002637373 001__ 2637373
002637373 005__ 20231222041308.0
002637373 0248_ $$aoai:cds.cern.ch:2637373$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002637373 0247_ $$2DOI$$9bibmatch$$a10.1007/s10751-018-1536-9
002637373 037__ $$9arXiv$$aarXiv:1809.00875$$cphysics.atom-ph
002637373 035__ $$9arXiv$$aoai:arXiv.org:1809.00875
002637373 035__ $$9Inspire$$aoai:inspirehep.net:1692677$$d2023-12-21T21:37:23Z$$h2023-12-22T03:00:13Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002637373 035__ $$9Inspire$$a1692677
002637373 041__ $$aeng
002637373 100__ $$aWidmann, E.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 245__ $$9arXiv$$aHyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA
002637373 269__ $$c2018-09-04
002637373 260__ $$c2018-12-17
002637373 500__ $$9arXiv$$aProceedings of the 7th International Syposium on Symmetries in Subatomic Physics SSP2018, Aachen (Germany), 10 - 15 Jun 2018
002637373 520__ $$9arXiv$$aThe ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.
002637373 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002637373 540__ $$3publication$$aCC-BY-4.0$$bSpringer
002637373 65017 $$2arXiv$$aphysics.atom-ph
002637373 65017 $$2SzGeCERN$$aOther Fields of Physics
002637373 690C_ $$aCERN
002637373 690C_ $$aARTICLE
002637373 693__ $$aCERN AD$$eASACUSA AD-3
002637373 700__ $$aAmsler, C.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aArguedas Cuendis, S.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aBreuker, H.$$tGRID:grid.7597.c$$vRIKEN - Saitama - 351-0198 - Japan
002637373 700__ $$aBreuker, H.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aDiermaier, M.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aDupré, P.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aEvans, C.$$tGRID:grid.8982.b$$uBrescia U.$$uINFN, Pavia$$vDipartimento di Ingegneria dell'Informazione, Università' degli Studi di Brescia, Brescia, Italy and Istituto Nazionale di Fisica Nucleare (INFN), sez. Pavia, Italy
002637373 700__ $$aFleck, M.$$tGRID:grid.26999.3d$$uTokyo U.$$vUniversity of Tokyo, 153-8902 Tokyo, Japan
002637373 700__ $$aGligorova, A.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aHigaki, H.$$tGRID:grid.257022.0$$uHiroshima U.$$vHiroshima University, 739-8530 Hiroshima, Japan
002637373 700__ $$aKanai, Y.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aKolbinger, B.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aKuroda, N.$$tGRID:grid.26999.3d$$uTokyo U.$$vUniversity of Tokyo, 153-8902 Tokyo, Japan
002637373 700__ $$aLeali, M.$$tGRID:grid.8982.b$$uBrescia U.$$uINFN, Pavia$$vDipartimento di Ingegneria dell'Informazione, Università' degli Studi di Brescia, Brescia, Italy and Istituto Nazionale di Fisica Nucleare (INFN), sez. Pavia, Italy
002637373 700__ $$aLeite, A.M.M.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aMäckel, V.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aMalbrunot, C.$$tGRID:grid.4299.6$$tGRID:grid.9132.9$$uStefan Meyer Inst. Subatomare Phys.$$uCERN$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria$$vCERN, Geneva Switzerland
002637373 700__ $$aMalbrunot, C.$$uCERN$$vCERN, Geneva Switzerland
002637373 700__ $$aMascagna, V.$$tGRID:grid.8982.b$$uBrescia U.$$uINFN, Pavia$$vDipartimento di Ingegneria dell'Informazione, Università' degli Studi di Brescia, Brescia, Italy and Istituto Nazionale di Fisica Nucleare (INFN), sez. Pavia, Italy
002637373 700__ $$aMassiczek, O.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aMatsuda, Y.$$tGRID:grid.26999.3d$$uTokyo U.$$vUniversity of Tokyo, 153-8902 Tokyo, Japan
002637373 700__ $$aMurtagh, D.J.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aNagata, Y.$$tGRID:grid.143643.7$$uTokyo U. of Sci.$$vTokyo University of Science, 162-8601 Tokyo, Japan
002637373 700__ $$aNanda, A.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aPhan, D.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aSauerzopf, C.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aSimon, M.C.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aTajima, M.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japa
002637373 700__ $$aSpitzer, H.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aStrube, M.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aUlmer, S.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aVenturelli, L.$$tGRID:grid.8982.b$$uBrescia U.$$uINFN, Pavia$$vDipartimento di Ingegneria dell'Informazione, Università' degli Studi di Brescia, Brescia, Italy and Istituto Nazionale di Fisica Nucleare (INFN), sez. Pavia, Italy
002637373 700__ $$aWiesinger, M.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 700__ $$aYamazaki, Y.$$tGRID:grid.7597.c$$uRIKEN (main)$$vRIKEN, 351-0198 Saitama, Japan
002637373 700__ $$aZmeskal, J.$$tGRID:grid.4299.6$$uStefan Meyer Inst. Subatomare Phys.$$vStefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna, Austria
002637373 710__ $$gASACUSA Collaboration
002637373 773__ $$c5$$n1$$pHyperfine Interact.$$v240$$wC18-06-11.5$$y2019
002637373 8564_ $$81430491$$s537608$$uhttp://cds.cern.ch/record/2637373/files/1809.00875.pdf
002637373 8564_ $$81430492$$s5881$$uhttp://cds.cern.ch/record/2637373/files/cpt_limits_GHz-2018-09-02.png$$y00002 Comparison of several tests of CPT symmetry on an energy scale. Bar's right hand side: measured quantity, length of bar: relative precision of CPT test, left hand side: sensitivity on an absolute energy scale. Blue: existing test. Orange: predicted sensitivity if existing precision for hydrogen is achieved. In the case of HFS: orange: first goal for in-beam measurement, paler orange: line width for fountain, yellow: hydrogen maser result. In case of Lamb shift: orange: estimated achievable accuracy, paler orange: accuracy for hydrogen. Values are from PDG \cite{TanabashiEtAl2018} except for \Hbar\ results for HFS \cite{Ahmadi2017}, 1S--2S \cite{Ahmadi2018}, and Lamb shift \cite{Crivelli2016}. \pbar\ charge-to-mass ratio \cite{Ulmer:2015}, note that the position is somewhat arbitrary since the cyclotron frequency is proportional to the magnetic field in which the measurement is taken; the length of the bar is very precise however.
002637373 8564_ $$81430493$$s5070$$uhttp://cds.cern.ch/record/2637373/files/Widmann_HExtrapolation.png$$y00003 Preliminary results of the first simultaneously taken extrapolations of $\nu_\pi$ (a) and $\nu_\sigma$ (c) as a function of the external static magnetic field for hydrogen. (b) and (d) show the deviations from the fit as standard scores. The dashed red line in panel (a) shows $\nu_\sigma$ to illustrate the much smaller $B$-field dependence compared to $\nu_\pi$.
002637373 8564_ $$81430494$$s13928$$uhttp://cds.cern.ch/record/2637373/files/Widmann-BreitRabi.png$$y00000 Left: schematic antihydrogen formation and hyperfine measurement beam line. Antihydrogen is created by mixing antiprotons and positrons in the CUSP trap that polarizes the outgoing beam by focusing low-field seekers (red) and defocussing high-field seekers (green). The beam then passes a microwave cavity where spin-flips are induced under the presence of an external static magnetic field $B_\mathrm{ext}$, a superconducting sextupole which again selects low-field seekers, and an antihydrogen detector. Right: Breit-Rabi diagram showing the magnetic field dependence of the four hyperfine states of antihydrogen.
002637373 8564_ $$81430495$$s4144$$uhttp://cds.cern.ch/record/2637373/files/hbar-hfs-scheme-cusp-horiz-Bext.png$$y00001 Left: schematic antihydrogen formation and hyperfine measurement beam line. Antihydrogen is created by mixing antiprotons and positrons in the CUSP trap that polarizes the outgoing beam by focusing low-field seekers (red) and defocussing high-field seekers (green). The beam then passes a microwave cavity where spin-flips are induced under the presence of an external static magnetic field $B_\mathrm{ext}$, a superconducting sextupole which again selects low-field seekers, and an antihydrogen detector. Right: Breit-Rabi diagram showing the magnetic field dependence of the four hyperfine states of antihydrogen.
002637373 8564_ $$81455881$$s1165248$$uhttp://cds.cern.ch/record/2637373/files/10.1007_s10751-018-1536-9.pdf$$yFulltext from Publisher
002637373 960__ $$a13
002637373 962__ $$b2637698$$k5$$naachen20180611
002637373 980__ $$aConferencePaper
002637373 980__ $$aARTICLE