Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

002690322 001__ 2690322
002690322 003__ SzGeCERN
002690322 005__ 20241115142601.0
002690322 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-IPAC2019-THPTS066
002690322 0248_ $$aoai:inspirehep.net:1745826$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002690322 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1745826$$d2019-09-20T15:22:52Z$$h2019-09-21T04:00:09Z$$mmarcxml
002690322 035__ $$9Inspire$$a1745826
002690322 041__ $$aeng
002690322 088__ $$aCERN-ACC-2019-266
002690322 100__ $$aWill, Andreas$$jJACoW-00068510$$mandreas.will@kit.edu$$uKIT, Karlsruhe$$uCERN$$vCERN, Geneva, Switzerland
002690322 245__ $$9JACoW$$aBeam impact experiment of 440 GeV/p protons on superconducting wires and tapes in a cryogenic environment
002690322 260__ $$c2019
002690322 300__ $$a4 p
002690322 520__ $$9JACoW$$aThe superconducting magnets used in high energy particle accelerators such as CERN’s LHC can be impacted by the circulating beam in case of specific failure cases. This leads to interaction of the beam particles with the magnet components, like the superconducting coils, directly or via secondary particle showers. The interaction leads to energy deposition in the timescale of microseconds and induces large thermal gradients within the superconductors in the order of 100 K/mm. To investigate the effect on the superconductors, an experiment at CERN’s HiRadMat facility was designed and executed, exposing short samples of Nb-Ti and Nb$_3$Sn strands as well as YBCO tape in a cryogenic environment to microsecond 440 GeV/p proton beams. The irradiated samples were extracted and are being analyzed for their superconducting properties, such as the critical transport current. This paper describes the experimental setup as well as the first results of the visual inspection of the samples.
002690322 540__ $$3Publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002690322 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002690322 6531_ $$2JACoW$$aexperiment
002690322 6531_ $$2JACoW$$aproton
002690322 6531_ $$2JACoW$$ainterface
002690322 6531_ $$2JACoW$$asimulation
002690322 6531_ $$2JACoW$$acryogenics
002690322 690C_ $$aCERN
002690322 693__ $$aCERN SPS
002690322 693__ $$fHiRadMat
002690322 700__ $$aBastian, Yan$$jJACoW-00085874$$myan.bastian@cern.ch$$uCERN
002690322 700__ $$aBernhard, Axel$$iINSPIRE-00404829$$jJACoW-00010102$$uKIT, Karlsruhe
002690322 700__ $$aBonura, Marco$$jJACoW-00113639$$mmarco.bonura@unige.ch$$uU. Geneva (main)
002690322 700__ $$aBordini, Bernardo$$iINSPIRE-00025430$$jJACoW-00035693$$uCERN
002690322 700__ $$aBortot, Lorenzo$$uCERN
002690322 700__ $$aFavre, Mathieu$$jJACoW-00107348$$mmathieu.favre@cern.ch$$uCERN
002690322 700__ $$aLindstrom, Bjorn$$jJACoW-00076863$$mbjorn.hans.filip.lindstrom@cern.ch$$uCERN
002690322 700__ $$aMentink, Matthijs$$jJACoW-00053753$$mmgtmentink@lbl.gov$$uCERN
002690322 700__ $$aMonteuuis, Arnaud$$jJACoW-00106348$$marnaud.monteuuis@cern.ch$$uCERN
002690322 700__ $$aMüller, Anke-Susanne$$jJACoW-00000492$$manke-susanne.mueller@kit.edu$$uKIT, Karlsruhe
002690322 700__ $$aOslandsbotn, Andreas$$jJACoW-00113643$$mandreas.oslandsbotn@cern.ch$$uCERN
002690322 700__ $$aSchmidt, Ruediger$$jJACoW-00001714$$mrudiger.schmidt@cern.ch$$uCERN
002690322 700__ $$aSenatore, Carmine$$jJACoW-00113641$$mcarmine.senatore@cern.ch$$uU. Geneva (main)
002690322 700__ $$aSiemko, Andrzej$$jJACoW-00010002$$mandrzej.siemko@cern.ch$$uCERN
002690322 700__ $$aStachon, Krzysztof$$jJACoW-00106315$$mkrzysiekstachon@gmail.com$$uCERN
002690322 700__ $$aUsoskin, Alexander$$jJACoW-00113642$$malexander.usoskin@bruker.com$$uBruker Physik, Karlsruhe
002690322 700__ $$aVaananen, Mika$$jJACoW-00113644$$mmika.petteri.vaananen@cern.ch$$uCERN
002690322 700__ $$aVerweij, Arjan$$jJACoW-00023979$$marjan.verweij@cern.ch$$uCERN
002690322 700__ $$aWollmann, Daniel$$iINSPIRE-00373401$$jJACoW-00020820$$uCERN
002690322 773__ $$cTHPTS066$$qIPAC2019$$wC19-05-19.1$$y2019
002690322 8564_ $$81518602$$s8213217$$uhttp://cds.cern.ch/record/2690322/files/thpts066.pdf$$yFulltext from publisher
002690322 960__ $$a13
002690322 962__ $$b2672790$$kTHPTS066$$nmelbourne20190519
002690322 980__ $$aARTICLE
002690322 980__ $$aConferencePaper
002690322 999C5 $$01626292$$9refextract$$9CURATOR$$hV. Raginel et al.$$min Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark 4266$$o1$$tChange of Critical Current Density in NbTi and Nb3Sn Strands After Millisecond Heating$$x[1] V. Raginel et al., “Change of Critical Current Density in NbTi and Nb3Sn Strands After Millisecond Heating”, in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark 4266
002690322 999C5 $$9refextract$$9CURATOR$$hV. Raginel et al.$$min$$o2$$sIEEE Trans.Appl.Supercond.,28,8800310$$tFirst Experimental Results on Damage Limits of Superconducting Accelerator Magnet Components Due to Instantaneous Beam Impact$$x[2] V. Raginel et al., “First Experimental Results on Damage Limits of Superconducting Accelerator Magnet Components Due to Instantaneous Beam Impact”, in IEEE Transactions on Applied Superconductivity, 2018, vol. 28-4$$y2018
002690322 999C5 $$9refextract$$9CURATOR$$hT. Boutboul, S. Le Naour, D. Leroy, L. Oberli and V. Previtali$$min$$o3$$sIEEE Trans.Appl.Supercond.,16,1184$$tCritical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range$$x[3] T. Boutboul, S. Le Naour, D. Leroy, L. Oberli and V. Previtali, “Critical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range”in IEEE Transactions on Applied Superconductivity, 2006, vol. 16-2$$y2006
002690322 999C5 $$9refextract$$9CURATOR$$hP. Ferracin et al.$$min$$o4$$sIEEE Trans.Appl.Supercond.,24,4002306$$tMagnet Design of the 150 mm Aperture Low-β Quadrupoles for the High Luminosity LHC$$x[4] P. Ferracin et al., “Magnet Design of the 150 mm Aperture Low-β Quadrupoles for the High Luminosity LHC”, in IEEE Transactions on Applied Superconductivity, 2014, vol. 24-3$$y2014
002690322 999C5 $$9refextract$$hT.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fasso, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis$$min$$mURL:$$o5$$sNucl.Data Sheets,120,211-214$$tThe FLUKA Code: Developments and Challenges for High Energy and Medical Applications$$uhttp://www.fluka.org$$x[5] T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fasso, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis, “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, in Nuclear Data Sheets 120, 211-214 (2014), URL: http://www.fluka.org$$y2014
002690322 999C5 $$9refextract$$9CURATOR$$hA. Ferrari, P.R. Sala, A. Fasso, and J. Ranft$$mINFN/TC_05/11$$min$$o6$$rCERN-2005-010$$rSLAC-R-773$$tFLUKA: a multi-particle transport code$$x[6] A. Ferrari, P.R. Sala, A. Fasso, and J. Ranft, “FLUKA: a multi-particle transport code”, in CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773$$y2005
002690322 999C5 $$9refextract$$9CURATOR$$hI. Efthymiopoulos et al.$$min Proceedings of IPAC, San Sebastien, Spain, paper TUPS058 4267$$o7$$rIPAC-2011-TUPS058$$tHiRadMat: A New Irradiation Facility for Material Testing at CERN$$x[7] I. Efthymiopoulos et al., “HiRadMat: A New Irradiation Facility for Material Testing at CERN”, in Proceedings of IPAC 2011, San Sebastien, Spain, paper TUPS058 4267$$y2011