Nothing Special   »   [go: up one dir, main page]

CERN Accélérateur de science

002729064 001__ 2729064
002729064 003__ SzGeCERN
002729064 005__ 20221213152004.0
002729064 0247_ $$2DOI$$9Elsevier$$a10.1016/j.nima.2020.164403
002729064 0248_ $$aoai:inspirehep.net:1811865$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002729064 035__ $$9http://old.inspirehep.net/oai2d$$aoai:inspirehep.net:1811865$$d2020-08-27T15:46:47Z$$h2020-08-28T06:30:17Z$$mmarcxml
002729064 035__ $$9Inspire$$a1811865
002729064 041__ $$aeng
002729064 100__ $$aFlores Sanz de Acedo, L$$mleyre.flores.sanz.de.acedo@cern.ch$$uCERN$$uGlasgow U.$$vUniversity of Glasgow, Glasgow, UK
002729064 245__ $$9Elsevier$$aDesign of large scale sensors in 180 nm CMOS process modified for radiation tolerance
002729064 260__ $$c2020
002729064 300__ $$a6 p
002729064 520__ $$9Elsevier$$aThe last couple of years have seen the development of Depleted Monolithic Active Pixel Sensors (DMAPS) fabricated with a process modification to increase the radiation tolerance. Two large scale prototypes, Monopix with a column drain synchronous readout, and MALTA with a novel asynchronous architecture, have been fully tested and characterized both in the laboratory and in test beams. This showed that certain aspects have to be improved such as charge collection after irradiation and the output data rate. Some improvements resulting from extensive TCAD simulations were verified on a small test chip, Mini-MALTA. A detailed cluster analysis, using data from laboratory and test beam studies, at different biases, for high and low thresholds and before and after irradiation is presented, followed by detailed simulations showing that the digital architecture for both chips is capable of dealing with data rates of around 80 MHz/cm2 similar to what it is expected in the outer layer of the ATLAS inner tracker upgrade for the HL-LHC. The data rate capability and output bandwidth are studied using realistic hits generated by the ATLAS detector simulation framework.
002729064 542__ $$f© 2020 Published by Elsevier B.V.
002729064 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002729064 6531_ $$9author$$aCMOS sensors
002729064 6531_ $$9author$$aTracking detectors
002729064 6531_ $$9author$$aMonolithic sensors
002729064 6531_ $$9author$$aMAPS
002729064 6531_ $$9author$$aOn-chip clustering
002729064 690C_ $$aCERN
002729064 700__ $$aAsensi Tortajada, I$$uCERN$$uValencia U.$$vUniversity of Valencia and Consejo Superior de Investigaci Científicas (CSIC), Valencia, Spain
002729064 700__ $$aBarbero, M$$uMarseille, CPPM
002729064 700__ $$aBerdalovic, I$$uZagreb U.
002729064 700__ $$aBespin, C$$uBonn U.
002729064 700__ $$aBortoletto, D$$uOxford U.
002729064 700__ $$aButtar, C$$uGlasgow U.
002729064 700__ $$aCaicedo, I$$uBonn U.
002729064 700__ $$aCardella, R$$uCERN
002729064 700__ $$aDachs, F$$uCERN
002729064 700__ $$aDao, V$$uCERN
002729064 700__ $$aDegerli, Y$$uAIM, Saclay
002729064 700__ $$aDyndal, M$$uCERN
002729064 700__ $$aFreeman, P$$uCERN$$uBirmingham U.$$vUniversity of Birmingham, Birmingham, UK
002729064 700__ $$aHabib, A$$uMarseille, CPPM
002729064 700__ $$aHemperek, T$$uBonn U.
002729064 700__ $$aHirono, T$$uBonn U.
002729064 700__ $$aKugathasan, T$$uCERN
002729064 700__ $$aMoustakas, K$$uBonn U.
002729064 700__ $$aMunker, M$$uCERN
002729064 700__ $$aPernegger, H$$uCERN
002729064 700__ $$aPiro, F$$uCERN
002729064 700__ $$aRiedler, P$$uCERN
002729064 700__ $$aRymaszewski, P$$uBonn U.
002729064 700__ $$aSchioppa, E J$$uCERN
002729064 700__ $$aSchwemling, P$$uAIM, Saclay
002729064 700__ $$aSharma, A$$uCERN$$uOxford U.$$vUniversity of Oxford, Oxford, UK
002729064 700__ $$aArgemi, L  Simon$$uGlasgow U.
002729064 700__ $$aSnoeys, W$$uCERN
002729064 700__ $$aSanchez, C  Solans$$uCERN
002729064 700__ $$aWang, T$$uBonn U.
002729064 700__ $$aWermes, N$$uBonn U.
002729064 773__ $$c164403$$pNucl. Instrum. Methods Phys. Res., A$$v980$$y2020
002729064 960__ $$a13
002729064 962__ $$b2701807$$k164403$$nhiroshima20191214
002729064 980__ $$aARTICLE
002729064 980__ $$aConferencePaper