Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

002722382 001__ 2722382
002722382 005__ 20220126040804.0
002722382 0248_ $$aoai:cds.cern.ch:2722382$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002722382 0247_ $$2DOI$$9bibmatch$$a10.1140/epjc/s10052-020-08587-3
002722382 037__ $$9arXiv$$aarXiv:2005.14471$$chep-ex
002722382 037__ $$9arXiv:reportnumber$$aDESY-20-080
002722382 035__ $$9arXiv$$aoai:arXiv.org:2005.14471
002722382 035__ $$9Inspire$$aoai:inspirehep.net:1798511$$d2022-01-25T13:23:23Z$$h2022-01-26T03:00:21Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002722382 035__ $$9Inspire$$a1798511
002722382 041__ $$aeng
002722382 100__ $$aAndreev, V.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 245__ $$9Springer$$aMeasurement of exclusive $\pi^+ \pi ^-$ and $\rho^0$ meson photoproduction at HERA
002722382 246__ $$9arXiv$$aMeasurement of Exclusive $\pi^{+}\pi^{-}$ and $\rho^0$ Meson Photoproduction at HERA
002722382 269__ $$c2020-05-29
002722382 260__ $$c2020-12-23
002722382 300__ $$a54 p
002722382 500__ $$9arXiv$$a74 pages, 20 figures, 23 tables, accepted by EPJC. Figure numbering
  updated. Ancillary material has been updated
002722382 520__ $$9Springer$$aExclusive photoproduction of ${{\rho ^0}} (770)$ mesons is studied using the H1 detector at the ep collider HERA. A sample of about 900,000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \rightarrow \pi ^{+}\pi ^{-}Y$. Reactions where the proton stays intact (${{{m_Y}} {=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}{{m_Y}} {<}10~{{\text {GeV}}} $). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi \pi }$ of the decay pions and the squared 4-momentum transfer t at the proton vertex. The measurements are presented in various bins of the photon–proton collision energy ${{W_{\gamma p}}} $. The phase space restrictions are $0.5\le m_{\pi \pi } \le 2.2~{{\text {GeV}}} $, $\vert t\vert \le 1.5~{{\text {GeV}^2}} $, and $20 \le W_{\gamma p} \le 80~{{\text {GeV}}} $. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the ${m_{\pi \pi }}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the ${{\rho ^0}} (770)$ meson mass and width at $m_\rho = 770.8{}^{+2.6}_{-2.7}~({\text {tot.}})~{{\text {MeV}}} $ and $\Gamma _\rho = 151.3 {}^{+2.7}_{-3.6}~({\text {tot.}})~{{\text {MeV}}} $, respectively. The model is used to extract the ${{\rho ^0}} (770)$ contribution to the $\pi ^{+}\pi ^{-}$ cross sections and measure it as a function of t and ${W_{\gamma p}}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha (t)$ dominates, the intercept $\alpha (t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}~({\text {tot.}})$ and the slope $\alpha ^\prime (t{=}0) = 0.233 {}^{+0.067 }_{-0.074 }~({\text {tot.}}) ~{{\text {GeV}^{-2}}} $ of the t dependence are extracted for the case $m_Y{=}m_p$.
002722382 520__ $$9arXiv$$aExclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
002722382 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002722382 540__ $$3publication$$aCC-BY-4.0$$bSpringer$$fSCOAP3$$uhttp://creativecommons.org/licenses/by/4.0/
002722382 542__ $$3publication$$dThe Author(s)$$g2020
002722382 65017 $$2arXiv$$ahep-ph
002722382 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002722382 65017 $$2arXiv$$ahep-ex
002722382 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002722382 693__ $$eDESY HERA H1
002722382 690C_ $$aCERN
002722382 690C_ $$aARTICLE
002722382 700__ $$aBaghdasaryan, A.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vYerevan Physics Institute, Yerevan, Armenia
002722382 700__ $$aBaty, A.$$tGRID:grid.21940.3e$$uRice U.$$vRice University, Houston, USA
002722382 700__ $$aBegzsuren, K.$$tGRID:grid.450277.3$$uUlan Bator, Inst. Phys. Tech.$$vInstitute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
002722382 700__ $$aBelousov, A.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aBolz, A.$$tGRID:grid.7683.a$$tGRID:grid.7700.0$$uDESY$$uHeidelberg U.$$vDESY, Hamburg, Germany$$vPhysikalisches Institut, Universität Heidelberg, Heidelberg, Germanya
002722382 700__ $$aBoudry, V.$$tGRID:grid.463805.c$$uEcole Polytechnique$$vLLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France
002722382 700__ $$aBrandt, G.$$tGRID:grid.7450.6$$uGottingen U., II. Phys. Inst.$$vII. Physikalisches Institut, Universität Göttingen, Göttingen, Germany
002722382 700__ $$aBritzger, D.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, München, Germany
002722382 700__ $$aBuniatyan, A.$$tGRID:grid.6572.6$$uBirmingham U.$$vSchool of Physics and Astronomy, University of Birmingham, Birmingham, UKb
002722382 700__ $$aBystritskaya, L.$$tGRID:grid.21626.31$$uMoscow, ITEP$$vInstitute for Theoretical and Experimental Physics, Moscow, Russiah
002722382 700__ $$aCampbell, A.J.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aCantun Avila, K.B.$$uMerida, IPN$$vDepartamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Méxicog
002722382 700__ $$aCerny, K.$$tGRID:grid.10979.36$$uPalacky U.$$vPalack`y University Olomouc, Czech Republice
002722382 700__ $$aChekelian, V.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, München, Germany
002722382 700__ $$aChen, Z.$$tGRID:grid.27255.37$$uShandong U.$$vShandong University, Shandong, P.R.China
002722382 700__ $$aContreras, J.G.$$uMerida, IPN$$vDepartamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Méxicog
002722382 700__ $$aCvach, J.$$tGRID:grid.418095.1$$uCracow, INP$$vInstitute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republice
002722382 700__ $$aDainton, J.B.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aDaum, K.$$tGRID:grid.7787.f$$uWuppertal U.$$vFachbereich C, Universität Wuppertal, Wuppertal, Germany
002722382 700__ $$aDeshpande, A.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aDiaconu, C.$$tGRID:grid.5399.6$$uMarseille, CPPM$$vAix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France
002722382 700__ $$aEckerlin, G.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aEgli, S.$$tGRID:grid.5991.4$$uPSI, Villigen$$vPaul Scherrer Institut, Villigen, Switzerland
002722382 700__ $$aElsen, E.$$tGRID:grid.9132.9$$uCERN$$vNow at CERN, Geneva, Switzerland
002722382 700__ $$aFavart, L.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aFedotov, A.$$tGRID:grid.21626.31$$uMoscow, ITEP$$vInstitute for Theoretical and Experimental Physics, Moscow, Russiah
002722382 700__ $$aFeltesse, J.$$uIRFU, SPP, Saclay$$vIrfu/SPP, CE Saclay, Gif-sur-Yvette, France
002722382 700__ $$aFleischer, M.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aFomenko, A.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aGal, C.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aGayler, J.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aGoerlich, L.$$tGRID:grid.418860.3$$uCracow, INP$$vInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Polandd
002722382 700__ $$aGogitidze, N.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aGouzevitch, M.$$tGRID:grid.7849.2$$uLyon, IPN$$vUniversité Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne, France
002722382 700__ $$aGrab, C.$$tGRID:grid.5801.c$$uZurich, ETH$$vInstitut für Teilchenphysik, ETH, Zürich, Switzerlandf
002722382 700__ $$aGrebenyuk, A.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aGreenshaw, T.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aGrindhammer, G.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, München, Germany
002722382 700__ $$aHaidt, D.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aHenderson, R.C.W.$$tGRID:grid.9835.7$$uLancaster U.$$vDepartment of Physics, University of Lancaster, Lancaster, UKb
002722382 700__ $$aHladky, J.$$tGRID:grid.418095.1$$uCracow, INP$$vInstitute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republice
002722382 700__ $$aHoffmann, D.$$tGRID:grid.5399.6$$uMarseille, CPPM$$vAix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France
002722382 700__ $$aHorisberger, R.$$tGRID:grid.5991.4$$uPSI, Villigen$$vPaul Scherrer Institut, Villigen, Switzerland
002722382 700__ $$aHreus, T.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aHuber, F.$$tGRID:grid.7700.0$$uHeidelberg U.$$vPhysikalisches Institut, Universität Heidelberg, Heidelberg, Germanya
002722382 700__ $$aJacquet, M.$$tGRID:grid.508754.b$$uOrsay, LAL$$vLAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
002722382 700__ $$aJanssen, X.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aJung, A.W.$$tGRID:grid.169077.e$$uPurdue U.$$vDepartment of Physics and Astronomy, Purdue University 525 Northwestern Ave, West Lafayette, IN, 47907, USA
002722382 700__ $$aJung, H.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aKapichine, M.$$tGRID:grid.33762.33$$uDubna, JINR$$vJoint Institute for Nuclear Research, Dubna, Russia
002722382 700__ $$aKatzy, J.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aKiesling, C.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, München, Germany
002722382 700__ $$aKlein, M.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aKleinwort, C.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aKogler, R.$$tGRID:grid.9026.d$$uHamburg U.$$vInstitut für Experimentalphysik, Universität Hamburg, Hamburg, Germanya
002722382 700__ $$aKostka, P.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aKretzschmar, J.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aKrücker, D.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aKrüger, K.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aLandon, M.P.J.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary, University of London, London, UKb
002722382 700__ $$aLange, W.$$tGRID:grid.7683.a$$uDESY, Zeuthen$$vDESY, Zeuthen, Germany
002722382 700__ $$aLaycock, P.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aLebedev, A.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aLevonian, S.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aLipka, K.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aList, B.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aList, J.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aLi, W.$$tGRID:grid.21940.3e$$uRice U.$$vRice University, Houston, USA
002722382 700__ $$aLobodzinski, B.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, München, Germany
002722382 700__ $$aMalinovski, E.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aMartyn, H.-U.$$tGRID:grid.1957.a$$uRWTH Aachen U.$$vI. Physikalisches Institut der RWTH, Aachen, Germany
002722382 700__ $$aMaxfield, S.J.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aMehta, A.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aMeyer, A.B.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aMeyer, H.$$tGRID:grid.7787.f$$uWuppertal U.$$vFachbereich C, Universität Wuppertal, Wuppertal, Germany
002722382 700__ $$aMeyer, J.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aMikocki, S.$$tGRID:grid.418860.3$$uCracow, INP$$vInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Polandd
002722382 700__ $$aMondal, M.M.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aMorozov, A.$$tGRID:grid.33762.33$$uDubna, JINR$$vJoint Institute for Nuclear Research, Dubna, Russia
002722382 700__ $$aMüller, K.$$tGRID:grid.7400.3$$uZurich U.$$vPhysik-Institut der Universität Zürich, Zürich, Switzerlandf
002722382 700__ $$aNaumann, Th.$$tGRID:grid.7683.a$$uDESY$$vDESY, Zeuthen, Germany
002722382 700__ $$aNewman, P.R.$$tGRID:grid.6572.6$$uBirmingham U.$$vSchool of Physics and Astronomy, University of Birmingham, Birmingham, UKb
002722382 700__ $$aNiebuhr, C.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aNowak, G.$$tGRID:grid.418860.3$$uCracow, INP$$vInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Polandd
002722382 700__ $$aOlsson, J.E.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aOzerov, D.$$tGRID:grid.5991.4$$uPSI, Villigen$$vPaul Scherrer Institut, Villigen, Switzerland
002722382 700__ $$aPark, S.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aPascaud, C.$$tGRID:grid.508754.b$$uOrsay, LAL$$vLAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
002722382 700__ $$aPatel, G.D.$$tGRID:grid.10025.36$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, Liverpool, UKb
002722382 700__ $$aPerez, E.$$tGRID:grid.9132.9$$uCERN$$vNow at CERN, Geneva, Switzerland
002722382 700__ $$aPetrukhin, A.$$tGRID:grid.7849.2$$uLyon, IPN$$vUniversité Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne, France
002722382 700__ $$aPicuric, I.$$tGRID:grid.12316.37$$uMontenegro U.$$vFaculty of Science, University of Montenegro, Podgorica, Montenegroj
002722382 700__ $$aPitzl, D.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aPolifka, R.$$tGRID:grid.4491.8$$uCharles U.$$vFaculty of Mathematics and Physics, Charles University, Praha, Czech Republice
002722382 700__ $$aRadescu, V.$$tGRID:grid.4991.5$$uOxford U.$$vDepartment of Physics, Oxford University, Oxford, UK
002722382 700__ $$aRaicevic, N.$$tGRID:grid.12316.37$$uMontenegro U.$$vFaculty of Science, University of Montenegro, Podgorica, Montenegroj
002722382 700__ $$aRavdandorj, T.$$tGRID:grid.450277.3$$uUlan Bator, Inst. Phys. Tech.$$vInstitute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
002722382 700__ $$aReimer, P.$$tGRID:grid.418095.1$$uCracow, INP$$vInstitute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republice
002722382 700__ $$aRizvi, E.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary, University of London, London, UKb
002722382 700__ $$aRobmann, P.$$tGRID:grid.7400.3$$uZurich U.$$vPhysik-Institut der Universität Zürich, Zürich, Switzerlandf
002722382 700__ $$aRoosen, R.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aRostovtsev, A.$$tGRID:grid.435025.5$$uIITP, Moscow$$vNow at Institute for Information Transmission Problems RAS, Moscow, Russiak
002722382 700__ $$aRotaru, M.$$tGRID:grid.443874.8$$uBucharest, IFIN-HH$$vHoria Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH) , Bucharest, Romaniai
002722382 700__ $$aSankey, D.P.C.$$tGRID:grid.76978.37$$uRutherford$$vSTFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UKb
002722382 700__ $$aSauter, M.$$tGRID:grid.7700.0$$uHeidelberg U.$$vPhysikalisches Institut, Universität Heidelberg, Heidelberg, Germanya
002722382 700__ $$aSauvan, E.$$tGRID:grid.5399.6$$tGRID:grid.450330.1$$uMarseille, CPPM$$uAnnecy, LAPP$$vAix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France$$vAlso at LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France
002722382 700__ $$aSchmitt, S.$$msschmitt@mail.desy.de$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aSchmookler, B.A.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aSchoeffel, L.$$uIRFU, SPP, Saclay$$vIrfu/SPP, CE Saclay, Gif-sur-Yvette, France
002722382 700__ $$aSchöning, A.$$tGRID:grid.7700.0$$uHeidelberg U.$$vPhysikalisches Institut, Universität Heidelberg, Heidelberg, Germanya
002722382 700__ $$aSefkow, F.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aShushkevich, S.$$tGRID:grid.14476.30$$uMoscow State U.$$vNow at Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
002722382 700__ $$aSoloviev, Y.$$tGRID:grid.425806.d$$uLebedev Inst.$$vLebedev Physical Institute, Moscow, Russia
002722382 700__ $$aSopicki, P.$$tGRID:grid.418860.3$$uCracow, INP$$vInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Polandd
002722382 700__ $$aSouth, D.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aSpaskov, V.$$tGRID:grid.33762.33$$uDubna, JINR$$vJoint Institute for Nuclear Research, Dubna, Russia
002722382 700__ $$aSpecka, A.$$tGRID:grid.463805.c$$uEcole Polytechnique$$vLLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France
002722382 700__ $$aSteder, M.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aStella, B.$$tGRID:grid.8509.4$$uRome III U.$$vDipartimento di Fisica Università di Roma Tre and INFN Roma 3, Roma, Italy
002722382 700__ $$aStraumann, U.$$tGRID:grid.7400.3$$uZurich U.$$vPhysik-Institut der Universität Zürich, Zürich, Switzerlandf
002722382 700__ $$aSykora, T.$$tGRID:grid.4491.8$$uCharles U.$$vFaculty of Mathematics and Physics, Charles University, Praha, Czech Republice
002722382 700__ $$aThompson, P.D.$$tGRID:grid.6572.6$$uBirmingham U.$$vSchool of Physics and Astronomy, University of Birmingham, Birmingham, UKb
002722382 700__ $$aTraynor, D.$$tGRID:grid.4868.2$$uQueen Mary, U. of London$$vSchool of Physics and Astronomy, Queen Mary, University of London, London, UKb
002722382 700__ $$aTruöl, P.$$tGRID:grid.7400.3$$uZurich U.$$vPhysik-Institut der Universität Zürich, Zürich, Switzerlandf
002722382 700__ $$aTseepeldorj, B.$$tGRID:grid.450277.3$$tGRID:grid.260731.1$$uUlan Bator, Inst. Phys. Tech.$$uMongolian Natl. U.$$vInstitute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia$$vAlso at Ulaanbaatar University, Ulaanbaatar, Mongolia
002722382 700__ $$aTu, Z.$$tGRID:grid.202665.5$$uBrookhaven$$vBrookhaven National Laboratory, Upton, New York 11973, USA
002722382 700__ $$aValkárová, A.$$tGRID:grid.4491.8$$uCharles U.$$vFaculty of Mathematics and Physics, Charles University, Praha, Czech Republice
002722382 700__ $$aVallée, C.$$tGRID:grid.5399.6$$uMarseille, CPPM$$vAix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France
002722382 700__ $$aVan Mechelen, P.$$tGRID:grid.5284.b$$uBrussels U., IIHE$$vInter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumc
002722382 700__ $$aWegener, D.$$tGRID:grid.5675.1$$uDortmund U.$$vInstitut für Physik, TU Dortmund, Dortmund, Germanya
002722382 700__ $$aWünsch, E.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aŽáček, J.$$tGRID:grid.4491.8$$uCharles U.$$vFaculty of Mathematics and Physics, Charles University, Praha, Czech Republice
002722382 700__ $$aZhang, J.$$tGRID:grid.36425.36$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, New York 11794, USA
002722382 700__ $$aZhang, Z.$$tGRID:grid.508754.b$$uOrsay, LAL$$vLAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
002722382 700__ $$aŽlebčík, R.$$tGRID:grid.7683.a$$uDESY$$vDESY, Hamburg, Germany
002722382 700__ $$aZohrabyan, H.$$tGRID:grid.48507.3e$$uYerevan Phys. Inst.$$vYerevan Physics Institute, Yerevan, Armenia
002722382 700__ $$aZomer, F.$$tGRID:grid.508754.b$$uOrsay, LAL$$vLAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
002722382 710__ $$gH1 Collaboration
002722382 773__ $$c1189$$n12$$pEur. Phys. J. C$$v80$$y2020
002722382 8564_ $$82233115$$s35269$$uhttp://cds.cern.ch/record/2722382/files/d20-080f17a.png$$y00015 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections \dSigmaRhoYdt in bins of \wgp and as functions of $t$. Individual distributions are scaled for visual separation, as indicated. The depicted $t$ bin centres are evaluated as described in the text. The quoted average \wgp correspond to the geometrical bin centres. The cross sections are parametrised and fitted as described in the text, and the fitted curves are also shown.
002722382 8564_ $$82233116$$s36658$$uhttp://cds.cern.ch/record/2722382/files/d20-080f17b.png$$y00016 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections \dSigmaRhoYdt in bins of \wgp and as functions of $t$. Individual distributions are scaled for visual separation, as indicated. The depicted $t$ bin centres are evaluated as described in the text. The quoted average \wgp correspond to the geometrical bin centres. The cross sections are parametrised and fitted as described in the text, and the fitted curves are also shown.
002722382 8564_ $$82233117$$s3448772$$uhttp://cds.cern.ch/record/2722382/files/2005.14471.pdf$$yFulltext
002722382 8564_ $$82233118$$s32900$$uhttp://cds.cern.ch/record/2722382/files/d20-080f14a.png$$y00013 Elastic  ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections \dSigmaRhoYdt as functions of $t$. The distributions are parametrised with fits as described in the text,  and the fitted curves are also shown. In the ratio panels, the data are compared to the bin-averaged fit function values as they entered in the $\chi^2$ calculation for the fit. The depicted bin centres are evaluated using the fit functions as described in the text.
002722382 8564_ $$82233119$$s14273$$uhttp://cds.cern.ch/record/2722382/files/d20-080f14b.png$$y00014 Elastic  ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections \dSigmaRhoYdt as functions of $t$. The distributions are parametrised with fits as described in the text,  and the fitted curves are also shown. In the ratio panels, the data are compared to the bin-averaged fit function values as they entered in the $\chi^2$ calculation for the fit. The depicted bin centres are evaluated using the fit functions as described in the text.
002722382 8564_ $$82233120$$s39767$$uhttp://cds.cern.ch/record/2722382/files/d20-080f4c.png$$y00008 Zero- (a), single- (b), and multi-tag fraction (c) using tagging information from the FMD, the FTS, and the PLUG as a function of $|\trec|$. The fraction measured in data is given by the black points. The orange bands show the corresponding fraction predicted by the MC simulation. The tagging fractions of the simulated elastic and proton-dissociative exclusive \pipi signal channels are also shown. The dotted bands denote the total uncertainty of the simulation.
002722382 8564_ $$82233121$$s39104$$uhttp://cds.cern.ch/record/2722382/files/d20-080f4b.png$$y00007 Zero- (a), single- (b), and multi-tag fraction (c) using tagging information from the FMD, the FTS, and the PLUG as a function of $|\trec|$. The fraction measured in data is given by the black points. The orange bands show the corresponding fraction predicted by the MC simulation. The tagging fractions of the simulated elastic and proton-dissociative exclusive \pipi signal channels are also shown. The dotted bands denote the total uncertainty of the simulation.
002722382 8564_ $$82233122$$s34302$$uhttp://cds.cern.ch/record/2722382/files/d20-080f4a.png$$y00006 Zero- (a), single- (b), and multi-tag fraction (c) using tagging information from the FMD, the FTS, and the PLUG as a function of $|\trec|$. The fraction measured in data is given by the black points. The orange bands show the corresponding fraction predicted by the MC simulation. The tagging fractions of the simulated elastic and proton-dissociative exclusive \pipi signal channels are also shown. The dotted bands denote the total uncertainty of the simulation.
002722382 8564_ $$82233123$$s10644$$uhttp://cds.cern.ch/record/2722382/files/d20-080f2a.png$$y00000 Diagram of \myrho meson production and decay in elastic (left) and proton-dissociative (right) $ep$ scattering in the VDM and Regge picture, where the interaction is governed by soft pomeron exchange in the high energy limit.
002722382 8564_ $$82233124$$s10927$$uhttp://cds.cern.ch/record/2722382/files/d20-080f2b.png$$y00001 Diagram of \myrho meson production and decay in elastic (left) and proton-dissociative (right) $ep$ scattering in the VDM and Regge picture, where the interaction is governed by soft pomeron exchange in the high energy limit.
002722382 8564_ $$82233125$$s49563$$uhttp://cds.cern.ch/record/2722382/files/d20-080f7b.png$$y00010 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \pipi photoproduction cross sections \dSigmaPiPiYdm as functions of \mpipi.  \eqnref{eqn:theo_rhoSoedMass} is fitted to the distributions in the mass region $0.6~\gev\leq \mpipi \leq 1.0~\gev$ as described in the text. The model and its components are displayed as indicated in the legend. In the ratio panel, the data are compared to the bin-averaged fit function values as they entered in the $\chi^2$ calculation for the fit.
002722382 8564_ $$82233126$$s11773$$uhttp://cds.cern.ch/record/2722382/files/d20-080f10a.png$$y00011 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) \myrho meson photoproduction cross sections \sigmaRhoY as functions of $\wgp$. The vertical lines indicate the total uncertainties. The statistical uncertainties are indicated by the inner error bars, which however are mostly covered by the data markers. The distributions are parametrised with fits as described in the text, and the fitted curves are also shown. In the ratio panels, the data are compared to the fit function values at the geometric bin centres as they entered the $\chi^2$ calculation in the fit.
002722382 8564_ $$82233127$$s11348$$uhttp://cds.cern.ch/record/2722382/files/d20-080f10b.png$$y00012 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) \myrho meson photoproduction cross sections \sigmaRhoY as functions of $\wgp$. The vertical lines indicate the total uncertainties. The statistical uncertainties are indicated by the inner error bars, which however are mostly covered by the data markers. The distributions are parametrised with fits as described in the text, and the fitted curves are also shown. In the ratio panels, the data are compared to the fit function values at the geometric bin centres as they entered the $\chi^2$ calculation in the fit.
002722382 8564_ $$82233128$$s48208$$uhttp://cds.cern.ch/record/2722382/files/d20-080f7a.png$$y00009 Elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \pipi photoproduction cross sections \dSigmaPiPiYdm as functions of \mpipi.  \eqnref{eqn:theo_rhoSoedMass} is fitted to the distributions in the mass region $0.6~\gev\leq \mpipi \leq 1.0~\gev$ as described in the text. The model and its components are displayed as indicated in the legend. In the ratio panel, the data are compared to the bin-averaged fit function values as they entered in the $\chi^2$ calculation for the fit.
002722382 8564_ $$82233129$$s8879$$uhttp://cds.cern.ch/record/2722382/files/d20-080f20b.png$$y00020 Comparison of the soft pomeron intercept (a) and slope (b) according to Donnachie and Landshoff (DL)~\cite{Donnachie:1983hf} with measurements of the leading trajectory in \myrho meson photoproduction in the present paper and from an analysis of previous data~\cite{Breitweg:1999jy}, as well as with a measurement of the intercept from inclusive DIS and photoproduction data~\cite{Britzger:2019lvc}. The shaded bands show the total statistical and systematic uncertainties of the respective measurements. For the present data points, the statistical uncertainties alone are indicated by the error bars.
002722382 8564_ $$82233130$$s10277$$uhttp://cds.cern.ch/record/2722382/files/d20-080f20a.png$$y00019 Comparison of the soft pomeron intercept (a) and slope (b) according to Donnachie and Landshoff (DL)~\cite{Donnachie:1983hf} with measurements of the leading trajectory in \myrho meson photoproduction in the present paper and from an analysis of previous data~\cite{Breitweg:1999jy}, as well as with a measurement of the intercept from inclusive DIS and photoproduction data~\cite{Britzger:2019lvc}. The shaded bands show the total statistical and systematic uncertainties of the respective measurements. For the present data points, the statistical uncertainties alone are indicated by the error bars.
002722382 8564_ $$82233131$$s38856$$uhttp://cds.cern.ch/record/2722382/files/d20-080f3d.png$$y00005 Control distributions of the reconstructed \mpipirec on a linear (a) and logarithmic $y$-scale (b), of \wgprec (c), and of \trec (d). The black data points are compared to the MC simulation including various signal and background components as given in the legends. The dotted red bands denote the total uncertainty of the simulation including normalisation uncertainties.
002722382 8564_ $$82233132$$s41576$$uhttp://cds.cern.ch/record/2722382/files/d20-080f3b.png$$y00003 Control distributions of the reconstructed \mpipirec on a linear (a) and logarithmic $y$-scale (b), of \wgprec (c), and of \trec (d). The black data points are compared to the MC simulation including various signal and background components as given in the legends. The dotted red bands denote the total uncertainty of the simulation including normalisation uncertainties.
002722382 8564_ $$82233133$$s40986$$uhttp://cds.cern.ch/record/2722382/files/d20-080f3c.png$$y00004 Control distributions of the reconstructed \mpipirec on a linear (a) and logarithmic $y$-scale (b), of \wgprec (c), and of \trec (d). The black data points are compared to the MC simulation including various signal and background components as given in the legends. The dotted red bands denote the total uncertainty of the simulation including normalisation uncertainties.
002722382 8564_ $$82233134$$s31553$$uhttp://cds.cern.ch/record/2722382/files/d20-080f3a.png$$y00002 Control distributions of the reconstructed \mpipirec on a linear (a) and logarithmic $y$-scale (b), of \wgprec (c), and of \trec (d). The black data points are compared to the MC simulation including various signal and background components as given in the legends. The dotted red bands denote the total uncertainty of the simulation including normalisation uncertainties.
002722382 8564_ $$82233135$$s11503$$uhttp://cds.cern.ch/record/2722382/files/d20-080f19b.png$$y00018 Fit parameters $\alpha_t$ as functions of $t$ for the elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections $\dSigmaRhoYdt(t;\wgp)$. The parameters are obtained from fits of a power law to the energy dependencies of the cross sections in all $t$ bins, as described in the text. The trajectories extracted from a Regge model fit to the \wgp and $t$ dependencies are shown as solid curved lines (non-linear ansatz) and as a dashed line (linear ansatz). In pannel (a), the Donnachie-Landshoff trajectory is also shown.
002722382 8564_ $$82233136$$s33334$$uhttp://cds.cern.ch/record/2722382/files/d20-080f19a.png$$y00017 Fit parameters $\alpha_t$ as functions of $t$ for the elastic ($\My{=}m_p$) (a) and proton-dissociative ($m_p{<}\My{<}10~\gev$) (b) differential \myrho meson photoproduction cross sections $\dSigmaRhoYdt(t;\wgp)$. The parameters are obtained from fits of a power law to the energy dependencies of the cross sections in all $t$ bins, as described in the text. The trajectories extracted from a Regge model fit to the \wgp and $t$ dependencies are shown as solid curved lines (non-linear ansatz) and as a dashed line (linear ansatz). In pannel (a), the Donnachie-Landshoff trajectory is also shown.
002722382 8564_ $$82271122$$s6709920$$uhttp://cds.cern.ch/record/2722382/files/scoap3-fulltext.pdf?subformat=pdfa$$xpdfa$$yArticle from SCOAP3
002722382 8564_ $$82336419$$s6709920$$uhttp://cds.cern.ch/record/2722382/files/scoap.pdf$$yArticle from SCOAP3
002722382 960__ $$a13
002722382 980__ $$aARTICLE