Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

Published Articles
Title Validation of energy deposition simulations for proton and heavy ion losses in the CERN Large Hadron Collider
Author(s) Lechner, A (CERN) ; Auchmann, B (CERN) ; Baer, T (CERN) ; Bahamonde Castro, C (CERN) ; Bruce, R (CERN) ; Cerutti, F (CERN) ; Esposito, L S (CERN) ; Ferrari, A (CERN) ; Jowett, J M (CERN) ; Mereghetti, A (CERN) ; Pietropaolo, F (CERN) ; Redaelli, S (CERN) ; Salvachua, B (CERN) ; Sapinski, M (CERN) ; Schaumann, M (CERN) ; Shetty, N V (CERN) ; Vlachoudis, V (CERN) ; Skordis, E (U. Liverpool (main) ; CERN)
Publication 2019
Number of pages 24
In: Phys. Rev. Accel. Beams 22 (2019) 071003
DOI 10.1103/PhysRevAccelBeams.22.071003
Subject category Accelerators and Storage Rings
Accelerator/Facility, Experiment CERN LHC
Abstract Monte Carlo shower simulations are essential for understanding and predicting the consequences of beam losses in high-energy proton and ion colliders. Shower simulations are routinely used at CERN for estimating the beam-induced energy deposition, radiation damage, and radioactivity in the Large Hadron Collider (LHC). Comparing these shower simulations against beam loss measurements is an important prerequisite for assessing the predictive ability of model calculations. This paper validates fluka simulation predictions of beam loss monitor (BLM) signals against BLM measurements from proton fills at 3.5 and 4 TeV and $^{208}$Pb$^{82+}$ ion fills at 1.38A  TeV. The paper addresses typical loss scenarios and loss mechanisms encountered in LHC operation, including proton collisions with dust particles liberated into the beams, halo impact on collimators in the betatron cleaning insertion, proton-proton collisions in the interaction points, and dispersive losses due to bound-free pair production in heavy ion collisions. Model predictions and measured signals generally match within a few tens of percent, although systematic differences were found to be as high as a factor of 3 for some regions and source terms.
Copyright/License publication: © 2019-2024 authors (License: CC-BY-4.0)

Corresponding record in: Inspire


 Datensatz erzeugt am 2019-09-11, letzte Änderung am 2022-08-10


Fulltext from Publisher:
Volltext herunterladen
PDF