(solid lines)

but also means that the simulations are unable to answer
basic questions due to the high complexity. For example, a
smaller cell size improves the spatial and pointing resolu-
tion, which should help the particle-flow algorithm to recon-
struct the jet. However, the signal height per cell decreases,
which can introduce an energy loss due to a lower signal-to-
noise ratio. Thus, a high-level optimisation becomes blind
to the individual impact for each effect. Instead, a different
approach could be to first identify the necessary input for
reconstruction algorithms which allows for optimal perfor-
mance, before selecting the detector technology.

Moving towards that approach, we have used a model
calorimeter to show how DNNs can be used to study the effect
of the cell granularity on the hadronic energy reconstruction,
without the need for manual optimisation of the algorithm for
each granularity choice. In this model, the impact of the sam-
pling fraction has been intentionally excluded. Even though
we are aware that the type of chosen active and passive mate-
rial will impact the shower development, we believe that this
study can pave the way towards a more global optimisation of

(a)

(b)

Fig. 7 Values of the parameters α (black line) and c (blue line) in
the energy resolution function σE〈E〉 = α

E ⊕ c as a function of the a
longitudinal andb transverse granularity. In the upper plot, no transverse
segmentation is used, while on the bottom, two different longitudinal
segmentations are shown: 1 layer (dashed lines) and 20 layers (solid
lines)

calorimeter designs exploiting the versatility of DNN based
reconstruction algorithms.

For this particular detector setup (with λπ/X0 ∼ 27), we
conclude that cell sizes of at most 1 nuclear interaction length,
and longitudinal layers of 5–10 X0 thickness are needed, in
order to optimize the software compensation to obtain an
e/h response close to 1, and improve towards the intrinsic
stochastic term of 8%. Following this approach, one could
imagine further studies to determine the optimal cell and
layer sizes as a function of the λπ/X0 ratio. However, this
exceeds the scope of this paper.
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Appendix A: Impact of sampling fraction on the stochas-
tic term

The impact of sampling fluctuations on the energy resolution
after the DNN reconstruction has been studied on a PbWO4–
PbWO4 calorimeter with an absorber fraction of 95%, which
results in a sampling fraction of 6.4% for electrons. The
default energy resolution, using a simple energy sum, for
pions is shown in Fig. 8a. The fit follows the shape:

σ
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Fig. 8 Energy resolution of the PbWO4–PbWO4 sampling calorimeter
with an absorber fraction of 95%, observed from the simple energy sum
in a and using the DNN with 1 up to 60 longitudinal layers in b

where the stochastic and constant terms are fixed to the values
obtained for the homogenous PbWO4 calorimeter, for the
resolution evaluated from Gaussian fits and the RMS of the
energy distributions, respectively. The remaining sampling
term sums up to (56.1/59.1 ± 0.2)% in the Gaussian and
RMS cases, respectively, and is able to describe the data
points very well.

The same procedure has been used in order to describe
the results of the DNN for stages 0A to 0F of the PbWO4–
PbWO4 calorimeter. The resolutions with the corresponding
fits are shown in Fig. 8b, which result in extracted sampling
terms ranging between 42 and 52%.

The sampling term can thus not be treated independently
from the other stochastic fluctuations. At the highest gran-
ularities, the DNN is overperforming and able to partially
recover sampling fluctuations. Thus, the granularity config-
uration needed for an optimal DNN performance needs an
additional validation for specific sampling fractions.
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