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ABSTRACT

A formula for the mass-gap of the supersymmetric O(N) sigma model (N > 4) in

two dimensions is derived: m=�
MS = 22� sin(��)=(��), where � = 1=(N � 2) and m

is the mass of the fundamental vector particle in the theory. This result is obtained

by comparing two expressions for the free-energy density in the presence of a coupling

to a conserved charge; one expression is computed from the exact S-matrix of Shankar

and Witten via the the thermodynamic Bethe ansatz and the other is computed using

conventional perturbation theory. These calculations provide a stringent test of the S-

matrix, showing that it correctly reproduces the universal part of the beta-function and

resolving the problem of CDD ambiguities.
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1. Introduction

There are many two-dimensional �eld theories which are quantum integrable and

hence, following conventional wisdom, which are thought to be described by an exact

factorizable S-matrix. Of particular interest are the theories which generate their mass

dynamically, like the O(N) sigma model, since they share many of the features of QCD

in four dimensions. In general the exact S-matrices for these models are|if truth be

told|conjectures which are postulated on the basis of symmetries and various physical

properties which are encoded as axioms of S-matrix theory. The property of factorization

is then enough in many cases to determine the S-matrix up to ambiguities of CDD type

[1]. It is important to scrutinize these S-matrices and �nd ways of checking whether they

do indeed describe the �eld theories for which they are designed.

Given a factorizable S-matrix, it is possible to �nd a set of integral equations, called

the Thermodynamic Bethe Ansatz (TBA) equations, which determine the free-energy of

the theory on a cylinder in the presence of a chemical potential which couples to a con-

served charge in the model. It was realized some time ago, in the context of the SU(N)

principal chiral models, that it is possible to use the TBA equations to extract the uni-

versal coe�cients of the beta-function directly from the S-matrix [2,3]. The idea is to

compare the free-energy extracted from the TBA equations at zero temperature (hence

on the plane) to the same quantity evaluated in the asymptotic regime where the chem-

ical potential is large and so perturbation theory is valid. Comparing these expressions

provides a stringent test of the proposed S-matrix and also yields an exact value for the

mass-gap of the theory, by which we mean the ratio of some chosen physical mass m to

the �-parameter of perturbation theory.

This strategy has been applied to a series of models: [4,5] for the O(N) sigma model;

[6] for the SU(N) principal chiral model; [7] for the SO(N) and Sp(N) principal chiral

models; [8] for the SU(N) chiral Gross-Neveumodels; [9] for the O(N) Gross-Neveumodels;

and [10] for integrable sigma models on an SU(2) group manifold with torsion. In each

case the exact mass-gap was extracted and the S-matrix tested. It is perhaps signi�cant

that in each case the minimal S-matrix (the S-matrix with the minimum number of poles

and zeros on the physical strip consistent with physical requirements) was found to be

consistent. It is clearly very useful to have such exact results for mass gaps because they

provide a remarkable opportunity to test the e�cacy of lattice simulations or other non-

perturbative approaches. In addition to this, however, the results of [4-10] provide valuable

concrete illustrations of the correctness of conventional beliefs regarding the character of

asymptotically-free theories with dynamical mass generation.

In this paper we shall apply the techniques described above to the supersymmetric

O(N) sigma model [11,12,13]. The application of these methods to a supersymmetric
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integrable �eld theory raises some novel issues, as we shall see. In technical terms we must

face a diagonalization problem for the TBA equations which does not arise in the purely

bosonic case. In many respects the O(N) theories which we consider here are the simplest

family of supersymmetric sigma models. There is another very well-known family of super

sigma models based on CPn , which in fact exhibit extended (N = 2) supersymmetry, and

which have a richer structure than the O(N) models at both the classical and quantum

levels. These CPn models give rise to a more complicated set of TBA equations and they

will be treated in a sequel to this paper [14].

2. The model and its S-matrix

The lagrangian density of the supersymmetric O(N) model is [11]

L =
1

2g

h
(@�na)

2 + i � a/@ a +
1
4

�
� a a

�2i
; (2.1)

where na and  a are an N-component real scalar �eld and an N-component Majorana

fermion respectively satisfying the constraints n �n = 1 and n � = 0. We work throughout

in two-dimensional Minkowski space and our conventions agree with those of [11,15]. We

shall consider only the cases N > 4 (the O(3) model �ts more naturally into the family

of CPn theories discussed in [14] and the O(4) model is in fact equivalent to the principal

chiral model based on SU(2)). The theory (2.1) has a global O(N) symmetry and a global

N = 1 supersymmetry. Notice that the bosonic part of the theory is just the O(N) sigma

model, the fermionic part is the O(N) Gross-Neveu model, and the coupling between the

bosons and fermions is due solely to the constraint.

The two-loop beta-function for this model and the corresponding behaviour of the

running coupling constant can be written

�(g) = ��1g2 � �2g
3 +O(g4);

so
1

g(�=�)
= �1 ln

�

�
+
�2

�1
ln ln

�

�
+O

�
ln ln(�=�)

ln(�=�)

�
;

where �1 = (N � 2)=2�; �2 = 0:

(2.2)

Note that the �rst coe�cient of the beta-function coincides with the result for the purely

bosonic O(N) model, whereas the second coe�cient vanishes, unlike the purely bosonic

or Gross-Neveu cases. The values of both these coe�cients can be deduced from general

results [15] concerning supersymmetric sigma-models on locally symmetric spaces (see also

[16] and references cited there for details of subsequent work). We see from the beta-

function that the theory is asymptotically free with dynamical mass generation.

The integrability of the supersymmetric O(N) theory was studied over 16 years ago by

Shanker andWitten [12] who, following [1], proposed a factorizable S-matrix to describe the
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scattering of the fundamental multiplet of particles in the model. It is expected that this

fundamental multiplet will appear as a massive supersymmetric doublet which transforms

as a vector under the O(N) symmetry. We will denote the corresponding quantum states

by ja; i; �i, where i = 0; 1 labels a boson, fermion respectively, a is the O(N) vector index

and � is the rapidity of the particle, so that its velocity is v = tanh(�). The full spectrum

of the theory will also contain bound states of this fundamental multiplet, but detailed

knowledge of these will not be important for our purposes.

The S-matrix conjectured by Shankar and Witten has a very particular form in which

the supersymmetric and O(N) degrees of freedom are factored. This means that the two-

body S-matrix elements, from which all others follow, can be written [17]

hc; k; �2; d; l; �1; outja; i; �1; b; j; �2; ini = SSUSY(�1 � �2)
kl

ij
SGN(�1 � �2)

cd

ab
: (2.3)

Here the O(N) part is the factorizable S-matrix of the fundamental vector particle of the

O(N) Gross-Neveu model [1,18]:

SGN(�)
cd

ab = Y1(�)

�
�ad�bc � 2�i�

i� � �
�ab�cd � 2�i�

�
�ac�bd

�
; (2.4)

where � = 1=(N �2) and the unitarizing-crossing scalar factor is Y1(�) = R1(�)R1(i�� �)
with

R1(�) =
�(��� i�=2�)�( 1

2
� i�=2�)

�(�i�=2�)�( 1
2
��� i�=2�)

: (2.5)

The supersymmetric part of the S-matrix has the form

SSUSY(�) = Y2(�)

0
BBBB@
1 + 2i

sin(��)

sinh �
0 0 i

sin(��)

cosh(�=2)

0 i
sin(��)

sinh(�=2)
1 0

0 1 i
sin(��)

sinh(�=2)
0

�i sin(��)

cosh(�=2)
0 0 �1 + 2i

sin(��)

sinh �

1
CCCCA ; (2.6)

in which the rows and columns are labelled in the order (0; 0); (0; 1); (1; 0); (1; 1). In this

case the scalar factor is Y2(�) = R2(�)R2(i� � �) where1

R2(�) =
�(�i�=2�)
�( 1

2
� i�=2�)

�
1Y
j=1

�(��� i�=2� + j)�(�i�=2� +�+ j � 1)�2(�i�=2� + j � 1

2
)

�(��� i�=2� + j + 1

2
)�(�i�=2� +�+ j � 1

2
)�2(�i�=2� + j � 1)

:

(2.7)

It is important that the ordering of the particles in the �nal state is taken so that the

particle of rapidity �2 is to the left of the particle with rapidity �1; it is only this \modi�ed"

1 When comparing with the expressions in [12] it is helpful to notice that we are including the

simple pole term in the O(N) rather than in the supersymmetric factor; the opposite choice

was made in [12] but the net results are obviously equivalent.
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S-matrix that displays the factorization of supersymmetric and bosonic degrees of freedom

as described in [17].

The S-matrix (2.3) is a \minimal" expression in the sense that it has the minimum

number of poles and zeros on the physical strip (the region 0 � Im(�) � �) consistent with

the requirements of symmetry, the axioms of S-matrix theory, and the implementation of

the bootstrap procedure. It is well-known, however, that solutions to these conditions are

ambiguous precisely up to so-called CDD factors, which for the present model take the

form
sinh � � i sin(��(2 � �))

sinh � + i sin(��(2 � �))
� sinh � � i sin(���)

sinh � + i sin(���)
; (2.8)

where 0 < � < 2 is a constant. Multiplying (2.3) by any number of factors of this type

does not introduce any additional poles on the physical strip and respects the internal

consistency of the S-matrix. An important aspect of the results we shall obtain is that

they will resolve this possible ambiguity in favour of the minimal choice (2.3). This is

established by simply adopting the minimal S-matrix (2.3) and checking that the results

derived from it agree exactly with perturbation theory, whereas any additional CDD factors

would alter substantially the result of our calculation.

For completeness we mention how the entire spectrum of the model can be determined.

The minimal S-matrix of the fundamental particles has a simple pole on the physical strip

at � = 2�i� which corresponds to a bound state transforming in a reducible representation

which is the sum of the antisymmetric tensor and singlet representations of O(N). Con-

tinuing the bootstrap in this way one �nds a spectrum of bound-states which is identical

to the O(N) Gross-Neveu model, namely mr = m sin(�r�)= sin(��), 1 � r < (N=2) � 1,

apart from the fact that here each particle carries additional supersymmetric quantum

numbers. We shall only require the S-matrix elements of the fundamental particle for our

calculation.

3. Coupling to a conserved charge

To follow the logic of [4{10] one couples the theory to a background �eld h via a

conserved charge Q corresponding to some generator of a global symmetry in the model.

The �eld h acts as a chemical potential for eigenstates of Q, and the idea is to compute

the corresponding free-energy per unit volume f(h) in the ultra-violet, large h, regime.

This is clearly equivalent to calculating the ground state energy density of the system with

the Hamiltonian modi�ed from H to H � hQ. In fact we are interested only in the �nite

di�erence �f(h) = f(h) � f(0). The TBA equations which follow from the S-matrix in

principle determine this quantity exactly, however one cannot usually solve them for all h.

If the system is su�ciently simple, one can obtain an expansion valid in the asymptotic

regime h�m, yielding a result of the form �f(h) = h2F1(h=m). But h� m is also exactly

the regime in which conventional perturbation theory can be applied and such a calculation
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yields an expression of the form �f(h) = h2F2(h=�). By equating F1(h=m) = F2(h=�) one

obtains a powerful check of the consistency of the proposed S-matrix with perturbation

theory, and one extracts the mass-gap m=�.

A crucial part of this procedure is the precise choice of Q. The strategy followed in

[4{10] is to choose Q so that it has a unique largest eigenvalue, +1 say, corresponding

to some unique fundamental particle state. Then one argues that for large h only this

particle state appears in the ground state of the new Hamiltonian H � hQ and the TBA

system is thereby reduced to a single integral equation. In fact this argument assumes

that bound states which may have the same Q eigenvalue will not contribute either, on the

grounds that they will have a smaller charge/mass ratio. In principle this should follow

from a rigorous analysis of the full TBA system, but in practice the complexity of the full

system means that the assumption must usually be taken as a working hypothesis which

is ultimately vindicated by the �nal results [4{10].

A novel feature of dealing with a supersymmetric system is that the best one can do

is to choose Q so that its largest eigenvalue picks out a supermultiplet of states rather

than a single state (since Q commutes with supersymmetry). In the present case we can

choose, for example, a charge with

Q12 = i; Q21 = �i; (3.1)

and all other components zero. It is then exactly the doublet of states (j1; j; �i +
ij2; j; �i)=

p
2 which have eigenvalue +1 under Q (whereas all the other eigenstates have

eigenvalues 0 or �1). Our hypothesis is that only these particles will appear in the ground-
state of the new Hamiltonian H � hQ. The scattering of these states amongst themselves

is elastic in the space of O(N) quantum numbers but it is still non-diagonal in the super-

symmetric subspace. The explicit S-matrix for these states is

S(�)kl
ij
= U(�)SSUSY (�)

kl

ij
; (3.2)

where the scalar factor comes from the elastic scattering of the O(N) part of the S-matrix

and has the form

U(�) =
�(1 + i�=2�)�( 1

2
� i�=2�)�(1 ��� i�=2�)�( 1

2
��+ i�=2�)

�(1 � i�=2�)�( 1
2
+ i�=2�)�(1 ��+ i�=2�)�( 1

2
��� i�=2�)

: (3.3)

As a result of the non-trivial scattering amongst the supersymmetric degrees of freedom

we shall have to confront a set of two coupled TBA equations instead of a single integral

equation as in [4{10].

Another important aspect of the choice of Q is that it can drastically a�ect the nature

of the expressions F1(h=m) and F2(h=�) which we are trying to calculate. Experience with

other models [4{9] suggests that bosonic theories generally require perturbation theory to

just one loop to extract the mass-gap (although the theories in [10] are an exception)

whereas purely fermionic theories seem to require three loop calculations. Fortunately, we

shall �nd that a one-loop calculation su�ces for the choice of Q given above.
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4. Free-energy from perturbation theory

The coupling to the charge Q by means of the replacement H ! H � hQ can be

achieved at the lagrangian level by taking L and making the replacement @0 ! @0 +

ihQ which resembles a covariant derivative. Having introduced this coupling, we wish

to compute the free-energy to one-loop, which means that it is su�cient to expand the

lagrangian to quadratic order in some set of independent �elds. Since we are interested only

in the di�erence �f(h) = f(h)�f(0) we can also ignore any �elds which do not couple to h
at this order. If we solve the bosonic constraint by writing (n1; n2) = (cos �; sin �)

p
1� �2

where � = (n3; n4; : : : ; nN ) then it is easy to see that the �eld � decouples, as do all the

fermionic degrees of freedom, and it su�ces to consider the lagrangian

L1�loop =
1

2g
(@��)

2
+
h2

2g

�
1� �2

�
: (4.1)

This leaves exactly the same calculation as encountered in the bosonic O(N) sigma model

[5].

Using dimensional regularization with the MS-scheme one �nds the result

�f(h) = �h
2

2g
+
h2

8�
(N � 2)(1� ln(h2=�2)) +O(g) (4.2)

in terms of the running coupling g(�=�MS). We can use the fact that �f(h) is a physical

quantity, and therefore RG-invariant, to extract �1 from the expression above and to check

that it agrees with (2.2). (One cannot extract �2 from this result alone because it is only

valid to one-loop.) Now to compare with the TBA result we must substitute the explicit

expression for the running coupling to two loops given in (2.2). For future reference we

�rst write the result in a way which reveals the functional dependence on the coe�cients

of the beta-function:

�f(h) = �h2�1
2

�
ln

h

�MS

� 1

2
+
�2

�21
ln ln

h

�MS

+O
�
ln ln(h=�MS)

ln(h=�MS)

��
: (4.3)

On taking the speci�c values of these coe�cients given in (2.2) we obtain

�f(h) = �(N � 2)
h2

4�

�
ln

h

�MS

� 1

2
+O

�
ln ln(h=�MS)

ln(h=�MS)

��
; (4.4)

which can be contrasted with the result for the bosonic O(N) sigma model (equation (18)

of [5]). Notice that the absense of the ln ln(h=�MS) term is due to the vanishing of the

second coe�cient of the beta-function. We also remark that the number of terms in the

expansion of �f(h) in (4.4) will su�ce to exact the mass-gap; this is directly related to

the existence of the \tree-level" O(1=g) term in (4.2). In contrast to this, for a fermionic

model there is no tree-level contribution and a three-loop calculation is needed to extract

the mass-gap.
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5. Free-energy from the S-matrix

We now write down the TBA equations for the model and �nd their solution in the

limit h � m. Recall our hypothesis that with the coupling to the charge (3.1) only

the states (j1; j; �i + ij2; j; �i)=
p
2 will contribute to the ground-state; this allows us to

avoid the di�cult problem of solving the full TBA equations including the O(N) magnon

system. But these states are, after all, a supersymmetric multiplet and the scattering is

non-diagonal in this subspace. Fortunately, the diagonalization of the relevant system of

equations has been performed recently by Ahn [19] who exploited the equivalence of the

problem to that of diagonalizing the transfer matrix of the eight vertex model at the free

fermion point.

The set of equations derived in [19] relates the density of single particle states in rapid-

ity space %(�) to the density of occupied single particle states �(�). The equations involve

additional densities P+(�) and P�(�) corresponding to a \supersymmetric magnon":

%(�) =
m

2�
cosh � +	 � �(�) + 1

2
� � [P+(�) � P�(�)];

P+(�) + P�(�) = � � �(�);
(5.1)

where f � g(�) = R1
�1

d�0f(� � �0)g(�0). The kernels appearing in (5.1) are

	(�) =
1

2�
Im

d

d�
ln

�
U(�)Y2(�)

sinh �

�
;

�(�) =
1

2
� sin(2��)

cosh2 � � cos2(��)
:

(5.2)

We can rewrite (5.1) in a more suggestive form by eliminating P�(�) from the �rst equation:

m

2�
cosh � = %(�) � �GN � �(�) � � � P+(�); (5.3)

where one �nds

�GN(�) =
1

2�
Im

d

d�
lnU(�): (5.4)

Notice that in this form the kernel which multiplies �(�) involves a contribution only from

the Gross-Neveu part of the S-matrix due to the remarkable cancellation:

1

2�
Im

d

d�
ln

�
Y2(�)

sinh �

�
� 1

2
� � �(�) = 0: (5.5)

The passage to the TBA equations proceeds in the usual manner [20]. At �nite

temperature T we de�ne the excitation energies of the particle �(�) and the magnon �(�)

via
�(�)

%(�)
=

1

e�(�)=T + 1
;

P�(�)

P+(�)
= e�(�)=T : (5.6)
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We shall only require the TBA equations at zero temperature with a chemical potential h

coupled to the particles. In this case �(��F) = 0, where �F is the Fermi rapidity, and �(�)

is negative for ��F < � < �F. The free-energy per unit volume at T = 0 is given by

�f(h) =
m

2�

Z
�F

��F

d� �(�) cosh �; (5.7)

where �(�) is the solution of the T = 0 TBA equations:

�(�) � �GN � ��(�) � � � ��(�) =m cosh � � h;

�(�) �� � ��(�) = 0;
(5.8)

and we have used the notation

f�(�) =

�
f(�) f(�)>

<
0

0 otherwise.
(5.9)

Notice that if we remove the term involving the magnon from the �rst TBA equation then

it reduces to that encountered in O(N) Gross-Neveu model [9].

We must now solve (5.8) and we will implicitly assume that the solution is unique.

The crucial observation is that �(�) is a positive kernel; hence the solution has �+(�) = 0

and ��(�) = � � ��(�) so that the two-dimensional system reduces to a single equation for

�(�):

�+(�) +R � ��(�) = m cosh � � h: (5.10)

where the kernel is

R(�) = �(�) � �GN(�) � � � �(�): (5.11)

This equation di�ers from that encountered in the O(N) Gross-Neveu model by the pres-

ence of the term involving � ��(�) and we shall �nd that this drastically alters the nature
of the solution.

To determine the behaviour of the solution in the regime h � m we calculate the

Fourier transform of the kernel in (5.10) and �nd

R(�) =Z 1

0

d!

�
cos(!�)

�
cosh((1 � 2�)�!=2)

cosh(�!=2)
e��!=2 � cosh2((1� 2�)�!=2)

cosh2(�!=2)

�

=

Z 1

0

d!

�
cos(!�)

cosh((1 � 2�)�!=2) sinh(��!)

cosh2(�!=2)
e�!=2:

(5.12)

The nature of the solution depends upon whether or not this Fourier transform vanishes

at the origin [9]. We see here that the part that comes from the Gross-Neveu model does

not vanish, but the Fourier transform of the full kernel, with the e�ect of supersymmetry

included, does vanish at the origin. The solution for our model is therefore of the type

encountered in the bosonic models described in [4{6] rather than the fermionic models.
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To �nd the �rst few terms in the expansion of the solution one has to write the Fourier

transform of the kernel in the form 1=(G+(!)G�(!)) where G�(!) are analytic in the

upper (lower) half planes with G�(!) = G+(�!). This determines uniquely

G+(!) =
�( 1

2
� i(1 � 2�)!=2)�(1� i�!)

�2( 1
2
� i!=2)

e�
1

2
ln(�i�!)

� e�i!(
1

2
��)(1�ln(�i!( 1

2
��)))�i!�(1�ln(�i!�))+i!(1�ln(�i1

2
!)):

(5.13)

Following the discussion in [6], if G+(i�) has an expansion for small � like

G+(i�) =
kp
�
e�a� ln �

�
1� b� +O(�2)

�
; (5.14)

then the �rst few terms of the free-energy for h� m are given by

�f(h) =� h2k2

4

"
ln
h

m
+ ln

 p
2�ke�b

G+(i)

!
� 1 + a(
E � 1 + ln 8)

+(a+ 1

2
) ln ln

h

m
+O

�
ln ln(h=m)

ln(h=m)

��
:

(5.15)

Our kernel does indeed have an expansion of the form (5.14) with

k =
1p
��

; a = �1

2
;

p
2�ke�b

G+(i)
=

sin(��)

��
e

E=2+

�
3
2
+2�

�
ln 2
; (5.16)

and so the �rst few terms in the free-energy are

�f(h) = � h2

4��

�
ln
h

m
+ ln

�
sin(��)

��
22�

�
� 1

2
+O

�
ln ln(h=m)

ln(h=m)

��
: (5.17)

6. Comparison and Conclusions

Comparing (5.17) with (4.4) we see that the result from the TBA calculation correctly

produces the universal coe�cients of the beta-function and, furthermore, we extract the

value for the mass-gap of the supersymmetric O(N) sigma model:

m

�MS

= 22� � sin(��)
��

; � =
1

N � 2
; N > 4: (6.1)

It is interesting to compare this result with a calculation in the largeN limit. We �nd from

above that m=�MS = 1 + (2 ln 2)=N +O(1=N2) which agrees with the large N analysis in

[21]. Unfortunately the conjecture for the mass-gap for all N in [21] is not correct because

it is based on a mistaken ansatz for the functional dependence on �.

Our calculations provide convincing evidence that the S-matrix of Shankar andWitten

does indeed describe the supersymmetric O(N) sigma model. In particular, as emphasized

in [6], the addition of CDD factors of the form (2.8) to the S-matrix would change the kernel

R(�) and drastically alter the thermodynamics of the system, including the expression

(5.17) for the free-energy, consequently destroying the remarkable agreement with the

perturbative result.
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