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The consecutive steps of cascade decay initiated by H → ττ can be useful for the measurement of
Higgs couplings and in particular of the Higgs boson parity. In the previous papers we have found that
multidimensional signatures of the τ� → π�π0ν and τ� → 3π�ν decays can be used to distinguish between
scalar and pseudoscalar Higgs state. The machine learning techniques (ML) of binary classification, offered
break-through opportunities to manage such complex multidimensional signatures. The classification
between two possible CP states: scalar and pseudoscalar, is now extended to the measurement of the
hypothetical mixing angle of Higgs boson parity states. The functional dependence of H → ττ matrix
element on the mixing angle is predicted by theory. The potential to determine preferred mixing angle of
the Higgs boson events sample including τ-decays is studied using deep neural network. The problem is
addressed as classification or regression with the aim to determine the per-event: (a) probability distribution
(spin weight) of the mixing angle; (b) parameters of the functional form of the spin weight; (c) the most
preferred mixing angle. Performance of proposed methods is evaluated and compared.
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I. INTRODUCTION

Machine learning (ML) techniques find increasing num-
ber of applications in high energy physics (HEP) phenom-
enology. Being used at Tevatron and LHC experiments,
they have became an analysis standards. For the recent
reviews see, e.g., [1–3]. The most common approach is via
classification routines, however the impact of regression
methods is not negligible as well. Let us point to two such
examples in LHC experimental analysis. The measurement
of polarization fractions inWW pair production using deep
neural network (DNN) [4] explores both; the classification
[5] and regression [6] approaches. The regression technique
is also used in [7] for parton distribution functions.
In this paper we present how ML techniques can be

helpful to exploit substructure of the hadronically decaying
τ leptons in the measurement of the Higgs boson CP-state
mixing angle in H → ττ decay. This problem has a long,
decades long, history [8,9] and was studied both for
electron-positron [10,11] and for hadron-hadron [12,13]

colliders. Despite these efforts, the Higgs boson CP state
was for the first time measured at LHC, fromH → ττ decay
only recently see preliminary document [14]. Until that
reference the ML has not been even presented for the
analysis design, contrary to the classical experimental
analysis strategies, see, e.g., [15] for High Luminosity
LHC. One of the reasons is that ML adds complexity to the
data analysis. ML solutions need to be investigated
in context of their suitability for work on systematic
ambiguities.
In [14] only some of the τ decay modes are explored. In

particular impact parameter is used for the τ� → π�ν and
τ� → μ�νν̄ and secondary decays of τ → 3πν are only in
part used. This is because complexity of the signatures
and its multi-dimensional nature. In principle all τ decay
modes have the same sensitivity to spin [16] necessary to
constrain Higgs CP state. It requires precise reconstruction
of its all decay products, including neutrinos and knowl-
edge of τ decay matrix elements. In [14] reconstruction
of all decay products separately in τ → 3π decays is not
attempted for example. Relatively simple observable for
H → ττ → νρνρ which can be understood with the help
of single optimal variable [17], for other cases evolve
into multitude of Higgs CP sensitive variables. For the case
of H → τ − τ → ν3π − ν3π that would be 16 variables
even if neutrino momenta were not taken into account.
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That variables cannot be called optimal, but only optimal-
like ones, but may be used in studies of systematic
ambiguities. Already in [18] we have investigated such
variables. See Fig. 3 there.
Obviously ντ escapes direct detection, that is why our

paper documents a step of the path, this time toward the
measurement of the CP mixing angle and not, as in our
previous papers, toward distinguishing two hypotheses
of the parity states. We include neutrino momenta, as if
they were well accessible, in the feature list used to evaluate
options of ML techniques in CP mixing angle measure-
ment. This is obviously an idealistic case, but very useful
for exploring potential of the ML techniques. We do not
address issues of systematic ambiguities due to reconstruc-
tion of neutrino momenta, but we rely on Ref. [19] which
was dedicated to the discussion on different approximations
and their impact on the ML performance in discriminating
between two CP mixing hypotheses. Those results indicate
that approximate knowledge on the neutrino momenta can
be used for that purpose too. In practice, neutrino momenta
need to be reconstructed from energy-momentum conser-
vation of the whole event (in pp case transverse compo-
nents only) and of the τ-lepton and Higgs boson mass
constraints. Even that turns out not to be sufficient. In
Ref. [19], devoted to distinction of Higgs CP parity states,
we have exploited fact that neutrinos orientation angles can
be reconstructed with the help of τ decay vertex position.
Even more promising, the τ lepton direction can be
reconstructed from τ decay vertex position and ansatz on
τ lepton time of flight and then neutrinos momenta can be
inferred. The later case turned out to be the best performing
of all studied approximations on ντ kinematics.
Identification of neutrinos orientation angles is helpful to

develop intuition on the observable structure, also as it is
the most difficult to grab, to discuss systematic in con-
tributions from τ → 2π and τ → 3π decay modes. Such
studies are of a value to cross check ML results. They may
be useful in evaluation of systematic ambiguities, it is more
suitable to evaluate systematic ambiguities for one dimen-
sional distributions. Note that in Ref. [14] there were no
attempts to use τ decay position vertices in case of τ → 2π
and τ → 3π decay modes. The identification and studies of
one dimensional distributions important for sensitivity, may
be useful in evaluation of systematic ambiguities, it is more
standard to evaluate systematic ambiguities for one dimen-
sional distributions. It was a necessary preliminary step
for our present study. Obviously they will need, as it was
mentioned in Ref. [19], to be repeated with detailed
detector response. Not only for momenta smearing, but
also for background. The second point will become more
important once statistics will grow and systematic errors
will get of more concern, than in prototype studies.
On the other hand, theoretical basis for the measurement

is simple, the cross section dependence on the parity
mixing angle has the form of the first order single angle

trigonometric polynomial. It can be implemented in the
Monte Carlo simulations as per event spin weight wt, see
[20] for more details. In [18,19] we have performed
analysis for the three channels of the τ lepton-pair decays,
respectively ρ�ντρ∓ντ, a�1 ντρ∓ντ, and a�1 ντa

∓
1 ντ but we

limited ourselves to the scalar-pseudoscalar classification
case. In the scope of our interest was the kinematics of
outgoing decay products of the τ leptons and geometry of
decay vertices.
With these concerns in mind, in the following we extend

our previous work on the physics of the Higgs CP parity
scalar/pseudoscalar classification, to a measurement of
scalar-pseudoscalar mixing angle ϕCP of the Hττ coupling.
We do not intend to investigate possible extensions the
Standard Model and avoid discussion on the motivations.
We constrain ourselves to the measurement of the coupling
and the simplest channel of H → τþτ− → ρþντρ−ντ →
πþπ0ντπ−π0ντ decay. and focus on comparative studies
for potential of different ML techniques.
Possible solutions are analyzed with deep neural net-

work (DNN) algorithms [4] implemented in Tensorflow
environment [21] which we have previously found working
well for the binary classification [18,19] between scalar
or pseudoscalar Higgs boson variants (which correspond
to ϕCP ¼ 0 and ϕCP ¼ π=2). Our goals for the DNN
algorithms are to determine per event:

(i) Spin weight as a function of the mixing angle.
(ii) Decay configuration dependent coefficients, for

the known functional form of the spin weight
distribution.

(iii) The most preferred mixing angle, i.e., where the spin
weight is at a maximum.

These goals are complementary or even to large extent
redundant, e.g., with functional form of the spin weight we
can easily find the mixing angle at which it has a maximum.
But the precision of predicting that value would not be
necessarily the same for different methods. All three cases
are studied as classification and as regression problems. By
this we mean, that the underlying DNN cost functions is
either designed for classification or regression tasks. We
show quantitative comparison of the performance of DNN
learning on the distributions which are relevant for physics
analyses and then draw some conclusions.
Paper is organized as follows. In Sec. II we describe a

basic phenomenology of the problem. Properties of the
matrix elements and distributions at the level of final,
measurable quantities as well as unmeasurable quantities
are presented. In Sec. III we review lists of features
(variables) used as an input to DNN and present samples
prepared for analyses. As a straightforward extension of
[18,19], still using binary classification, we analyze pos-
sibility to distinguish between scalar and arbitrary mix
of scalar/pseudoscalar states. This study is covered in
Sec. IV. The multi-class classification approach is covered
in Sec. V. The regression approach is discussed in Sec. VI.
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The comparison of the classification and regression is
covered in Sec. VII. Observations relevant for the future
studies of systematic errors are addressed. The summary,
Sec. VIII, closes the paper.
In Appendix more technical details on the DNN archi-

tecture are given together with arguments supporting such a
choice. In addition, we describe briefly the data prepro-
cessing chain.

II. PHYSICS CONTENT OF THE PROBLEM

The most general Higgs boson Yukawa coupling to
τ lepton pair, expressed with the help of the scalar–
pseudoscalar parity mixing angle ϕCP reads as

LY ¼ Nτ̄hðcosϕCP þ i sinϕCPγ5Þτ; ð1Þ

where N denotes normalization, h Higgs field and τ̄, τ
spinors of the τþ and τ−. As we will see later, this simple
analytic form translates itself into useful properties of
observable distributions convenient for our goal, determi-
nation of the ϕCP. Recall of the definitions is thus
justifiable, and helpful to systematize properties and
correlations of the observable quantities (features).
The matrix element squared for the scalar/pseudoscalar/

mix parity Higgs, with decay into τþτ− pairs can be
expressed as

jMj2 ∼ 1þ hiþhj−Ri;j; i; j ¼ fx; y; zg ð2Þ

where h� denote polarimetric vectors of τ decays (solely
defined by τ decay matrix elements) and Ri;j density matrix
of the τ lepton pair spin state. In Ref. [22] details of the
frames used for Ri;j and h� definition are given. The
corresponding CP sensitive spin weight wt has the form:

wt ¼ 1 − hzþhz− þ h⊥þRð2ϕCPÞh⊥− : ð3Þ

The formula is valid for h� defined in τ� rest-frames, hz

stands for longitudinal and h⊥ for transverse components
of h. The Rð2ϕCPÞ denotes the 2ϕCP angle rotation
matrix around the z direction: Rxx ¼ Ryy ¼ cos 2ϕCP,
Rxy ¼ −Ryx ¼ sin 2ϕCP. The τ� decay polarimetric vectors
hiþ, hj−, in the simplest case of τ� → π�π0ν decay, read

hi� ¼ N ð2ðq · pνÞqi − q2pi
νÞ; ð4Þ

where τ decay products π�, π0 and ντ 4-momenta are
denoted respectively as pπ� , pπ0 ; pν and q ¼ pπ� − pπ0 .
Obviously, complete CP sensitivity can be extracted only
if pν is known (for τ� → π�π�π∓ν formula is longer,
dependence on modeling of the decay appear too [23], but
is of no principle differences).
Note that the spin weight wt is a simple first order

trigonometric polynomial in a 2ϕCP angle. This observation

is valid for all τ decay channels. For the clarity of the
discussion on the DNN results, we introduce αCP ¼ 2ϕCP,
which spans over (0, 2π) range. The αCP ¼ 0; 2π corre-
sponds to scalar state, the αCP ¼ π to pseudoscalar one.
Spin weight can be expressed as

wt ¼ C0 þ C1 · cosðαCPÞ þ C2 · sinðαCPÞ; ð5Þ

where

C0 ¼ 1 − hzþhz−;

C1 ¼ −hxþhx− þ hyþhy−;

C2 ¼ −hxþhy− − hyþhx−; ð6Þ

depend on the τ decays only.
Distribution of theC0,C1,C2 coefficients, for the sample

of H → ττ events used for our numerical results is shown
in Fig. 1. The C0 spans (0, 2) range, while C1 and C2 of
ð−1; 1Þ range have a similar shape, quite different than the
one of C0.
The amplitude of the wt as function of αCP depends on

the multiplication of the length of the transverse compo-
nents of the polarimetric vectors. The longitudinal compo-
nent hzþhz− is defining shift with respect to zero of the wt
mean value over a full (0, 2π) range. The maximum of the
wt distribution is reached for αCP ¼ ∡ðhTþ; hT−Þ, the open-
ing angle of transverse components of the polarimetric
vectors.
The spin weight of formula (5) can be used to introduce

transverse spin effects into the event sample when for the
generation transverse spin effects were not taken into
account at all. The above statement is true, independently
if longitudinal spin effects were included and which τ decay
channels complete cascade of H → ττ decay. The shape of
weight dependence on the Higgs coupling to τ parity
mixing angle is preserved.
In Fig. 2 we show distribution of spin weight wt for five

example H → ττ events collected in Table I. For each
event, depending on the polarimetric vectors, single value
of αCP is preferred (by the largest weight). For a physics
model with αCP the sample will be more abundantly
populated with events for which the angle between polari-
metric vectors, ∡ðhTþ; hT−Þ, is close to αCP. We show
distributions when complete polarimetric vectors are used
for spin weight wt and when only hadronic parts of
polarimetric vectors are used. The second case is indicating
easier to attain sensitivity part of observables. The αCP at
which spin weight has its maximum is then a bit shifted.
Table I specifies values of the polarimetric vectors and the
resulting coefficients Ci calculated from formulas (6) and
for events of Fig. 2. It also explicitly gives ∡ðhTþ; hT−Þ
calculated from complete polarimetric vectors and (in
brackets) from their hadronic parts only.
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III. MONTE CARLO SAMPLES
AND FEATURE LISTS

For compatibility with our previous publications
[18,19], we use the same generated event samples, namely
Monte Carlo events of the Standard Model, 125 GeV Higgs
boson, produced in pp collision at 13 TeV center-of-mass
energy, generated with PYTHIA 8.2 [24] and with spin
correlations introduced with TAUSPINNER [20] package.
For τ lepton decays we use TAUOLAPP library [25]. All spin
and parity effects are implemented with the help of weight
wt [26,27]. The sample is generated without spin effects,
and the spin weights wti for few different values of CP
mixing angle αCPi are stored. Spin weight, formula (3), is

calculated using Ri;j density matrix and polarimetric
vectors h�.
Later, for a given event it is possible to calculate

coefficients C0, C1, C2, using three αCP and linear
equation (5). Figure 3 shows the cross-check how well
this procedure works. The functional form (orange line) and
evaluated spin weights (blue dots) for two example events
are shown. The C0, C1, C2 coefficients for the functional
form are calculated solving Eq. (5) for wt stored in the
generated event samples at three values of αCP.
In this paper we present results for the case when both τ’s

decay τ� → ρ�ντ and about 5 × 106 simulated Higgs
events are used. To partly emulate detector conditions, a
minimal set of cuts is used. We require that the transverse
momenta of the visible decay products combined, for
each τ, are larger than 20 GeV. It is also required that
the transverse momentum of each π� is larger than 1 GeV.
In experimental conditions complex cuts will be applied.
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FIG. 2. The spin weight wt (top plot) and only its αCP

dependent component (bottom plot) for five H → ττ events
of Table I. Note the vertical scale change between top and
bottom plots.

FIG. 1. Distributions of the formula (5) C0, C1, C2 coefficients,
for the H → ττ events sample.
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Our largely optimistic ones can be used in feasibility
estimations though.
The emphasis of the paper is to explore different ML

approaches to the problem, and we discuss only the case of
the Variant-All feature list from paper [19]. It contains
the four-momenta of all decay products of τ leptons defined
in the rest frame of intermediate resonance pairs, and with
sum of hadronic decay products aligned with z-axis are.
This represents an ideal benchmark case scenario, for
performance monitoring.

IV. BINARY CLASSIFICATION

The use of the DNN for binary classification have been
discussed in our previous papers [18,19]. The focus was on
discriminating between CP-scalar (H0 hypothesis) and
CP-pseudoscalar (H1 hypothesis).
Now we apply the same procedure but with alternative

hypothesis (HαCP) representing the scalar-pseudoscalar
mixed state of mixing parameter αCP. To quantify perfor-
mance for Higgs CP state classification the weighted area
under curve (AUC) [28,29] is used again. For each
simulated event we know also Bayes optimal probability
that it is sampled from H0 or HαCP hypothesis, see more
detailed description in Appendix. This forms the so called
oracle predictions, i.e., ultimate discrimination for this
problem. We calculate oracle predictions and evaluate the
results of DNN. This is a straightforward extension of
the method used in [18,19]. That is why, simple attempt on
future discussion of systematic error may follow that
suggested in [19]: variations within expected range of
detector response can be easily introduced and biases
studied.
The oracle predictions for discriminating between H0

and HαCP hypotheses is increasing with αCP and reach
AUC ¼ 0.78 for αCP ¼ π. The performance of DNN is
following similar pattern, reaching maximum at αCP ¼ π

TABLE I. Polarimetric vectors, resulting Ci coefficients of formulas (6) and angle ∡ðhTþ; hT−Þ between transverse components
of polarimetic vectors for five example events of H → τþτ−; τ� → ρ�ντ. In brackets, angle of only hadronic part of polarimetric vector
is given.

Events Polarimetric vectors jhTþjjhT−j C0 C1 C2

∡ðhTþ; hT−Þ [rad]
(hadronic part only)

Event 1 hx;y;zþ ¼ ð0.7547 − 0.2232 − 0.6167Þ 0.7519 0.8179 0.7517 0.0183 6.2586
hx;y;z− ¼ ð−0.9093 − 0.2931 − 0.2953Þ (6.1738)

Event 2 hx;y;zþ ¼ ð0.86170.04850.5050Þ 0.8535 1.0751 0.5518 −0.6511 5.4134
hx;y;z− ¼ ð−0.59590.7892 − 0.1487Þ (5.6307)

Event 3 hx;y;zþ ¼ ð0.34020.9377 − 0.0682Þ 0.8339 0.9626 −0.1619 −0.8180 5.2130
hx;y;z− ¼ ð0.82620.1272 − 0.5487Þ (4.1923)

Event 4 hx;y;zþ ¼ ð−0.69640.6204 − 0.3605Þ 0.4138 0.6769 −0.0919 −0.4035 4.4883
hx;y;z− ¼ ð0.2142 − 0.3885 − 0.8962Þ (4.5127)

Event 5 hx;y;zþ ¼ ð0.1115 − 0.4989 − 0.8595Þ 0.1201 1.8354 0.0317 −0.1158 4.9793
hx;y;z− ¼ ð−0.2347 − 0.011080.9720Þ (5.4300)

FIG. 3. Cross-check distributions of the spin weight wt calcu-
lated at generation (blue points) and from functional form of
Eq. (5) (orange line), as a function of CP mixing parameter αCP.
For top and bottom plots two different example events were used.
Coefficients Ci are reconstructed from Eq. (5) and wt is taken at
three different αCP.
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(pure pseudoscalar case). It decreases for smaller or larger
αCP, where admixture of the scalar component appear. In
case of complete feature list, it is almost achieving the
performance of oracle predictions. In Fig. 4, the AUC
values are plotted for full αCP range. The distributions are
(almost) symmetric around αCP ¼ π. Note that the func-
tional form of spin weight wt, Eq. (5), encapsulating
sensitivity to αCP is not symmetric, see Fig. 3. In
Table II we show numerical results for few αCP.

V. MULTICLASS CLASSIFICATION

The binary classification discussed in the previous
section is easy to generalize to the multiclass case. The
DNN is learning to provide per-event probabilities to
associate with each class. Single class represents either
discrete point or a specific range in 1-dimensional param-
eter space. We explore three approaches, each providing
complementary physics information, but all allowing to
quantify, on the per-event basis, which is the preferred
mixing angle of the studied Higgs sample:

(i) The DNN classifier is learning per-event spin
weight as a function of mixing angle αCP. The
range of mixing angle ð0; 2πÞ is discretized into
equally spaced points called classes. This approach
is described in Sec. VA, and used for the figures
labeled with: Classification:wt.

(ii) The DNN classifier is learning per-event coeffi-
cients C0, C1, C2. The allowed range of coefficients
is split into several equal size ranges (classes), single
class represents a range for a coefficient value.
The DNN is trained for each coefficient separately.
This approach is described in Sec. V B and used for
the figures labeled with: Classification: C0,
C1, C2.

(iii) The DNN classifier is learning per-event most
probable mixing angle αCPmax, i.e., value of αCP at
which spin weight is maximal. The range of mixing
angle ð0; 2πÞ is split into several equally spaced
points (classes). This approach is described in
Sec. V C and used for the figures labeled with:
Classification: αCPmax.

We monitor performance of the learning process in a
standard manner, with the loss function on the training and
validation sets. Respective distributions are shown in
Fig. 20 of Appendix. Note that the loss function, the
tf.nn.softmax_cross_entropy_with_logits
of the Tensorflow, allows to predict probabilities of the
class labels, and not the actual value of the observable at a
given class. In case of predicting spin weight distribution,
only the normalized to unity shape is predicted. In case
of predicting values of Ci coefficients or αCPmax, vector of
probabilities is returned, and the one-hot encoding trans-
formation selecting most probable class is then applied to
retrieve actual predicted value of the parameter.

A. Learning spin weight wt

The DNN classifier is trained with per-event feature list
and as a label normalized to unity Nclass-dimensional vector

of spin weights [30] wtnormi ¼ wti=
Pi¼Nclass

i¼1 wti is given,
each component of wtnormðαCPÞ vector corresponds to the
ith discrete value of mixing angle αCPi . Nclass denotes
number of points to which range ð0; 2πÞ was discretized.
The number of classes is kept odd, to assure that
αCP ¼ 0; π; 2π, corresponding respectively to scalar/
pseudoscalar/scalar cases, are always represented as a
separate class. Training of DNN is performed with
Nclass varying from 3 to 51. This is to understand the
trade-off between the better approximation given by high
number of classes and smaller complexity of the low-class
system.
We quantify the DNN performance for classification

problem in the context of physics relevant criteria. The first
question is how well DNN is able to reproduce per-event
shape of the spin weight wtnorm. For two example events,

FIG. 4. The AUC score for binary classification between H0

and HαCP hypotheses and corresponding oracle predictions.

TABLE II. The AUC scores for discriminating between Higgs
CP states. Results from oracle predictions and binary classifi-
cation for discriminating betweenH0 hypothesis that Higgs CP is
a scalar (CP-mixing angle αCP ¼ 0.0 or 2π) andHαCP hypothesis,
when Higgs CP is of a parity mixed state, are shown. CP-mixing
angle αCP ¼ π corresponds to the pseudoscalar case. Note that for
small αCP classification strength grows with its square.

CP-mixing angle αCP

(units of π)
Oracle

predictions
Binary

classification

0.2 0.528 0.525
0.4 0.605 0.595
0.6 0.699 0.684
0.8 0.775 0.756
1.0 0.804 0.784
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true and predicted spin weight wtnorm distribution with
Nclass ¼ 21 is shown in Fig. 5 as a function of either
continuous mixing parameter αCPi or class index i (repre-
senting discretized mixing parameter αCPi ). Blue line
denote true weights while orange steps denote weights
predicted by DNN classifier. In overall, predicted weights
follow smoothly true shape of linear cosðαCPÞ and sinðαCPÞ
combination. This is encouraging, because the loss function
is not correlating explicitly nearby classes. The DNN is
discovering this pattern in the process of learning.
To quantify those observations, performance of DNN

is monitored on the statistical basis with l2 norm. The l2
norm is defined as a square root of the integral of squared
difference between predicted pk and true wtnormk over the
whole interval ð0; 2πÞ. It then averaged over the number
of events Nevt. Although pk and wtnormk are functions of
αCP, we shall usually skip the argument for the notation
brevity.

l2 ¼
XNevt

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
2π
0 ðwtnormk ðαCPÞ − pkðαCPÞÞ2dαCP

q

Nevt
: ð7Þ

The pk corresponds to the kth event and is represented
as a step function, with step levels given by a Nclass-
dimensional output of DNN. For true weights, represented
as continuous function (5), we scale them in such a way
that

R
2π
0 wtnormdαCP ¼ 1, to enable the comparison.

Distribution of l2 norm is shown in Fig. 6, as a function
of class multiplicity Nclass. With increasing number of
classes, l2 decreases. The slope remains very steep up to
Nclass ¼ 21, and seems to flatten around Nclass ¼ 51. These
two values of Nclass we have chosen as representative for
the rest of the paper.
From physics perspectives, learning the shape of wt

distribution as function of αCP, is equivalent to learning
components of the polarimetric vectors. But, because only
the shape, not the normalization, is available the Ci
coefficients cannot be fully retrieved from formula (5). It
is not necessary the aim anyway. The physics interest is
more to learn αCP which is preferred by events of the
analyzed sample, i.e., value at which wt distribution has its
maximum. This corresponds to determining CP mixing
angle of the analyzed sample.
The second criterium is the difference between most

probable predicted class and most probable true class,
denoted as Δclass. When calculating difference between
class indices, periodicity of the functional form (5) is taken
into account. Class indices represent discrete values of αCP,
in range ð0; 2πÞ. The distance between the first and the
last class is zero. We take the distance which corresponds to
the smaller angle difference and we take the sign according
to clockwise orientation vs class index at which true wt has
its maximum.

FIG. 5. Normalized to probability spin weight wtnorm, predicted
(orange steps) and true (blue line), as a function of αCPi for two
example events (top and bottom plots). DNN was trained with
Nclass ¼ 21 spanning range ð0; 2πÞ.

FIG. 6. The l2 norm, quantifying difference between true
and predicted spin weight wtnorm, as a function of class
multiplicity Nclass.
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Let idpmax denote the index of most probable predicted
class, idcmax be index of true most probable class. The
distance jΔclassj is defined as:

jΔclassj ¼ minðjidpmax − idcmaxj; ðNclass − 1Þ
− jðidpmax − idcmaxÞjÞ; ð8Þ

and the sign is attributed

Δclass ¼ signðidpmax − idcmaxÞjΔclassj; ð9Þ

if ðjidpmax− idcmaxjÞ< ððNclass−1Þ− jðidpmax− idcmaxÞjÞ,
or

Δclass ¼ signðidcmax − idpmaxÞjΔclassj; ð10Þ

otherwise.
In Fig. 7 distributions of Δclass for Nclass ¼ 21 (top) and

51 (bottom) are shown. The shapes are Gaussian-like and

centered around zero. The mean hΔclassi ¼ −0.006 [rad] in
both cases and this we can interpret as the bias of the
method. The standard deviation of per-event distribution
is σΔclass

¼ 0.165 ½rad� for Nclass ¼ 21 and σΔclass
¼

0.126 ½rad� for Nclass ¼ 51. As we can see, the performance
has not improved significantly with Nclass exceeding 21.
The DNN classifier which is predicting normalized

spin weight wtnorm, provides enough information to
identify the most probable mixing angle αCPmax with high
precision. The information is not sufficient though to
reconstruct complete set of Ci coefficients and the polari-
metric vectors.

B. Learning C0, C1, C2 coefficients

The second approach is to learn formula (5) coefficients
C0, C1, C2 for the spin weight wt. They can be then used to
predict not only normalized wtnorm, but also original wt.
Coefficients C0, C1, C2 represent physical observables,
products of longitudinal and transverse components of
polarimetric vectors, as shown in formulas (6).
The classification technique using DNN is configured

to learn each of the Ci with separate training. The allowed
range is well known, the C0 spans the range (0.0, 2.0) and
C1, C2 the range ð−1.0; 1.0Þ, see Fig. 1. The allowed
range is binned into Nclass and as a label, the Nclass-
dimensional vector with one-hot encoded value of the Ci
parameter is associated with each event. Therefore in this
case, a single class represents range of the Ci coefficient.
During training, the DNN is learning per-event associ-
ation between feature list and the class labels. The output
is a probability Nclass-dimensional vector, which is then
converted to one-hot encoded representation, i.e., the
most probable class is chosen as a predicted value of the
Ci coefficient.
Distributions of the difference between true and pre-

dicted Ci coefficients are shown in Fig. 8. In that case, as
there is no periodicity involved, Δclass ¼ idp − idc where
idp, idc denote respectively true and predicted class index.
Mean of ΔCi is close to zero and standard deviation is of
0.038–0.051, which is less than 5% of the range. Precision
with which Ci coefficients are predicted is clearly limited
by the Nclass.
We use the true and predicted C0, C1, C2 coefficients

to calculate wt distribution of (5). It is then discretized
with Nclass points (the Nclass could be different than the
one used for learning coefficients), and the αCPmax is
determined from the class of maximal weight. The
difference between true and predicted αCPmax is shown in
Fig. 9 for Nclass ¼ 21 and 51. The Gaussian-like shape
of those distributions, centered around zero, clearly
demonstrated that method works as expected. The mean
and standard deviation of the distributions are close to
those obtained with Classification:wt approach,
of Fig. 7.

FIG. 7. Distribution of Δmax
class between predicted most probable

class and true most probable class for Nclass ¼ 21 (top) and 51
(bottom). The mean and std are calculated in units of class
index [idx] or units of radians [rad].
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Finally, as sanity check we have compared the true
distributions of C0, C1, C2 with the predicted ones. As we
can see in Fig. 10, both distributions match very well for
all Ci.

C. Learning the αCP
max

The third approach is to directly learn per-event most
preferred mixing angle, αCPmax. The allowed range (0, 2π) is
again binned into Nclass classes, where single bin represents
discrete αCP. For training, for every event we take the one-
hot encoded vector of Nclass-dimension as a label. TheDNN
is returning Nclass-dimensional vector of probabilities, which

is then transformed into a single number, that is the class of
the highest probability αCPmax. With this approach, neither spin
weight nor Ci coefficients are predicted.
As the event sample is generated without any CP

mixture favored, the distribution of the αCPmax is expected
to be uniform, and such sanity check is demonstrated in the
top plot of Fig. 11. The DNN is well reproducing this
behavior. The ΔαCPmax, the difference between true and
predicted value of the αCPmax is shown in the bottom plot
of Fig. 11. In the case of Nclass ¼ 21, it has a Gaussian-like
shape with the mean hΔαCPmaxi ¼ 0.003� 0.001 ½rad� and
standard deviation 0.139 [rad]. Results are again compa-
rable with the ones obtained with the previously discussed
approaches.

VI. REGRESSION

The ML regression is not so commonly used in the high
energy physics analyses. The main feature is, that contrary

FIG. 8. Difference between true and predicted coefficients C0,
C1, C2 of formula (5). For DNN training the granularity of
Nclass ¼ 21 was used.

FIG. 9. The difference between true and predicted most
probable mixing angle αCPmax, calculated using formula (5) and
coefficients C0, C1, C2 learned with classification method. The
granularity of αCPmax, Nclass ¼ 21 and 51 was used respectively for
top and bottom plot.
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to the classification case, we get a continuous parameter
(or set of parameters) as a DNN output. We explore three
approaches, defined similarly as in Sec. V

(i) TheDNN is learning to predict per-event spin weight
as a function of mixing angle αCP. The range of
mixing angle ð0; 2πÞ is split into discrete points of
αCP at which value of spin weight is learned. This
approach is described in Sec. VI A and used for the
figures labeled with: Regression:wt.

(ii) The DNN is learning to predict per-event value
of the coefficients C0, C1, C2 of the functional
form (5). The DNN is trained for all coefficients

simultaneously. This approach is described in
Sec. VI B and used for the figures labeled with:
Regression:C0, C1, C2.

(iii) The DNN is learning to predict per-event most
probable mixing angle αCPmax, i.e., where αCP spin
weight has maximum. This approach is described in
Sec. VI C and used for the figures labeled with:
Regression: αCPmax.

We continue with the TENSORFLOW package, but now
with tf.losses.mean_squared_error function as a loss in
the training procedure of Secs. VI A, VI B and self-defined
function in the training procedure of Sec. VI C. Mentioned
self-defined function is discussed in the Appendix.

A. Learning spin weight wt

Similarly as in the classification case, the DNN
regression is trained on an input information consisting
of per-event feature list. As a training output we provide a
vector of the spin weight wti for the discrete values of
αCP. Training is performed for different granularities of

FIG. 10. Distributions of true and predicted coefficients
C0, C1, C2 of formula (5). For DNN training the granularity
of Nclass ¼ 21 was used.

FIG. 11. Distributions (top plot) of true and predicted most
preferred mixing angle αCP. The distribution of per-event differ-
ence of the two is shown on the bottom plot. The granularity of
Nclass ¼ 21 was used for training DNN.
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αCP discretization, to monitor performance sensitivity.
Again in this case we use odd number of equally spaced
points αCPi , so the αCP ¼ 0; π; 2π coincide with a single
point. It is worth noting, that in case of regression, both
shape and normalization of the wt are learned by
the DNN.
For two example events in Fig. 12, true continuous

spin weight wt distribution as well as step-function pre-
diction is shown as a function of mixing parameter αCP.
In overall, predicted weights follow smoothly expected
shape of linear cosðαCPÞ and sinðαCPÞ combination, even
if no attempt to regularize for such smooth behavior
was made.
Distributions of l2 norm, defined in the same way as in

the classification case, as a function of Nclass (granularity
for discretising αCP) is shown in Fig. 13. For more
compatibility with the classification case of Sec. VA we

present results for original wt, as well as normalized to
unity wtnorm. The results are comparable, with a visible
flattening of l2 for higher values of Nclass.
In Fig. 14 distributions of Δclass for Nclass ¼ 21 and 51

used to train DNN regression are respectively shown.
The shape is Gaussian-like and as expected centered around
Δclass ¼ 0.

B. Learning C0, C1, C2 coefficients

Regression approach allows us to predict C0, C1, C2

coefficients directly, without any need of discretization.
The differences between true and predicted ones are
shown in Fig. 15. On average, all three coefficients are
predicted reasonably well. Consistent are the statistical
summaries of ΔCi: means remain in the range�0.004 and
standard deviations in range (0.029–0.042). Coefficients
Ci are then used to calculate predicted spin weight wt of
formula (5).
We have investigated also, how well predicted C0, C1,

C2 can be used to estimate the most preferred mixing
angle, αCPmax. For consistency, we evaluate it using the

FIG. 12. Example plots with DNN regression results: the spin
weight wt, predicted (orange steps) and true (blue line), as a
function of αCPi for two example events (top and bottom plots).
DNN was trained with Nclass ¼ 51 spanning range ð0; 2πÞ.

FIG. 13. The l2 norm for predicted spin weight wt (top) and
wtnorm (bottom) as a function of Nclass.
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same criteria as for classification approaches. This is
achieved by using coefficients C0, C1, C2 to calculate
spin weight wt, and then turning it into discrete pre-
dictions for wt and wtnorm in the Nclass points. As in Sec. V
for classification approach, we use Δclass, defined by
formulas (8)–(10).
The distributions of the true and predicted most probable

class, αCPmax and their difference are shown in Fig. 16 for
the Nclass ¼ 51. We expect the distributions to be flat as
sample was generated without any polarization correlation
(carrier of CP effects) included, and this sanity check
seems to be positive. The difference between true and
predicted αCPmax forms a narrow peak with the mean value
hΔαCPmaxi ¼ −0.001� 0.001 ½rad� and standard deviation
0.138 [rad].
Finally, as a sanity check, we have compared the

true overall distribution of C0, C1, C2 with the predicted
one. As we can see in Fig. 17, both distributions match
very well.

C. Learning the αCP
max

As was in the previous subsection, the implementation of
the regression method allows a direct, nondiscrete estima-
tion of continuous parameters. This is also desired with the
most preferred mixing angle αCPmax.
The distributions of the true and predicted most probable

class, αCPmax and their difference are shown in Fig. 18 for the
Nclass ¼ 51. We expect the distributions to be flat as sample
was generated without any polarization correlation (carrier
of CP effects) included, and this sanity check seems to
be positive. As the used event sample is generated without
any polarization, the distribution of the αCPmax is expected to
be uniform, see the top plot of Fig. 18. The DNN is
reproducing this feature well. The difference between true

FIG. 14. Distribution of Δclass between most probable predicted
class and true most probable class. The Nclass ¼ 21 and 51 are
used for respectively top and bottom plot. The mean and std
standard deviation are calculated in units of class index [idx] and
units of radians [rad].

FIG. 15. Difference between true and predicted coefficients C0,
C1, C2 of formula (5).
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and predicted αCPmax forms a narrow peak with the mean
hΔαCPmaxi ¼ 0.020� 0.003 ½rad� and standard deviation
0.458 [rad].

VII. CLASSIFICATION OR REGRESSION:
COMPARISON AND COMPLEMENTARITY

In this section we shortly compare classification
and regression approaches. In Table III we collect the
mean and standard deviation for difference between true
and predicted with classification and regression methods
Ci. There is no clear winner, both methods give predictions
of similar precision, with only C0 being better predicted
with regression.
In Table IV we compare the difference between true and

predicted αCPmax obtained with different methods. With the
classification method comparable performance is achieved

when learning spin weight wt, coefficients C0, C1, C2 or
directly αCPmax. For the regression method learning directly
αCPmax is significantly worse performing. Otherwise, there is
no clear winner between different methods.
In Ref. [18] we have compared performance of the NN

method with the one which can be deduced from the set
of one dimensional optimal-variable-like distributions.
Assuming partial correlations the classification strength
was comparable, somewhat smaller though. This conclu-
sion holds now as well. Note that optimal-like subvariables
may turn to be useful for evaluation of systematic ambi-
guities. For one dimensional distributions established
strategies are ready to be used.

FIG. 16. Distributions (top plot) of true (black dashed line) and
predicted (orange line) most preferred mixing angle αCP. The
prediction was based on coefficients C0, C1, C2. The distribution
of per-event difference of the two is shown on the bottom plot.

FIG. 17. Distributions of true and predicted coefficients C0, C1,
C2 of formula (5).
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VIII. SUMMARY

We have performed a proof-of-concept for the DNN
methods in the measurement of Higgs boson H → ττCP
mixing angle dependent coupling. That extends work of
Refs. [18,19] of classification between scalar and pseudo-
scalar Higgs CP state. Several solutions of classification
and of regression types were prepared and numerical results

were collected. For the measurement we have studied
approaches where; (i) spin weights, (ii) coefficients for
the functional form of the spin weight (iii) directly the
mixing angle at which the weight has its maximum, were
targeted. In cases (i) and (ii) the classification approach
seemed comparable to the regression, but the comparisons
relied on the discretized and normalized quantities due to
classification limitations. The regression approach seems
more natural for continuous observables and does not
have such limitations. On the other hand, regression
approach has performed much worse in the case of direct
αCPmax prediction.
For the feature list we have chosen idealistic case,

assuming that complete set of τ decay products
4-momenta is known, including challenging to re-
construct neutrinos. We have exploited then the τ → ρν
decay mode. The results are encouraging, the under-
standing of environment for future discussion of meas-
urement ambiguities was not compromised with respect to
what was achieved in previous publications for scalar/
pseudoscalar classifications.
The mean value of the preferred mixing angle αCPmax can

be constrained by the trained DNN with per-event reso-
lution better than 0.15 [rad] using a classification approach.
Both classification and regression approaches allow to
learn spin weight with uncertainties (average l2 norm)
better than 15%. Both approaches allow also to learn
coefficients C0, C1, C2 of the functional spin weight form.
The coefficients are directly related to the polarimetric
vectors of decaying τ� leptons. This provides interesting
possibility for the future studies of experimental ambigu-
ities with samples of the Z → ττ decays, much more
abundant and available for the LHC measurements.
Departure from SM predictions on Zττ coupling can reveal
itself in the observables build from polarimetric vectors of
decaying τ� leptons too.
We plan, following [18,19], to extend our studies to more

realistic feature lists and other decay modes. Already now,
the variety of ML methods for the determination of most
preferred CP state mixing angle, demonstrated potential

FIG. 18. Distributions (top plot) of true (black dashed line) and
predicted (orange line) most preferred mixing angle αCP. The
distribution of per-event difference of the two is shown on the
bottom plot.

TABLE III. The mean and standard deviations of ΔCi, the
difference between generated and predicted Ci, obtained from
DNN with classification and regression methods for Nclass ¼ 51.

Coefficients Classification Regression

ΔC0 mean ¼ 0.000 mean ¼ 0.004
std ¼ 0.038 std ¼ 0.029

ΔC1 mean ¼ 0.001 mean ¼ −0.004
std ¼ 0.051 std ¼ 0.042

ΔC2 mean ¼ −0.003 mean ¼ −0.04
std ¼ 0.051 std ¼ 0.042

TABLE IV. The mean and standard deviation of ΔαCPmax, the
difference between true and predicted αCPmax, obtained from DNN
with classification and regression methods.

Method Classification Regression

Using wt mean ¼ −0.006� 0.001
½rad�

mean ¼ 0.000� 0.001
½rad�

std ¼ 0.126 ½rad� std ¼ 0.137 ½rad�
Using C0,
C1, C2

mean ¼ 0.000� 0.001
½rad�

mean ¼ −0.001� 0.001
½rad�

std ¼ 0.153 ½rad� std ¼ 0.138 ½rad�
Direct mean ¼ −0.003 ½rad� mean ¼ 0.020 ½rad�

std ¼ 0.139 ½rad� std ¼ 0.458 ½rad�
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and robustness for future experimental analyses and mea-
surements with the LHC data.
While analyzing the realistic feature list, one can, in

parallel, construct one dimensional distributions which
feature partial sensitivity to CP. This can be used to
monitor, which improvements are of importance, and to
understand why it is the case. Also, by hand combination of
such partial significance can be helpful to understand
performance of ML solution, even if important correlations
between distributions are then ignored. On the other hand,
it can help to understand consequences of background
contaminations, which may mimic the signatures. In
Ref. [27] we have discussed potential consequences of
such contaminations, originating from Drell-Yan back-
ground, but to exhaust, more complete studies with detector
simulation details are to be applied, and not only to
optimal-like distributions. In that paper, we have concen-
trated on a tool, potentially useful for background impact
on multidimensional distributions.
Background contamination is a valid concern for the

discussed signatures. It may even mimic the signal. That it
is not the case needs to be checked. In Ref. [20] we have
studied the transverse spin effects of the Drell Yan process;
a good example of the background for CP sensitive
observables of Higgs to τ decays. It was found, see
Fig 4. there, that because sign of transverse spin correlation
depends on orientation with respect to reaction plane,
spanned on incoming quarks and outgoing τ leptons
momenta, the effect cancels out if averaged over the
sample. That observation trivially extends to the case of
other τ decays and signatures prepared with the help of ML
techniques. Only very specific cuts could change that. For
that however very detailed knowledge of the detector
responses and cut implementation would be needed.
This is to be achieved only with the help of collaborations
detector response software. Our intuition is that such cuts
are rather not an issue. The background will just contribute
with events of, on average, no CP-sensitive signatures of
any sort. That should be the case of any processes mediated
by intermediate spin 1 state, and τ-pairs of no common
origin as well. In presence of such background, we expect
sensitivity of observables based on optimal variables and
ML techniques alike, to be reduced in proportion to
possible background fluctuations.
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APPENDIX: DEEP NEURAL NETWORK

The structure of the simulated data and the DNN
architecture follows what was published in our previous
papers [18,19]. It is prepared for TENSORFLOW [31], an
open-source machine learning library.
We consider H → ττ channel of both τ� → ρ�ν decay.

The data point is thus an event of the Higgs boson
production and τ lepton pair decay products. The structure
of the event is represented as follows:

xi ¼ ðfi;1;…; fi;DÞ; wai ; wbi ;…; wmi
: ðA1Þ

The fi;1;…; fi;D represent numerical features and
wai ; wbi ; wmi

are weights proportional to the likelihoods
that an event comes from a class A;B;…;M, each
representing different αCP mixing angle. The αCP ¼
0; 2π corresponds to scalar CP state and αCP ¼ π to
pseudoscalar CP state. The weights calculated from the
quantum field theory matrix elements are available and
stored in the simulated data files. This is a convenient

FIG. 19. Performance of wt fitting (l2) for different number of
layers and nodes, assuming Nclass ¼ 21 (top) and Nclass ¼ 51
(bottom).
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situation, which does not happen in many other cases of
ML classification. The A;B;…M distributions highly
overlap in the ðfi;1;…; fi;DÞ space, the more detailed
discussion in case of two hypotheses only, scalar and
pseudoscalar, can be found in [18].
Thanks to similar DNN architecture, we have prepared

three implementations for measuring Higgs boson CP state:
binary classification, multiclass classification and regression:

(i) For binary classification the aim is to discriminate
between two hypothesis, H0 and HαCP .

(ii) For multiclass classification, the aim is to simulta-
neously learn weights (probabilities) for several
HαCP hypotheses; learn coefficients of the weight
functional form or directly learn the mixing angle at
which spin weight has its maximum, αCPmax. A single
class can be either single discretized αCP or a range

FIG. 20. TheDNN loss for classification (left-side) and regression (right-side), as function of number of epochs used for training. It is
shown for learning spin weight (top plots), Ci coefficients (middle plots) and most likely mixing angle αCPmax (bottom plots). For the
classification, Nclass ¼ 21 was used.
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for the Ci parameters. The system is learning
probabilities for classes to associate with the event.

(iii) For the regression case, the aim is similar as for
multiclass classification case, but now the problem is
defined as a continuous case. The system is learning
value to associate with the event. The value can be a
vector of spin weights for a set of HαCP hypotheses,
set of Ci coefficients or αCPmax.

The network architecture consists of 6 hidden layers,
1000 nodes each with ReLU activation functions and is
initialized with random weights. Such architecture has been
found as a good trade-off between the performance and
computation time, what can be seen in Fig. 19. Learning
procedure is optimized using a variant of stochastic
gradient descent algorithm called Adam [32] and batch
normalization [33].
The last layer is specific to the implementation case,

different is dimension of the output vector, activation
function and a loss function. In the following, we will
describe details.
Classification: The loss function used in stochastic

gradient descent is a cross entropy of valid values and
neural network predictions [4]. It is a common choice in
case of binary or multiclass classification models. The loss
function for sample of Nevt events and classification for
Nclass reads as follows:

Loss ¼
XNevt

k¼1

XNclass

i¼1

yi;k logðpi;kÞ; ðA2Þ

where k stands for consecutive event and i for class index.
The yi;k represents neural-network predicted probability for
event k being of class iwhile pi;k represents true probability
used in supervised training.
Regression: In case of predicting wt the last layer of

DNN is N dimensional output (granularity with which we
want to discretize it). For predicting C0, C1, C2 the last
layer of DNN is N ¼ 3 dimensional output, i.e., values of

C0, C1,C2. Activation of this layer is a linear function. Loss
functions is defined as mean squared error (MSE) between
true and predicted parameters

Loss ¼
XNevt

k¼1

Xi¼N

i¼1

ðyi;k − pi;kÞ2; ðA3Þ

where k stands for event index and i for index of function
form parameter. The yi;k represents predicted value of Cith
parameter for event k while pi;k represents true value. For
predicting the αCPmax the last layer of DNN is N ¼ 1

dimensional output, i.e., values of αCPmax.
The tf.reduce_mean method of TENSORFLOW is

used, with the loss function

Loss ¼
XNevt

k¼1

ð1 − cosðyk − pkÞÞ; ðA4Þ

where yk, pk denotes respectively predicted and true value
of αCPmax.
In Fig. 20, for all problems considered, distributions of

the loss functions on the training and validation samples, as
a function of number of epochs used for training are shown.
Left plots are for the classification and right plots for the
corresponding regression. The values of the loss are case
specific and should not be directly compared, their shape is
monitoring the training process. For all cases the loss is
decreasing with number of epochs, both on training and
validation samples. It is overlapping for all cases except
[Regression: αCPmax] (bottom right plot), for that single
case one small loss in performance is observed for
validation sample compared to training sample. Training
with 25 epochs seems sufficient for both classification and
regression for all presented scenarios. We have not
observed any gain of interest in any of extended to larger
number of epochs Fig. 20 plots.
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