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A novel description of kinetic theory dynamics is proposed in terms of resummed moments that embed
information of both hydrodynamic and nonhydrodynamic modes. The resulting expansion can be used to
extend hydrodynamics to higher orders in a consistent and numerically efficient way; at lowest order it
reduces to an Israel-Stewart-like theory. This formalism is especially suited to investigate the general
problem of particles interacting with fields. We tested the accuracy of this approach against the exact
solution of the coupled Boltzmann-Vlasov-Maxwell equations for a plasma in an electromagnetic field
undergoing Bjorken-like expansion, including extreme cases characterized by large deviations from local
equilibrium and large electric fields. We show that this new resummed method maintains the fast
convergence of the traditional method of moments. We also find a new condition, unrelated to Knudsen
numbers and pressure corrections, that justifies the truncation of the series even in situations far from local
thermal equilibrium.
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I. INTRODUCTION

Relativistic hydrodynamics plays a fundamental role in
the description of a wide range of physical phenomena,
from astrophysical plasmas to heavy-ion collisions [1–3].
There are two main theoretical frameworks for deriving
hydrodynamics from an underlying microscopic theory.
The first one originates from the Chapman-Enskog

expansion [4], which involves a systematic power counting
of the gradients of the standard hydrodynamic quantities,
i.e., temperature, chemical potential, and velocity fields. An
appealing feature of this approach is that the gradient
expansion can be performed even around a quantum field
theoretical local equilibrium background, i.e., it does not
fundamentally require a classical approximation. Such
an expansion can also be done in the relativistic regime,
both in the context of kinetic theory [5] and in the case
of strongly coupled relativistic systems, as shown in
Refs. [6,7].

The straightforward relativistic generalization of the
gradient expansion truncated at first order leads to the
relativistic Navier-Stokes equations [8]. These equations
violate causality [9] and are linearly unstable around equi-
librium [10,11] (see also [12,13]). The series can be extended
by including second-order gradient corrections [6,7] and also
third-order terms [14], though precise statements regarding
causality in the nonlinear regime and stability are not
available in those cases. Mathematically rigorous results
about causality and stability in relativistic viscous hydro-
dynamics were presented in Ref. [15] where it was shown
that the gradient expansion can be used to derive a causal and
stable theory at first order in gradients if different definitions
for the hydrodynamic fields are used. However, recent work
showed that the gradient series has zero radius of conver-
gence [16–19]. Hence, including higher-order terms in the
expansion does not constitute a viable path towards a
systematic improvement of the description of the system
in the far-from-equilibrium regime.
The second method widely used in the derivation of

relativistic hydrodynamics employs a moment expansion of
the relativistic Boltzmann equation [20]. While Boltzmann
kinetic theory is only applicable to sufficiently weakly
coupled (“dilute”) systems, this approach exploits the idea
that hydrodynamics can be understood as an effective field
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theory describing the long time, long distance macroscopic
behavior of the system [7] whose structure is universal.
Therefore, details of the microphysics enter into the hydro-
dynamic equations only through material properties (such
as the equation of state and the transport coefficients)
whose calculation involves different methods at weak [21]
and strong coupling [22].
In this approach, the Boltzmann equation is expressed in

terms of an infinite set of coupled equations for the
momentum moments of the distribution function. Since
(at least in the relaxation time approximation, see below)
every moment couples only with a finite number of other
moments, one can truncate the set of equations at some
order, using some approximation for the leftover moments
[20]. In the absence of long-range mean fields, this method
can be systematically improved by the inclusion of more
moments. Under flow conditions of extreme symmetry
where the relativistic Boltzmann equation can be solved
exactly [23–27], this procedure has been shown to converge
rapidly to the exact results of relativistic kinetic theory
[18,28,29]. The reasons behind this rapid convergence
even in far-from-equilibrium conditions are, however, still
poorly understood as, at first sight, all moments seem to
contribute to the equations with similar weight.
The purpose of this work is explore these questions in

greater depth, by extending the method of moments to a
more general microscopic background. By generalizing the
Boltzmann equation to Boltzmann-Vlasov form we intro-
duce long-range noncollisional forces that could stem
from of an electromagnetic gauge field or from medium-
dependent particle masses. In the case of electromagnetic
interactions, the gauge field is calculated self-consistently
by taking into account the contribution of the particle
current density to Maxwell’s equations. We develop the
moment expansion of the coupled set of Boltzmann-
Vlasov-Maxwell (BVM) equations for a general collision
term in 3þ 1 dimensions, before solving the theory exactly
(i.e., with arbitrary numerical precision) in the Relaxation
Time Approximation (RTA) [30] in 0þ 1 dimensions for a
system undergoing boost-invariant longitudinal expansion
without transverse flow (Bjorken expansion [31]).
This paper is organized as follows: In Sec. II, we briefly

review the canonical approach to the method of moments
for the Boltzmann equation. In Sec. III, we introduce the
BVM equations and discuss its expansion in terms of
moments. In Sec. IV, we propose a new set of moments that
resum the contributions of an infinite set of nonhydrody-
namic degrees of freedom and show how they can be used
to investigate the physics behind the BVM equations
efficiently even for massless particle systems. An exactly
solvable case of these equations is studied in Sec. V and
compared in Sec. V C with results from the expansion in
terms of the resummed moments. We find fast convergence
of the resummed moment expansion to the exact solution.
Conclusions and a final overview are presented in Sec. VI.

Various technical discussions are relegated to Appendices
A–E.
Unless otherwise stated we use natural units where

ℏ ¼ c ¼ kB ¼ 1. We adopt the Einstein convention of
automatically summing over repeated upper and lower
indices, and we represent the contraction (scalar product)
between four-vector with a dot: vμwμ ¼ v · w. The “mostly
minus” convention for the Minkowski metric is used, i.e.,
gμν ¼ diagð1;−1;−1;−1Þ, as well as the convention
ε0123 ¼ 1 for the four-dimensional Levi-Civita symbol.
Round parentheses around groups of Lorentz indices
indicate symmetrization, e.g., AðμBνÞ ¼ 1

2!
ðAμBν þ AνBμÞ.

II. THE METHOD OF MOMENTS

The method of moments, initially introduced in the
nonrelativistic regime by Grad [32], has been widely
used to study a number of properties of the relativistic
Boltzmann equation [33]

p · ∂f ¼ −C½f�; ð1Þ

where fðx; pÞ is the single-particle phase-space distribution
function of a gas of particles with mass m, and C½f� is the
collision term which, in general, involves an integral over
the distribution function f.
In the moments method, one replaces the integro-

differential mathematical problem defined by the
Boltzmann equation by an infinite set of coupled partial
differential equations for the momentum moments of f,
which correspond to macroscopic quantities such as, for
instance, the fluid’s energy-momentum tensor. For the
moment we will use Cartesian coordinates such that we
do not need to distinguish between the partial derivative ∂μ

and the covariant one dμ [34]. For any definition of the four-
velocity uμ, we can split ∂μ into the time and spatial
derivatives in the comoving frame,

∂μ ¼ uμDþ∇μ; ð2Þ

where D ¼ u · ∂ is the comoving time derivative, also
denoted by a dot ( _A≡DA≡ uμ∂μA for any quantity A),
and ∇μ ≡ Δμν∂ν (where Δμν ¼ gμν − uμuν projects on the
spatial coordinates in the comoving frame). Using these
definitions, the Boltzmann equation (1) can be rewritten as
follows [35]

ðp · uÞ _f ¼ −C½f� − p · ∇f; ð3Þ

from which exact equations of motion for the (reducible)
tensor moments

F μ1���μs
r ¼

Z
p
ðp · uÞrpμ1 � � �pμsf; ð4Þ
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with r being an integer and s a non-negative integer, can be
derived:

_F μ1���μs
r þ ðF collÞμ1���μsr

¼ r _uαF
αμ1���μs
r−1 −∇αF

αμ1���μs
r−1 þ ðr − 1Þ∇αuβF

αβμ1���μs
r−2 :

ð5Þ

The contribution from the collisional kernel is given by

ðF collÞμ1���μsr ¼
Z
p
ðp · uÞr−1pμ1 � � �pμsC½f�: ð6Þ

To obtain Eq. (5) one only needs uniform convergence of the
momentum integrals (4). In (4), (6), and similar integrals
below,

R
p indicates the Lorentz invariant momentum integral

Z
p
≡ g
ð2πÞ3

Z
d4p2Θðp0Þδðp2−m2Þ¼ g

ð2πÞ3
Z

d3p
p0

; ð7Þ

with g counting the degeneracy of each momentum eigen-
state. In the last expression, the integrand must be taken
on-shell, i.e., p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. The particle number current

Nμ ¼ R
p p

μf and energy-momentum tensor Tμν ¼R
p p

μpνf are given by the moments F μ
0 and F μν

0 , respec-
tively. For ðr; sÞ ¼ ð0; 2Þ, Eq. (5) gives the following exact
evolution equation for the stress-energy tensor:

_Tμν þ
Z
p

pμpν

ðp · uÞ C½f� ¼ −∇αF
αμν
−1 −∇αuβF

αβμν
−2 : ð8Þ

Its projection onto the four-velocity uμ yields four equations
describing energy-momentum conservation, ∂μTμν ¼ 0 (see
Appendix A). The remaining six equations provide the exact
evolution of the dissipative corrections to the pressure (bulk
viscous pressure and shear stress). Unlike the four-momen-
tum conservation equations, the latter couple the components
of the stress-energy tensor with other moments of the
distribution function.
Since in the comoving frame only the spatial projections

of the Tμν couple directly to nonhydrodynamic moments, it
is convenient to introduce the following notation for the
spatial components of the tensor moment in the local rest
frame (LRF) where uμ ¼ ð1; 0Þ:

fμ1���μsr ≡ F hμ1i���hμsi
r ¼

Z
p
ðp · uÞrphμ1i � � �phμsif: ð9Þ

Angular brackets around a tensor index indicate its spatial
components in the LRF obtained by contracting the four-
index with the spatial projector Δμ

ν : phμi ≡ Δμ
νpν. We note

that the tensor momentsF are not mutually independent. In
fact, the projection with uα of a tensor moment of rank
ðr; sþ 1Þ produces a tensor moment of different rank

ðrþ 1; sÞ, uαF αμ1���μs
r ¼ F μ1���μs

rþ1 , while projecting all upper
indices along the four-velocity yields a scalar moment
uμ1 � � � uμsF μ1���μs

r ¼ F rþs ¼ frþs. On the other hand, no
analogous relation exists for their spatial components in the
LRF, i.e., for fμ1���μsr .
It is useful to rewrite the exact evolution equations (5)

in terms of fμ1���μsr . As shown in Appendix B, their exact
evolution equations are

_fhμ1i���hμsir þ ðF collÞhμ1i���hμsir

¼ −θfμ1���μsr þ r _uαf
αμ1���μs
r−1 − s _uðμ1fμ2���μsÞrþ1 −∇αf

αhμ1i���hμsi
r−1

− s∇αuðμ1f
μ2���μsÞα
r þ ðr − 1Þ∇αuβf

αβμ1���μs
r−2 ð10Þ

where θ≡∇μuμ is the scalar expansion rate. These
moment equations contain the information we need in this
work. For example, by projecting Eq. (8) with uμuν we
obtain Eq. (10) with r ¼ 2 and s ¼ 0:

_f2 ¼ 2_uμf
μ
1 −∇μf

μ
1 − θf2 þ∇μuνf

μν
0

¼ _uμf
μ
1 − ∂μf

μ
1 − θf2 þ∇μuνf

μν
0 ; ð11Þ

where we used in the first line that
R
p p

μC ¼ 0 and in the
second line that uμf

μ
1 ¼ 0. This describes the conservation

of energy. Projecting (8) with uμΔα
ν yields the momentum

conservation law

_fhαi1 ¼ _uμf
μα
0 − _uμf2 −∇μfμhαi − θfα1 −∇μuαf

μ
1; ð12Þ

where ∇μfμhαi ≡ Δα
ν∇μfμν.

Making use of the general hydrodynamic decomposition
of the energy-momentum tensor in the so-called Landau
frame [8]

Tμν ¼ Euμuν − ðP þ ΠÞΔμν þ πμν; ð13Þ

Eqs. (11) and (12) can be rewritten in the more familiar
form

_E ¼ −θðE þ P þ ΠÞ þ σμνπ
μν; ð14Þ

ðE þ P þ ΠÞ _uα ¼ ∇αðP þ ΠÞ − Δα
μ∂νπ

μν þ παν _uν; ð15Þ

where E ¼ f2 is the energy density seen by a comoving
observer, E ¼ uμuνTμν, and σμν ¼ Δαβ

μν∇αuβ (with the

traceless and spatial double projector Δαβ
μν ≡

1
2
ðΔα

μΔ
β
ν þ Δα

νΔ
β
μÞ − 1

3
ΔμνΔαβÞ is the shear flow tensor.

The shear stress tensor πμν is the traceless part of fμν0 while
the trace of the latter enters the isotropic pressure through
P þ Π ¼ − 1

3
Δμνf

μν
0 where Π is the bulk viscous pressure.

The hydrostatic pressure is given by the equilibrium
equation of state P ¼ PðE; nÞ (where n is the conserved
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charge if applicable). Therefore, fμν0 contains all nontrivial
information about the dissipative pressure corrections Π
and πμν. Their exact evolution is, therefore, described by
the equation

_fhμihνi0 þ
Z
p

phμiphνi

p · u
C½f� ¼ − _uðμfνÞ1 −∇αf

αhμihνi
−1

− θfμν0 − 2∇αuðμf
νÞα
0 −∇αuβf

αβμν
−2 :

ð16Þ

Differently from the four-momentum conservation equa-
tions (11) and (12), the equation above couples the
components of Tμν with moments of the distribution
function that are not part of Tμν or the particle current
Nν ¼ R

p p
μf; this is seen in both the collisional kernel

contribution on the left-hand side and the direct couplings
on the right-hand side that survive even in the free-
streaming limit C½f� → 0.
The most common approximation to obtain a closed set

of equations is to assume that the deviations from local
equilibrium are small and that the deformation of the
distribution function is dominated by the nonequilibrium
corrections in Tμν and Nμ [36]. In this way, it is possible to
obtain approximate expressions for fαμν−1 and fαβμν−2 that can
be expressed entirely in terms of quantities usually asso-
ciated with relativistic hydrodynamic behavior. This pro-
cedure leads to Israel-Stewart-like theories [36] of
dissipative relativistic hydrodynamics, as discussed in
detail in Ref. [20].
It is important to note, however, that thanks to Eq. (10)

one can improve the hydrodynamic description by consid-
ering fαμν−1 and fαβμν−2 as dynamical variables in their own
right. The dynamical equations for these moments will then
couple to moments of different ranks and orders. This
provides a way to systematically improve the solution of
the moment equations that does not necessarily depend on
the hypothesis of small gradients and approximate local
equilibrium [20]. In Ref. [18], such an expansion was tested
in 0þ 1 dimensions1 and fast convergence was found to the
corresponding exact solution of the RTA Boltzmann
equation. The reasons behind this rapid convergence are
not yet fully understood, especially in cases without a large
degree of symmetry.
In the following section, we point out that the method of

moments becomes much more involved when long-range
forces are added to the kinetic system via the coupling to
mean fields. Nevertheless, rapid convergence can still be
recovered by reorganizing the expansion in terms of the
resummed moments presented in Sec. IV.

III. ADDING LONG-RANGE FORCES
THROUGH MEAN FIELDS

Extending the results of the previous section to gas
mixtures consisting of multiple particle species is concep-
tually straightforward [33]. New difficulties are encoun-
tered, however, when one introduces interactions with
long-range mean fields, even for a single particle species.
Such interactions are described by adding to the relativistic
Boltzmann equation an additional force term, the Vlasov
term, describing the momentum drift of the distribution
function due to acceleration or deflection of particles [5].
The two most common types of such mean field

interactions are medium dependent effective particle
masses mðxÞ and gauge fields. Including them gives rise
to the relativistic Boltzmann-Vlasov equation:

p · ∂f þmð∂ρmÞ∂ρ
pf þ qFαβpβ∂α

pf ¼ −C½f�: ð17Þ

Here ∂μ
p ≡ ∂=∂pμ is the partial derivative with respect to

momentum. In this paper, we only consider Abelian Uð1Þ
gauge fields with a single conserved charge (electromag-
netism) though all mathematical considerations should also
apply in the case of non-Abelian gauge fields [37–39]. For
a recent derivation of dissipative relativistic magnetohy-
drodynamics from the relativistic Boltzmann equation
coupled to Maxwell’s equations using the method of
moments [20] we refer the reader to Ref. [40].
Equation (17) assumes that all four components of pμ are

independent, i.e., the particle momenta are in general off-
shell, with the on-shell constraint imposed by themomentum
integration measure in Eq. (7) when computing physical
quantities. It is sometimes more intuitive to work directly
with the on-shell distribution, which depends only on the
spatial momenta p, withp0 being replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. As

shown in Appendix C, the covariant equation (17) above can
be rewritten as the following equation for the on-shell
distribution function:

p · ∂fonðx;pÞ þmð∂imÞ∂i
pfonðx;pÞ þ qFiβpβ∂i

pfonðx;pÞ
¼ −Con½fon�ðx;pÞ: ð18Þ

However, in this approach one loses manifest relativistic
covariance, which makes it difficult to easily switch between
the global and fluid rest frames. Also, the derivation of the
moment equations becomes more complicated. For these
reasons we prefer to use Eq. (17) as our starting point.2

1In fact, in [18], the local equilibrium expectation values were
subtracted from the f moments. While this is convenient from the
numerical perspective explored in [18], we note that this does not
change the character of the expansion.

2In general, a position dependent mass requires the introduction
of an additional mean field Bμν for thermodynamic consistency,
subject to certain constraints to ensure global four-momentum
conservation and with its own equation of motion [41,42]. These
extra equations only complicate the algebra but do not change
conceptually the following considerations about the method of
moments. Therefore we will neglect in the rest of the paper all
technical details about the proper implementation of a medium
dependent mass and focus mostly on gauge field interactions.
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Equation (17) must be solved together with the Maxwell
equations that determine the electromagnetic field strength
tensor generated by the moving electric charges in the gas:

∂μFμν ¼ Jν ¼ q
Z
p
pνf ¼ qðf1uν þ fν0Þ;

∂μF̃μν ≡ 1

2
∂με

μνρσFρσ ¼ 0: ð19Þ

Clearly, an external electromagnetic field can also be added
if desired (e.g., one generated by the charges of the
colliding nuclei in relativistic heavy-ion collisions).
Following the same steps as in the preceding section one

can rewrite Eq. (17) as the following infinite set of coupled
evolution equations for the f-moments:

_fhμ1i���hμsir þ ðF collÞhμ1i���hμsir

¼ −qsEðμ1fμ2���μsÞr − qðr − 1ÞEαf
αμ1���μs
r−2

− qsερσαðμ1fμ2���μsÞβr−1 gαβuρBσ

þm _mðr − 1Þfμ1���μsr−2 þ sm∇ðμ1mfμ2���μsÞr−1 − θfμ1���μsr

þ r _uαf
αμ1���μs
r−1 − s _uðμ1fμ2���μsÞrþ1 −∇αf

αhμ1i���hμsi
r−1

− s∇αuðμ1f
μ2���μsÞα
r þ ðr − 1Þ∇αuβf

αβμ1���μs
r−2 : ð20Þ

Here we used the following relativistic decomposition of
the tensor field strength Fμν into the electric and magnetic
fields in the comoving frame3:

Fμν ¼ Eμuν − Eνuμ þ εμνρσuρBσ; ð21Þ
with

Eμ ¼ Fμνuν; Bμ ¼ −
1

2
εμνρσuνFρσ: ð22Þ

Compared with Eqs. (10), (20) has five additional terms
(the first five terms on the right-hand side) that describe
couplings with the mean electromagnetic andmass fields. At
first sight it seems straightforward to repeat the procedure
described in the previous section to derive evolution equa-
tions for the hydrodynamic moments of the distribution
function and to systematically improve them by adding the
contribution from the nonhydrodynamic moments to which
they couple dynamically. However, this simple extension of

themoment expansion to the caseof theBVMequations (17),
(19) faces additional difficulties, as we explain now.
In the Boltzmann case (1), the f-moments on the right-

hand side of Eq. (10) have the same physical dimensions as
the ones on the left-hand side: except for the contribution
from the collisional kernel, all terms on both sides of the
equation have the same sum rþ s of the energy and tensor
rank indices r and s. In the Boltzmann-Vlasov case, on the
other hand, neither the effective mass m nor the electro-
magnetic field Fμν are dimensionless; therefore, they
couple to f-moments of different physical dimensions.
Specifically, the first five terms on the right-hand side of
Eq. (20) involve f-moments whose index sum rþ s is
lower than that of the moment on the left-hand side. Either
the energy index r or the tensorial rank s, or both, are
reduced. Therefore the systematic improvement of the
solution requires considering the influence of moments
with ever-decreasing physical dimensions. We note that this
already appears in the case of the Boltzmann equation for a
single particle species using irreducible moments as shown
in Ref. [20], where particles with constant mass m were
considered. In this case, when m is nonzero there are terms
that couple irreducible moments with others of reduced
physical dimensions. However, in that case this coupling to
moments of lower physical dimensions vanishes form ¼ 0.
In the case of BVM, even for massless particles, this

coupling does not vanish because of the electromagnetic
interactions.4 In the massless limit, these lower-
dimensional moments become ill-defined for rþ s < −2,
and even for nonzero but small masses m ≪ T their
magnitude grows with increasingly negative values of
rþ s, which should affect the convergence of the moment
expansion. This is easily seen from their definition [see
Eqs. (4) and (9)] when writing out the momentum integral
in LRF components,

fμ1���μsr ¼
Z

d3p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þp2
q �r−1

phμ1i � � �phμsif

¼
Z

∞

0

dp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þp2

q �r−1
psþ2

Z
dΩp̂hμ1i � � � p̂hμsif;

ð23Þ

where the distribution function f is evaluated on-shell,
p ¼ jpj, p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and p̂hμ1i ≡ phμ1i=jpj is a spatial

unit vector in the LRF which depends only on the
momentum angles ðθp;ϕpÞ, with dΩ ¼ sin θpdθpdϕp.
Scaling out the particle mass, p ¼ my, this becomes

fμ1���μsr

Trþsþ2
¼

�
m
T

�
rþsþ2

Z
∞

0

dy
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
q �r−1

ysþ2ωμ1���μs ;

ð24Þ

3This is not the only convention found in the literature. The
Levi-Civita symbol εμνρσ is a tensor density of rank 1, not a tensor
[34]. The magnetic field defined in this way is not a vector but it
transforms with an additional determinant of the Jacobian and
gμνBν ¼ detðgÞBμ. Some authors multiply (divide for the upper
case indices) the Levi-Civita by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞp

. In this way, the
magnetic field behaves like a tensor under orientation-preserving
transformations. Although in Cartesian coordinates there is no
difference, when considering curvilinear coordinate systems
(such as Milne coordinates) this fact must be taken into account.

4This can also be seen from the equations for the irreducible
tensor moments first derived in [40].
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where the angular integral ωμ1���μs ≡ R
dΩp̂hμ1i � � � p̂hμsif is

some finite dimensionless number. Eq. (24) shows that in
the ultra-relativistic limit m=T → 0 the f-moments diverge
for rþ s < −2; for the equilibrium distribution feq this is
easily verified explicitly. In this limit, a systematic solution
of the BVM equations requires taking into account the
contributions from an infinite set of moments defined by
the tower of moment equations in Eq. (20) as soon as the
particle momenta are influenced by nonvanishing mean
fields.
In principle, this problem can be addressed by solving

Eq. (20) only for the moments with positive energy index,
approximating the other (nonhydrodynamic) moments to
which they couple by nondynamic constitutive equations.
This approach was pursued in Ref. [20] where irreducible
tensor moments of negative rwere expanded in terms of the
corresponding irreducible tensors with positive r which are
assumed to form a complete basis for the nonequilibrium
correction to the distribution function (see Appendix D for
an illustration).
We here propose a different method to avoid couplings to

possibly ill-defined moments with rþ s < −2, by intro-
ducing a new set of moments of the distribution function
that resum an infinite number of f-moments. We show how
all the physical information about the system (including
both hydrodynamic and nonhydrodynamic moments of the
distribution function) can be recovered from these
resummed moments, and that their exact dynamical evo-
lution is well-defined even in the ultra-relativisticm=T ≪ 1
limit. Furthermore, we show for a simplified physical
situation that a solution in terms of an expansion in these
resummed moments converges rapidly to the exact result
from the BVM equations.

IV. RESUMMED MOMENTS AND THE
HYDRODYNAMIC EXPANSION

Let us define

Φμ1���μs
r ðx;ξ2Þ≡

Z
p
ðp ·uÞrpμ1 � ��pμse−ξ

2ðp·uÞ2fðx;pÞ ð25Þ

and introduce the space-like projections

ϕμ1���μs
r ¼ Φhμ1i���hμsi

r : ð26Þ
The similarity of these definitions with Eqs. (4) and (9) is
obvious: they differ only by the Gaussian weight factor
e−ξ

2ðp·uÞ2 under the integral.5 By Taylor expanding this

Gaussian,6 one sees that each ϕ-moment ϕμ1���μs
r can be

written as an infinite sum of f-moments, with the same
tensor rank s but different energy indices r. The dimen-
sionful parameter ξ determines the relative weight of
f-moments with different dimensions, i.e., with different
factors of p · u, in the sum.
By construction, all resummed moments (26) of the same

tensor rank s are related.7 Using the relations

ðp · uÞ2e−ξ2ðp·uÞ2 ¼ −∂ξ2ðe−ξ2ðp·uÞ2Þ; ð27Þ

ffiffiffi
π

p
ðp · uÞ e

−ξ2ðp·uÞ2 ¼
Z

∞

−∞
dζe−ðξ2þζ2Þðp·uÞ2

¼ 2

Z
∞

0

dζe−ðξ2þζ2Þðp·uÞ2 ; ð28Þ

one easily finds that

ϕμ1���μs
rþ2 ðx; ξ2Þ ¼ −∂ξ2 ½ϕμ1���μs

r ðx; ξ2Þ�;

ϕμ1���μs
r−1 ðx; ξ2Þ ¼ 2ffiffiffi

π
p

Z
∞

0

dζϕμ1���μs
r ðx; ξ2 þ ζ2Þ

¼ 1ffiffiffi
π

p
Z

∞

ξ2

dυffiffiffiffiffiffiffiffiffiffiffiffi
υ − ξ2

p ϕμ1���μs
r ðx; υÞ;

ϕμ1���μs
r−2 ðx; ξ2Þ ¼

Z
∞

ξ2
dυϕμ1���μs

r ðx; υÞ;

ϕμ1���μs
rþ1 ðx; ξ2Þ ¼ −

1ffiffiffi
π

p
Z

∞

ξ2

dυffiffiffiffiffiffiffiffiffiffiffiffi
υ − ξ2

p ∂υϕ
μ1���μs
r ðx; υÞ: ð29Þ

The f-moments, in particular the hydrodynamic stress-
energy tensor and charge current density, are recovered
from the resummed moments of the same order and tensor
rank via the relation

fμ1���μsr ðxÞ ¼ ϕμ1���μs
r ðx; 0Þ: ð30Þ

Structurally, the exact evolution equations for the
resummed moments are very similar to those for the
f-moments in Eq. (20):

5The underlying idea is that this weight function “generates”
inverse powers of p · u via

Z
∞

0

dξe−ξ
2ðp·uÞ2 ¼

ffiffiffi
π

p
=2

p · u
:

6There is more than one way to perform such an expansion.
One can consider, for instance, −ξ2ðp · uÞ2 ¼ x and use the
Taylor expansion of ex; or ξ2ðp · uÞ2 ¼ x2 and use the Taylor
expansion of the Gaussian e−x

2

. All such series correspond to an
infinite sum of fμ1���μsr . This is why we call the Φ- and ϕ-moments
“resummed moments” of the distribution function.

7The Gaussian weight e−ξ
2ðp·uÞ2 falls off quickly enough to

preserve uniform convergence in all the following manipulations.
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_ϕhμ1i���hμsi
r þ ðΦcollÞhμ1i���hμsir ¼ −qsEðμ1ϕμ2���μsÞ

r − qðr − 1ÞEαϕ
αμ1���μs
r−2 − qsερσαðμ1ϕμ2���μsÞβ

r−1 gαβuρBσ

þm _mðr − 1Þϕμ1���μs
r−2 þ sm∇ðμ1mϕμ2���μsÞ

r−1 − θϕμ1���μs
r þ r _uαϕ

αμ1���μs
r−1 − s _uðμ1ϕμ2���μsÞ

rþ1

−∇αϕ
αhμ1i���hμsi
r−1 − s∇αuðμ1ϕ

μ2���μsÞα
r þ ðr − 1Þ∇αuβϕ

αβμ1���μs
r−2 − 2ξ2½ _uαϕαμ1���μs

rþ1 þ∇αuβϕ
αβμ1���μs
r

þm _mϕμ1���μs
r − qEαϕ

μ1���μs
r �: ð31Þ

Added complications are the extra ξ-dependent coupling
terms in the last two lines, and the fact that the resummed
moments depend on an additional continuous parameter ξ
that effectively adds an extra dimension to the complexity
of the numerical solution. This is the price we have to pay
in our approach for avoiding the need in the standard
approach [20] for expanding moments with negative energy
index r in terms of positive energy index moments.
However, due to the relations (29) between moments of
the same tensor rank with different values of r, the moment

equations can be written entirely in terms of moments with
a fixed r, thereby removing the need to determine moments
with lower r values that could become ill-defined. Hence,
in this approach the only truly independent moments are
those with different tensor ranks.
Crucially, the moment equations (31) can be further

simplified by using (29) to express everything through
moments with r ¼ 1 such that the terms proportional to
r − 1 vanish exactly:

_ϕhμ1i���hμsi
1 þ ðΦcollÞhμ1i���hμsi1 ¼ −q½sEðμ1ϕμ2���μsÞ

1 − 2ξ2ðEαϕ
αμ1���μs
1 þm _mϕμ1���μs

1 Þ�

þ s
1ffiffiffi
π

p
Z

∞

ξ2

dυffiffiffiffiffiffiffiffiffiffiffiffi
υ − ξ2

p ½m∇ðμ1mϕμ2���μsÞ
1 − qερσαðμ1ϕμ2���μsÞβ

1 gαβuρBσ�

þ 1ffiffiffi
π

p
Z

∞

ξ2

dυffiffiffiffiffiffiffiffiffiffiffiffi
υ − ξ2

p ½ _uαϕαμ1���μs
1 þ s _uðμ1∂υϕ

μ2���μsÞ
1 þ 2ξ2 _uα∂υϕ

αμ1���μs
1 −∇αϕ

αhμ1i���hμsi
1 �

− θϕμ1���μs
1 − s∇αuðμ1ϕ

μ2���μsÞα
1 − 2ξ2∇αuβϕ

αβμ1���μs
1 : ð32Þ

Here the resummed moments under the integrals are
understood as functions of the auxiliary variable

ffiffiffi
υ

p
instead

of ξ. These equations are well-defined for any tensor rank s,
even in the massless limit. The expansion in terms of
resummed moments whose dynamics follows Eq. (32)
therefore provides a well-defined and systematically
improvable generalization of the hydrodynamic expansion
of the Boltzmann-Vlasov equation in the presence of mean
field forces.
It is worth noting that after integrating Eqs. (32) over ξ

one recovers Eq. (20) for the f-moments with energy index
r ¼ 1 exactly. More generally, with appropriate manipu-
lations using relations (29) one recovers the evolution
equations for all the well-defined f-moments, before any
approximations (in particular the lowest-order ones that
form the equations of hydrodynamics in the presence of
mean fields).8 However, by using the resummed ϕ-
moments instead of the f-moments we avoid the numerical
issues associated with f-moments with sufficiently negative
energy index.

For the simultaneous solution of the Maxwell equa-
tions (19) one expresses the electric current in terms of the
resummed moments as follows [see Eq. (30)]:

JνðxÞ ¼ q

�
uνðxÞϕ1ðx; 0Þ þ

2ffiffiffi
π

p
Z

∞

0

dξϕν
1ðx; ξÞ

�
: ð33Þ

V. EXACTLY SOLVABLE CASE:
ELECTROMAGNETIC PLASMA IN 0+ 1

DIMENSIONS

To test numerically the convergence properties of the set
of equations (32) we study a situation where one can solve
the BVM equations exactly. The approximations for
physically meaningful macroscopic quantities generated
by truncating the moment expansion can then be checked
order by order.
We will focus on the massless case where the compli-

cations mentioned in the previous section are most relevant.
In the absence of mean-field forces an exact solution of the
Boltzmann equation in RTAwas found in Refs. [23–25] for
a transversally homogeneous gas undergoing longitudi-
nally boost-invariant expansion, i.e., Bjorken flow [31].
For this case approximations made within the traditional

8By applying consistent approximations to the higher-order,
nondynamical moments (see discussion below) one can ensure
that the transport coefficients are the same in both approaches.
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moment expansion [20] for the dynamics of the shear stress
tensor are known to provide a very good description of the
exact result obtained from the Boltzmann equation [43], for
reasonable values of transport coefficients. We now show
that this exact solution can be extended to the RTA
Boltzmann-Vlasov case, which will be used as our testing
ground.

A. Exact solution of the BVM equations
for Bjorken symmetry

Because of the symmetries of Bjorken flow it is
convenient to formulate the problem in Milne coordinates
xμ ¼ ðτ; x; y; ηÞ, with metric gμν ¼ diagð1;−1;−1;−τ2Þ,
where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ 1

2
ln

�
tþ z
t − z

�
: ð34Þ

The quantities τ and η are called, respectively, longitudinal
proper time and spacetime rapidity or, in short, proper time
and rapidity. Correspondingly, we use for the four-momen-
tum pμ¼ðpτ;p1;p2;pηÞ¼gμνpν¼ðpτ;−px;−py;−pη=τ2Þ.
The mass-shell condition for massless particles reads

pτ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2Tþp2

η=τ2
q

where −τpη ¼ pη=τ ¼ pz ¼ pL is the

longitudinal momentum component in Cartesian coordi-
nates. The Cartesian momentum-space volume element
d3p≡ d2pTdpL is written in Milne coordinates as
d2pTdpη=τ≡ d3p̃=τ. For more information about the
underlying symmetries of the Bjorken expanding fluid
in hydrodynamics and kinetic theory see Refs. [44] and
[26,27], respectively.
The symmetry of the expansion imposes that the (on-

shell) distribution functions of all particle species depend
only on the proper time, the transverse momentum pT , and
the longitudinal momentum pη. If the electromagnetic field
is dynamical and there are no external sources, Bjorken
symmetry also constrains the fields and the electric current.
The simplest case consistent with all symmetry constraints
is an overall charge neutral two-component gas of particles
fðτ; pT; pηÞ and antiparticles f̄ðτ; pT; pηÞ, expanding in a
purely longitudinal electric field EηðτÞ without magnetic
components, and evolving according to the following
equations for the on-shell distributions and electric field:

∂τf þ qEη
∂f
∂pη

¼ −
1

τr
ðf − feqÞ; ð35Þ

∂τf̄ − qEη
∂f̄
∂pη

¼ −
1

τr
ðf̄ − feqÞ; ð36Þ

∂τ

�
Eη

τ

�
¼ −q

Z
d3p̃
τ

pη

τpτ ðf − f̄Þ: ð37Þ

Here τr is the relaxation time present in the RTA collision
term. To preserve the conformal symmetry of this massless
plasma we assume τrðτÞ ¼ c=TðτÞ where TðτÞ is the
effective temperature of the system at proper time τ and
the constant c is related to the specific shear viscosity
η̄≡ η=s (i.e., the ratio of shear viscosity to entropy
density) of the system by c ¼ 5η̄ [26,27,35,45]. The
equilibrium distribution function reads, for both particles
and antiparticles,

feqðτ; pT; pηÞ ¼ exp ½−p · uðτÞ=TðτÞ�: ð38Þ

For a system undergoing Bjorken expansion the flow four-
velocity reduces to uμ ¼ ð1; 0Þ in Milne coordinates. The
effective temperature T is defined through the usual Landau
matching prescription E ¼ Eeq ¼ 48πkT4 where k≡
g=ð2πÞ3 [see Eq. (7)]. Appendix E presents an explicit
derivation of the evolution equations and the demonstration
that the symmetries ensure that in Milne coordinates the
flow remains static at all proper times.
The system of equations (35)–(37) is very similar to the

one studied in Ref. [46], except that we here consider a
Uð1Þ electromagnetic gauge field [which is not related to an
Abelian subgroup of color SUð3Þ] and also neglect the
effects from nonperturbative electric field decay, which are
induced via the Schwinger mechanism. The latter is
exponentially suppressed by the inverse electromagnetic
coupling α−1, and thus in heavy-ion collisions the electro-
magnetic Schwinger effect acts on a much slower time
scale than those characterizing the strong interactions.
The solution of Eqs. (35) and (36) for the particle and

antiparticle distributions reads

fðτ; pT; pηÞ ¼ Dðτ; τ0Þf0ðpT; pη þ Δpηðτ; τ0ÞÞ

þ
Z

τ

τ0

ds
Dðτ; sÞ
τrðsÞ

feqðs; pT; pη þ Δpηðτ; sÞÞ;

ð39Þ

f̄ðτ; pT; pηÞ ¼ Dðτ; τ0Þf̄0ðpT; pη − Δpηðτ; τ0ÞÞ

þ
Z

τ

τ0

ds
Dðτ; sÞ
τrðsÞ

feqðs; pT; pη − Δpηðτ; sÞÞ:

ð40Þ

The initial conditions are f ¼ f0 and f̄ ¼ f̄0 at τ ¼ τ0. The
damping function D and the momentum shift Δpη are
defined as

Dðτ2; τ1Þ ¼ exp

�
−
Z

τ2

τ1

ds
1

τrðsÞ
�
; ð41Þ

Δpηðτ2; τ1Þ ¼ q
Z

τ2

τ1

dsEηðsÞ: ð42Þ
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The implicit equations (39) and (40) can be solved, for
arbitrary initial distributions f0 and f̄0, by numerically
iterating the temperature and electric field profiles, TðτÞ
and EηðτÞ, subject to the Landau matching constraint

48πkT4ðτÞ ¼ EðτÞ ¼
Z

d3p̃
τ

pτðf þ f̄Þ ð43Þ

and the solution to the Maxwell equation (37)

EηðτÞ ¼
τ

τ0
E0
η − qτ

Z
τ

0

ds
Z

d3p̃
s

pη

spτ ðf − f̄Þ; ð44Þ

following the method used in Ref. [46]: One inserts an
initial guess for the temperature and electric field profiles
into the right-hand sides of Eqs. (39) and (40) and then uses
the distribution functions obtained from these equations to
obtain new profiles from Eqs. (43) and (44). The process is
iterated until convergence of the profiles, at some desired
precision, is achieved. The resulting particle and antipar-
ticle distribution functions form (for all practical purposes)
an exact solution of the coupled BVM equations for
systems with Bjorken symmetry.
As a basis for comparisons with the resummed expan-

sion discussed further below, we consider a set of thermal
equilibrium initial conditions with parameters that yield

energy densities that can be considered reasonable for
problems of interest in the field, such as high energy
proton-antiproton collisions. We take for the initial temper-
ature T0 ¼ 0.3 GeV defined at the initial time
τ0 ¼ 1 fm=c. For the initial electric field we assume a
temperature-normalized ratio E0

η=T0 ¼ ðτ0E0
LÞ=T0 ¼ 1=5,

corresponding to a normalized value for the longitudinal
Cartesian component of the initial electric field given by
E0
L=T

2
0 ≈ 2=15. In dimensionful units, this initial electric

field has the value E0
L ≈ 0.3 fm−2. This is a natural order of

magnitude in this case because it corresponds to the electric
field of a parallel plate capacitor made of conducting
sheets representing the central collision between a proton
and an antiproton that are both (infinitely) Lorentz
contracted, with charge densities σ corresponding to the
charge of a proton smeared over a disk of radius 1 fm:
E ¼ σ ¼ 1=ðπr2pÞ ≈ ð1=πÞ fm−2.
Figures 1(a)–1(d) show the evolution of the temperature

T=T0, longitudinal/transverse pressure ratio PL=PT ,
9
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FIG. 1. Time evolution of the temperature (a), pressure anisotropy (b), electric current (c), and electric field (d), for four different
choices of the specific entropy η̄ ¼ η=s (denoted by different colors as described in the legend) and two different choices of the initial
longitudinal electric field, E0

η=T0 ¼ 0 (solid lines) and E0
η=T0 ¼ 1=5 (dash-dotted lines). The initial temperature was chosen as T0 ¼

0.3 GeV at starting time τ0 ¼ 1 fm=c.

9The longitudinal pressure is the projection of the stress-
energy tensor on the direction zμ, i.e., PL ¼ Tμνzμzν reduces to
T33 in the local rest frame where zμ ¼ −δμ3. Since for a conformal
system the bulk viscous pressure vanishes, the transverse pressure
can then be computed from the energy-momentum tensor of the
particles as PT ¼ − 1

2
ðΔμνTμν þ PLÞ.
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normalized electric current JL=T3, and electric field
EL=E0

L, respectively, for four different choices of the
specific shear viscosity, 4πη̄ ¼ 1, 3, 10, and 100, covering
the range from the KSS result [47] to almost free-stream-
ing. We compare the evolution according to the BVM
equations (solid lines) with that of a system of uncharged
particles, i.e., without electric field (dash-dotted lines).
According to Fig. 1(a), the temperature evolution is not

significantly affected by the presence of the electric field.
This is easily explained by the fact that the energy density is
dominated by the particles, with an almost negligible field
energy density contribution of E2=2 ¼ E2

L=2 ¼ E2
η=ð2τÞ

which, at τ ¼ τ0, corresponds to 0.7% of the particles’
energy density 48πkT4. On the other hand, the pressure
anisotropy PL=PT shown in Fig. 1(b) exhibits a much
stronger sensitivity to the interaction of the charged
particles with the electric field. This interaction accelerates
the isotropization of the pressure, most prominently for
intermediate values of the specific shear viscosity η̄.
Compared to the study performed in Ref. [46] where a

similar set of equations was investigated, the effect of the
electric field on the pressure anisotropy is significantly
reduced in our study. This is due in part to the smaller
electric fields considered here, but the lack of a Schwinger
term for the spontaneous decay of the fields in our

treatment also contributes to this difference. As already
stated we neglect the latter (and the emission of photons by
the accelerated charges) since their rates are suppressed
relative to strong-interaction collisions by the smallness of
the electromagnetic coupling constant α ¼ 1=137.
Proceeding to the electric current shown in Fig. 1(c),

one observes at early times that the normalized diffusion
current JL=T3 increases with increasing η̄ (i.e., for larger
collisional mean free path), but that for smaller η̄ (i.e.,
larger microscopic collision rate) it persists longer. For
4πη̄ ¼ 100, i.e., close to the free streaming limit, the
electric current is large enough to eventually flip the sign
of the electric field, as seen in Fig. 1(d). For the initial
conditions chosen here this happens about 7 fm=c after
starting the simulation. This reversal of the direction of the
electric field repeats at larger times, i.e., over long time
scales the electric field oscillates in time. This will be
further explored in Fig. 4 below.
For later comparison with the resummed moment expan-

sion we also studied the exact solution for more extreme
cases, corresponding to much larger initial electric fields
(×20) and larger initial expansion rates (×4). They are
shown in Fig. 2. To increase the initial expansion rate θ0 ¼
1=τ0 we simply decrease τ0 from 1 to 0.25 fm=c. This
entails a larger initial Knudsen number Kn0 ≡ τ0rθ0 ¼ τ0r=τ0
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FIG. 2. Time evolution of the temperature (a), the electric field (b), the pressure anisotropy PL=PT (c), and the electric current (d), for
fixed initial temperature T0 ¼ 0.3 GeV and minimal specific shear viscosity 4πη̄ ¼ 1 but two different choices of the initial electric field
that differ by a factor 20 and two different starting times τ0 that differ by a factor 4 [colored lines, see legend in panel (d)]. The black solid
lines show for comparison the results from Fig. 1 for the same shear viscosity.
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which increases from Kn0 ≲ 1=3 to Kn0 ≳ 1 as we decrease
τ0 from 1 to 0.25 fm=c. Typically, nonhydrodynamic
behavior is expected to occur when the Knudsen numbers
are not sufficiently small.
Figure 2(a) shows that changing the Knudsen number

affects the temperature evolution only quantitatively (the
system cools faster as the expansion rate and Knudsen
number increase) but not qualitatively. When increasing the
initial electric field by a factor 20, however, the temperature
starts to evolve nonmonotonically: the initial cooling stage
is soon (after about 1.5–2 fm=c) followed by an extended
reheating period where Ohmic heating (i.e., the dissipation
of the initially large electric field due to collisions among
the charged particles) causes the temperature to increase
again, in spite of the longitudinal expansion.
The evolution of the pressure anisotropy shown in

Fig. 2(b) exhibits even stronger sensitivity to the initial
expansion rate and, in particular, the initial electric field.
The reheating seen in Fig. 2(a) for the cases with large
initial electric fields is accompanied (in fact, preceded) by a
reversal of the pressure anisotropy from PL=PT < 1 to
PL=PT > 1. Figure 2(c) shows that the normalized electric
current JL=T3 increases with both the initial electric field
and initial expansion rate. Without the normalization
by T3, the nonmonotonic behavior of TðτÞ seen in panel
(a) actually causes JL to oscillate, too, for large initial
electric fields (not shown in Fig. 2). Only the electric field,
shown in Fig. 2(d), decreases continuously, without exhib-
iting any nonmonotonic effects on the same time scales.

Reheating, reversal of the pressure anisotropy and oscil-
lations in the magnitude of the electric current do not occur
for the smaller of the two initial values for the electric field
studied here, irrespective of the initial expansion rate.
A careful comparison between Figs. 1(d) and 2(d) leads

to an interesting observation: While increasing the specific
shear viscosity 4πη̄ at fixed τ0 (i.e., fixed initial expansion
rate) (Fig. 1) and increasing the initial expansion rate (by
reducing τ0) at fixed 4πη̄ (Fig. 2) both increase the initial
value of the Knudsen number Kn0, they have opposite
effects on the initial rate of decrease of the electric field.
Figure 1(d) shows that EL initially decreases more rapidly
when 4πη̄ is increased at fixed τ0 whereas we see in
Fig. 2(d) that EL initially decreases more slowly when the
initial expansion rate is increased at fixed 4πη̄, for both
choices of the initial electric field value. Furthermore, we
note from Fig. 2(d) that, at fixed initial expansion rate, the
electric field initially decreases relatively more slowly, but
at later times relatively more quickly as the initial value
E0
L=T0 is increased. These observations reflect an interest-

ing interplay between the two transport mechanisms related
to the shear stress and charge diffusion currents that control
the dissipative effects in this theory.
We point out that for the larger of the two initial electric

field values studied here the system is always far away
from the Navier-Stokes limit. In order to see the ultimate
approach to local thermal equilibrium, we show in Fig. 3
the long-time behavior of the macroscopic quantities
studied in Figs. 1 and 2, for the most extreme case with
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FIG. 3. Long-time behavior of the evolution of the macroscopic quantities shown in Fig. 2, for initial conditions T0 ¼ 0.3 GeV and
E0
L=T0 ¼ 4 fm−1 at τ0 ¼ 0.25 fm=c. Color coding and specific shear viscosity are the same as in Fig. 2.
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both large initial electric field E0
L=T0 ¼ 4 fm−1 and large

initial expansion rate θ0 ¼ 4 fm−1c. Clearly the system
remains far from equilibrium up to 50 fm=c when the
pressure ratio PL=PT finally returns to values close to 1.
Beyond that time, the temperature, electric field, and
electric current approach their asymptotic limits as power
laws.10 In this regard, it would be interesting to study how
the electric field affects the existence of hydrodynamic
attractor solutions [48–53] for the BVM equations.
We already mentioned in the discussion of Fig. 1 that, for

very large mean free paths, 4πη̄ → ∞, corresponding to the
collisionless Vlasov limit, the electric field flips sign at
rather early times, hinting at long-time oscillations. This is
further explored in Fig. 4 where we consider 4πη̄ ¼ 100
and show the behavior of the solid red lines in Fig. 1 over a
larger time interval τ − τ0 ¼ 100 fm=c, together with a
similar case with 20× larger initial electric field and 4×
larger initial expansion rate. One sees that for large colli-
sional relaxation times both the electric current and electric
field [panels (c) and (d)] exhibit prominent long-time
oscillations, even in the absence of a Schwinger term
describing spontaneous electric field decay [46]. For the

moderate initial value of the electric field selected,
E0
L=T0 ¼ 0.2 fm−1 (see red solid lines), these field oscil-

lations have only a minor effect on the evolution of the
pressure anisotropy [shown in panel (b)] and leave no
visible trace in the evolution of the temperature [panel (a)].
This is, as before, easily explained by the small overall
contribution of the electric field to the total energy density
which is strongly dominated by the particle contribution.
For much larger initial electric fields (grey dash-dotted
lines), however, the oscillating energy content stored in the
electric field and current is large enough to cause, through
Ohmic heating, oscillations even in the temperature (a) and
pressure ratio (b).

B. Resummed moment equations
for BVM with Bjorken expansion

Since our plasma contains both particles and antipar-
ticles we must consider two generations of resummed
moments, ϕμ1���μs

r for the particles and ϕ̄μ1���μs
r for the

antiparticles. The symmetry of the expansion reduces the
number of independent degrees of freedom: Because of
homogeneity in the transverse plane, moments with an odd
number of x or y indices vanish—only pairs (or, more
generally, even numbers) of x and y indices yield nonzero
moments. In particular,
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FIG. 4. Long-time evolution of (a) temperature T=T0, (b) pressure anisotropy PL=PT, (c) electric current JL=T3, and (d) electric field
EL=E0

L for large shear viscosity 4πη̄ ¼ 100. Red solid lines: Same as the red solid lines in Fig. 1, but evolved over longer times. Grey
dash-dotted lines: Similar, but for 20× larger initial electric field and 4× larger initial expansion rate.

10We checked this by plotting Fig. 3 double-logarithmically.
We note that the current and electric field approach their
asymptotic power laws sooner than the temperature.
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ϕxxμ1���μs
1 ¼ ϕyyμ1���μs

1 ¼
Z
p
p2
x � � � f ¼ 1

2

Z
p
p2
T � � � f

¼ 1

2

Z
p

�
ðp · uÞ2 − p2

η

τ2

�
� � � f

¼ −
1

2

�
∂2
ξϕ

μ1���μs
1 þ 1

τ2
ϕηημ1���μs
1

�
: ð45Þ

With this result we can express all of the nonvanishing
moments with x and y indices through moments of equal or
lower rank with only η indices.
At this point it is convenient to use the longitudinal

vector zμ with Cartesian components ðsinh η; 0; 0; cosh ηÞ
or Milne components ð0; 0; 0; 1=τÞ as it allows us to express
the factor pη=τ covariantly as pη=τ ¼ p · z. We use it to
introduce the independent scalar moments

ϕ�
l ≡ ϕμ1���μl

1 zμ1 � � � zμl � ϕ̄μ1���μl
1 zμ1 � � � zμl

¼
Z

d3p̃
τ

�
pη

τ

�
l
e−ξ

2ðp2
Tþp2

η=τ2Þðf � f̄Þ: ð46Þ

For the Bjorken expanding case, the scalars fϕ�
0 ;…;ϕ�

l g
contain all the information about the resummed moments
up to tensor rank l of the system. Their exact evolution can
be obtained directly from Eq. (31), taking l projections
along z and summing (subtracting) the particle and anti-
particle equations. An equivalent method consists in taking
directly the τ derivative of the right-hand side of Eq. (46).
Either way one finds

∂τϕ
�
l þ 1

τr
ðϕ�

l −ϕ�
l;eqÞ

¼ −
lþ 1

τ
ϕ�
l þ 2ξ2

τ
ϕ�
lþ2 þ

qEη

τ
½lϕ∓

l−1 − 2ξ2ϕ∓
lþ1�: ð47Þ

In the last term of Eq. (47), it is understood that for l ¼ 0
the first term in the square brackets is zero.
The equilibrium moments ϕ−

l;eq vanish for all l while the
equilibrium þ-moments ϕþ

l;eq vanish for odd l ¼ 2nþ 1.
For even l ¼ 2n one has

ϕþ
2n;eq ¼

8πk
T

ð2nþ 2Þð2nÞ!
ð2ξÞ2nþ4

U

�
2þ n;

3

2
;

1

ð2ξTÞ2
�

ð48Þ

where Uða; b; zÞ is the Tricomi confluent hypergeometric
function [54].
Full knowledge of the hydrodynamic moments (i.e., the

stress-energy tensor and the electric current) is encoded in
the three scalar moments ϕþ

0 , ϕ
−
1 , and ϕþ

2 . Therefore, at
leading order in the resummed moment expansion, only the
ϕ�
l up to l ¼ 2 are considered as dynamical variables, i.e.,

we truncate the hierarchy of moment equations (47) at
l ¼ 2. As higher-order corrections, we will progressively

consider the higher-order moments as additional dynamical
variables.11

When truncating the moment hierarchy at some maxi-
mum l value lmax, there is no unique prescription to
approximate the moments of orders lmax þ 1 and lmax þ 2
appearing on the rhs of Eq. (47). The simplest one is to
assume ϕ�

l ≈ ϕ�
n;eq for n > lmax. For numerical purposes

this approximation is very helpful because we can use the
simple formula (48) to evaluate the nondynamical higher-
order moments. It must be noted, though, that this approxi-
mation is not the most accurate possible. Recall that the
tensor moments ϕμ1���μs

r are defined on a nonorthonormal
polynomial basis of tensors constructed from the locally
spatial momentum vectors phμi. Due to the lack of ortho-
gonality, some information on the higher-order moments is
already contained in the lower-order ones and this could be
exploited.12 We will here ignore this extra information,
leaving the most effective approximation scheme for the
nondynamical higher-order moments for future research.
It is numerically convenient to normalize the scalar

projections ϕ�
l in order to confront pure numbers of similar

order of magnitude in the evolution equations. For even
l ¼ 2n we do so by dividing them by the ξ → 0 limit of
their equilibrium values:

lim
ξ→0

ϕþ
2n ¼ 8πkð2nþ 2Þð2nÞ!T2nþ3

0 : ð49Þ

The right-hand side can be extended to the case of odd l,
and we can use the same normalizing factors for both plus
and minus moments:

M�
l ≡ ϕ�

l

8πkðlþ 2Þl!Tlþ3
0

: ð50Þ

Obtaining from Eq. (47) the evolution of the normalized
moments (50) is straightforward:

∂τM�
l þ 1

τr
ðM�

l −M�
l;eqÞ

¼ −
lþ 1

τ
M�

l þ 2ðξT0Þ2
τ

ðlþ 4Þðlþ 1ÞM�
lþ2

þ qEη

τT0

�
lþ 1

lþ 2
M∓

l−1 − 2ðξT0Þ2
ðlþ 3Þðlþ 1Þ

lþ 2
M∓

lþ1

�
:

ð51Þ

11Because of symmetry, the odd ϕþ
2nþ1 and the even ϕ−

2n never
couple directly to any of the other moments. Their evolution
couples with the hydrodynamic moments only indirectly through
the electric field, which is itself coupled to the electric current. In
particular, if the initial values of all these moments are zero (for
instance for local equilibrium initial conditions) their evolution is
trivial.

12The situation is analogous the one presented in [18] for the
(nonresummed) reducible moments.
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It must be noted that for l ¼ 0 the (otherwise undefined)
first term ∼M∓

−1 inside the square brackets is absent.
The effective temperature is defined through the Landau

matching procedure (43). Making use of the normalized
moments, the effective temperature can be written as

48πkT4 ¼
Z
p
ðp · uÞ2ðf þ f̄Þ ¼ 2ffiffiffi

π
p

Z
∞

0

dξð−∂ξ2ϕ
þ
0 Þ

¼ 32
ffiffiffi
π

p
kT3

0

Z
∞

0

dξð−∂ξ2M
þ
0 Þ ð52Þ

or, equivalently,

T ¼
�

2

3
ffiffiffi
π

p T3
0

Z
∞

0

dξð−∂ξ2M
þ
0 Þ
�1

4

: ð53Þ

Implementing Landau matching is numerically expensive
since the temperature must be matched to the energy
density moment by evaluating the integral on the rhs of
(53) at each time step. It turns out to be more convenient to
instead treat T as an additional dynamical variable. Its exact
evolution can be obtained by differentiating the rhs of
Eq. (53) with respect to time and inserting Eq. (51) for
l ¼ 0. One finds

∂τT ¼ −
1

4τ

�
T þ 1

24ðπÞ32kT3

Z
∞

0

dξϕþ
2

−
qEη

24ðπÞ32kT3

Z
∞

0

dξϕ−
1

�

¼ −
1

4τ

�
T þ 8T5

0

3
ffiffiffi
π

p
T3

Z
∞

0

dξMþ
2 −

qEηffiffiffi
π

p
T3

Z
∞

0

dξM−
1

�
:

ð54Þ

The last equation to solve numerically is the evolution of
the electric field (44). Written in terms of the normalized
moments it becomes

∂τEη ¼
1

τ
Eη −

2qτffiffiffi
π

p
Z

∞

0

dξϕ−
1

¼ 1

τ
Eη − 48kqτT4

0

ffiffiffi
π

p Z
∞

0

dξM−
1 : ð55Þ

These last two equations, coupled to Eq. (51) for those
moments that we treat dynamically, can be solved with an
explicit Runge-Kutta method. In the following subsection,
we compare the evolution of the macroscopic quantities
(i.e., the temperature, pressure anisotropy, electric current,
and electric field) between the solution of the resummed
moment equations and the exact solution of the Boltzmann-
Vlasov-Maxwell equations discussed in the previous
subsection.

C. Comparison of the resummed moment expansion
with the exact solution of the BVM equations

As an example for studying the convergence of the
resummed hydrodynamic moment expansion, we consider
the default initial conditions used for the exact solutions
shown in Fig. 1 (T0 ¼ 0.3 GeV and E0

L=T0 ¼ 0 or
0.2 fm−1 at τ0 ¼ 1 fm=c), with minimal shear viscosity
4πη̄ ¼ 1 (black lines). In Fig. 5, we compare these exact
solutions with three iterations of the resummed moment
expansion, corresponding to truncations at different lmax
values as described in the preceding section, i.e., with
thermal equilibrium values M�

n;eq for all moments of order
n > lmax. In Fig. 5, the results from the resummed moment
expansion are nearly indistinguishable from the exact
results already for lmax ¼ 6. Figure 6 shows that a relative
precision better than 1=1000 is achieved with lmax ≥ 8. We
verified the continued convergence of the series up to
lmax ¼ 34 where we stopped the calculation.
Figure 6 shows that for τ − τ0 < 10 fm=c the resummed

moment expansion agrees with the exact solution to better
than 10% already at leading order lmax ¼ 2, i.e., in the
hydrodynamic limit. The largest deviation is seen for the
current JL=T3 where it reaches about 8%, followed by
3.5% for the pressure ratio and 2.5% for the electric field.
We found similar levels of (im)precision for all other
parameter sets studied in this work. Larger deviations from
the exact result at leading order are accompanied by slower
convergence towards the exact result as the order of the
approximation is increased. But in most cases lmax ¼ 12
resulted in relative deviations from the exact result of less
than 1%. Large Knudsen numbers (large expansion rates)
and large initial pressure anisotropies have surprisingly
weak effects on the speed of convergence.
A significant slowing of the rate of convergence was

noted only for very large initial electric fields and/or large
relaxation times (i.e., large specific shear viscosities, close
to the free-streaming limit). In both cases, the reason for
slower convergence is easily understood by inspecting
Eq. (51). There are only two couplings to moments of
higher orders, one of which is multiplied by the electric
field. No matter the order of the approximation, in the
equation for l ¼ lmax the moments M∓

lmaxþ1 and M�
lmaxþ2

must be approximated. A large electric field, or better yet, a
large (dimensionless) ratio EηðτÞ=T0, magnifies the cou-
pling to one of the approximated moments. The approxi-
mation error then affects the evolution of all the lower
moments since they all couple to the higher ones via the
electric field. For large relaxation times one must recall that
the temperature decreases more slowly than the expansion
rate, due to Ohmic heating. Normally the second term on
the left-hand side of Eq. (51), which is proportional to
1=τr ¼ TðτÞ=ð5η̄Þ, soon dominates the evolution since the
scalar expansion rate θ ¼ 1=τ suppresses all terms on the
right-hand side. This stage is, however, postponed as
η̄ → ∞. In the free-streaming limit, the right-hand side,
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FIG. 6. Similar to Fig. 5, but here presented as relative deviations from the exact results of the results from the resummed moment
expansion for different truncation orders up to lmax ¼ 12.
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FIG. 5. Comparison of the exact time evolution (black solid lines) with that from the resummed moment expansion truncated at
different orders lmax as specified in the legend (colored lines), for the temperature T=T0 (a), pressure ratio PL=PT (b), electric current
JL=T3 (c), and electric field El=E0

L (d), evolved with minimal specific shear viscosity 4πη̄ ¼ 1. Initial conditions are T0 ¼ 0.3 GeV and
E0
L ¼ 0.2 fm−1 at τ0 ¼ 1 fm=c.
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including the terms coupling to the higher-order moments,
becomes dominant, and thus the evolution becomes more
sensitive to approximations made for the moments of
order n > lmax.
While illuminating, these considerations are not enough

to understand the reasons for the observed generically rapid
convergence of the resummed moment expansion, nor do
they throw light on possible situations that might spoil this
convergence when going from the simple case of Bjorken
flow to a more realistic 3-dimensional expansion. It is
worth noting that nowhere in the discussion of the con-
vergence of the resummed moment expansion is the
influence of large gradients or large pressure corrections
mentioned. The present formalism thus appears unrelated
to the traditional expansion in powers of Knudsen and
inverse Reynolds numbers [20] which have been used to
define the effective range of validity of relativistic hydro-
dynamics. Within the resummed moment expansion,
the only approximation lies in the coupling to moments
of order n > lmax, and only these (nonhydrodynamic)
moments are approximated (in our case with the
assumption of small deviations from equilibrium13).
So how does approximating these higher-order, non-

hydrodynamic moments affect the dynamical evolution of
the hydrodynamic moments, i.e., of the charge current and
energy-momentum tensor? The following observations
may bring us closer to an understanding of the good
convergence of the moment expansion even in situations
where traditional arguments based on the size of
hydrodynamic gradients and/or dissipative flows (i.e., on

Knudsen and/or inverse Reynolds numbers) suggest the
breakdown of hydrodynamics. Looking at Eq. (51) one sees
that the higher-order moments always appear multiplied by
a factor ðξT0Þ2. A crucial observation is that, in the
situations studied in this paper, the resummed moments
are all strongly peaked around ξ ≃ 0, especially the higher-
order ones (see Fig. 7). This is because the resummed
moments in Eq. (25), and hence their (normalized) (0þ 1)-
dimensional versions in Eqs. (46) and (50), contain a
Gaussian factor e−ξ

2ðp·uÞ2 that effectively suppresses all
integrals at large values of ξ. It is especially true for the
higher-rank moments which, due to extra momentum
factors in the integrand, probe the distribution function
at higher momenta where the suppression by the Gaussian
becomes effective already at lower values of ξ.
On the rhs of Eq. (51) we already grouped the terms

(both those with and without an electric field factor)
accordingly. In both lines, the term with the lower-order
dynamically evolved moment will dominate over the one
involving the higher-order moment because, in the ξ region
where the moments are substantial, the latter is suppressed
by a factor ξ2. For l ¼ lmax, in particular, this means that the
coupling to the moments of order lmax þ 1 and lmax þ 2 that
are not evolved dynamically, but instead approximated by
their equilibrium values, are suppressed. This suppression
of the influence from higher-order moments repeats at each
step of increasing the order l, which largely explains the
observed rapid convergence of the resummed moment
method.
Figure 8 illustrates this mechanism for the þ moment of

order l ¼ 2, Mþ
2 , which is responsible for the pressure

anisotropy. The black solid lines show the ξ-dependence of
the leading moments Mþ

2 and M−
1 in the upper and lower
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FIG. 7. The resummed moments M�
l for l ¼ 1;…; 8, normalized by their values at ξ ¼ 0, as functions of t≡ ðξT − 1Þ=ðξT þ 1Þ, at

two proper time values τ ¼ 1.6 (left panel) and 10 fm=c (right panel). Evolution parameters are the same as in Fig. 5. The momentsM�
l

are seen to decay to zero over the natural length scale ξ ∼ 1=T. (Note that the temperature T drops by more than 1=3 between τ ¼ 1.6 and
10 fm=c; see Fig. 5(a).)

13Perhaps better approximations for the part of the n > lmax
moments that is orthogonal to the lower moments can be found.
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lines of the rhs of Eq. (51), plotted as functions of the
transformed variable t≡ ðξT0 − 1Þ=ðξT0 þ 1Þ whose ori-
gin lies at ξ ¼ 1=T0. The blue-dashed lines show the
subleading second terms in these two lines (the ones that
describe the coupling to moments of higher order) as
obtained from a calculation where all moments up to order
lmax ¼ 24 were evolved dynamically. The red-dotted lines
show the effect of truncating the resummed moment
expansion at leading order (i.e., at lmax ¼ 2) and approxi-
mating the moments Mþ

4 and M−
3 by their thermal equi-

librium values. In both panels, the coupling terms to the
higher-order moments are seen to be dwarfed by the
leading terms over the entire ξ range, but especially at
ξ ¼ 0 (t ¼ −1) where the resummed moments peak.
The suppression of coupling terms to higher-order

resummed moments is expected to partially persists in
3þ 1 dimensions. It is difficult to think of a realistic phase-
space distribution that will not produce resummed
moments that peak near ξ ¼ 0 and decay for ξ larger than
the inverse of the typical energy scale of the system (which
is normally larger than the temperature to which the system
settles after thermalization). For massive particles a
momentum-independent suppression factor e−ξ

2m2

can be
extracted from the defining integral (25). It is worth noting
that the Gaussian suppression factors arise only in the
resummed expansion; the ordinary expansion equations
for the hydrodynamic moments are recovered from the
resummed moments by performing a ξ integral for the
scalar, vector and rank-two tensor equations.
Still, looking at the general Eq. (32) one notices two

terms in the second integral on the rhs that couple to
moments of higher tensor rank without being suppressed by
factors of ξ2: the first one involving the acceleration and the
last one which is a space-divergence. In the general case,
these terms have the potential of spoiling the rapid
convergence of the resummed moment expansion and thus
the good agreement of the leading-order hydrodynamic

approximation with the exact solution of the Boltzmann-
Vlasov-Maxwell equations. Future research will settle this
issue. There is, however, a somewhat handwaving argu-
ment suggesting that the resummed moment expansion
will indeed continue to converge in the general (3þ 1)-
dimensional case. Looking again at Eq. (32) one sees that at
any order only two higher-order moments couple without
ξ2 suppression to the evolution of the lower ones (five if one
includes the ξ2-suppressed couplings). On the other hand,
the number of moments of the same or lower rank increases
rapidly with the tensor rank s. Arguing that all the moments
of a given tensor rank and order have the same physical
dimensions and are therefore expected to be of similar order
of magnitude, exact cancellations between many of them
would be needed for their contribution to the evolution
equations to be overwhelmed by the two terms coupling to
higher ranks or orders. This argument works both with and
without coupling to the electromagnetic fields.
We note that a similar argument cannot be made for the

traditional moment expansion, even in the absence of
electromagnetic fields where the coupled equations couple
only to moments that remain well defined and well behaved
in the limitm=T ≪ 1. Equation (10) for the evolution of the
standard f-moments contains sþ 3 terms coupling to
moments of different order and only sþ 1 moments of
the same tensor rank s and energy index r. Moreover, two
of the couplings to different moments are multiplied by r
and r − 1. Recalling that all members of the tower of
moments coupled to the hydrodynamic moments feature
the same sum rþ s, one must therefore expect that at the
truncation step the evolution of the last dynamically
evolved moments is dominated by the krk þ kr − 1k þ
1þ s approximated moments, unless the approximation is
fine-tuned to render their combined contribution sublead-
ing relative to the sþ 1 dynamically evolved moments.
Such a cancellation does not even happen automatically in
the highly symmetric Bjorken case; therefore, even there
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FIG. 8. The left and right terms in the first (a) and second lines (b), respectively, of the rhs of Eq. (51) for l ¼ 2, plotted at τ ¼ 1.6 fm=c
as functions of t≡ ðξT0 − 1Þ=ðξT0 þ 1Þ.
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one must put some effort into designing a good enough
approximation scheme for the nondynamical moments that
does not ruin the convergence properties of the expansion.
We close this section with the following remark. In this

work, we used the approximation M�
n ¼ M�

n;eq for the
normalized moments of order n > lmax where lmax is the
order of the last dynamically evolved moment. This
corresponds in the general (3þ 1)-dimensional case to
the approximation ϕμ1���μs

r ¼ ϕμ1���μs
r jeq. Due to its simplicity,

this is a particularly convenient approximation if one wants
to check the convergence properties up to very high orders.
However, it does not make full use of all the information
from the lower-order moments. This is illustrated in Fig. 9,
where we compare the precision of the resummed moment
method in reproducing the exact pressure anisotropy
obtained from the Boltzmann equation (without electric
fields) at different orders of truncation with that of two
well-established second-order dissipative hydrodynamic
approximations for uncharged fluids that were derived
using different methods, namely the Müller-Israel-
Stewart (MIS) [36,55] and Denicol-Niemi-Molnár-
Rischke (DNMR) theories [20]. Figure 9 shows that, at
leading order, the resummed moment approximation
reaches almost the same level of precision as the MIS
theory, albeit with deviations from the exact result that have
opposite signs. The DNMR approximation, on the other
hand, is significantly closer to the exact solution; with the
resummed moment expansion, using our approximation
scheme, one must go to lmax ¼ 6 (i.e., NNLO) to reach
comparable precision.
At leading order without electric fields, the moment

evolution equations for the resummed moment expansion
and the traditional method of moments (DNMR) have the

same form; they differ only in the approximation for the
higher-order moments. In particular, the DNMR approach
does not assume thermal equilibrium values for the higher-
order moments, but instead relates them to the dynamically
evolved lower-order moments. One can imagine doing
something similar in the resummed moment expansion.
Other approximations can also be considered, such as
anisotropic hydrodynamic [43] expectation values. We
leave the problem of optimizing the approximation for
the nondynamical higher-order moments to future research.

VI. CONCLUSIONS

In this paper, we studied the emergence of hydrody-
namics from kinetic theory for an overall electrically
neutral system of charged particles described by the
Boltzmann-Vlasov-Maxwell equations. We found that for
this problem a straightforward generalization of the stan-
dard method of moments becomes considerably more
intricate, especially in the massless limit. We pursued a
different approach which consists of introducing an expan-
sion in terms of a set of resummed moments that converges
rapidly for systems both with and without long-range mean
fields. As was the case for the standard moments, the
components of the particle (charge) current and energy-
momentum tensor (i.e., the hydrodynamic degrees of
freedom of the system) can be expressed through certain
low-order resummed moments. Truncating the hierarchy of
coupled evolution equations for the resummed moments at
lowest order yields a set of hydrodynamic equations. The
precision of the description of the microscopic dynamics
via moment equations can be systematically improved by
truncating the hierarchy at higher order, thereby including
the effects of nonhydrodynamic moments of the distribu-
tion function into the evolution of the hydrodynamic
degrees of freedom. Therefore, the resummed moments
method provides a convenient and reliable basis for the
hydrodynamic expansion of a plasma interacting with long-
range mean fields.
We studied the convergence of this expansion, and the

precision of the resulting macroscopic hydrodynamic
description as a function of the truncation order, for a
highly symmetric expansion scenario (Bjorken flow),
where symmetries (longitudinal boost invariance and trans-
verse homogeneity) simplify the system of equations to the
extent that the microscopic kinetic evolution defined by the
BVM equations can be solved exactly. Exploring a range of
model parameters such as the initial expansion rate (con-
trolled by the starting time τ0), the initial value of the
electric field, and the specific shear viscosity of the fluid
(controlled by the relaxation time encoded in the RTA
Boltzmann collision term), we found uniformly rapid
convergence of the moment expansion to the exact solution.
As a figure of merit one should remember that a

precision of better than 1=1000 for the hydrodynamic
variables is typically reached by truncating the resummed

FIG. 9. Comparison between the resummed moment expansion
at different truncation orders (see legend) and two second-order
viscous hydrodynamic approximations (MIS and DNMR), for the
pressure anisotropy in the absence of an electric field.
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moment expansion at order lmax ¼ 8 or higher. When
performing the truncation, we here approximated the
higher-order moments to which the last dynamically
evolved moment couples by their thermal equilibrium
values; though other approximation schemes are possible
they were not investigated in this paper. The most efficient
way to slow down the convergence of the expansion is to
increase the viscosity to large values, i.e., to push the theory
towards the free-streaming limit. Slower than typical
convergence was also found for very large values of the
initial electric field.14 The first of these two observations
can be explained by observing that in Eq. (51) the coupling
of the moment M�

l to itself dominates over the coupling to
the (approximated) higher moments as long as the inverse
Knudsen number τ=τr is small, but that the evolution
becomes very sensitive to the approximation of the higher
moments in the opposite limit, i.e., for large relaxation
times τr. The second observation is explained by the
coupling of M�

l to M∓
lþ1 (which at truncation level is

approximated nondynamically) and the fact that this
coupling is magnified by a large electric field.
In Sec. V C, we explored the reasons for the observed

fast convergence of the resummed moment expansion. We
found that, differently from the standard method of
moments, the Gaussian factor in the integrand of the
definition of the resummed moments suppresses most
couplings to higher-order moments, and thereby reduces
sensitivity to the approximations made at the truncation
level for the nondynamical higher-order moments. It should
be noted, however, that this argument fully holds only in a
Bjorken expansion. A weaker argument is expected to
apply also for the general (3þ 1)-dimensional case, but this
needs to be validated by future numerical simulations.
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Fonds de Recherche du Québec—Nature et Technologies
(FRQNT). The work of L. T. was supported by the
Collaborative Research Center CRC-TR 211 “Strong-
interaction matter under extreme conditions” funded by
DFG and by the Fulbright Program. The work of
J. N. was supported by the Fundação de Amparo à
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APPENDIX A: FOUR-VELOCITY PROJECTION
AND DIVERGENCE EQUATIONS

Here we show that the projections onto the four-velocity
uμ1 of the evolution equation (5) for the reducible moments
F μ1���μs

r given in (4) correspond, for generic rank ðr; sÞ, to
exact equations for the divergence of F μ1���μs

r . Indeed, for
s ¼ lþ 1, Eq. (5) reads

_F αμ1���μl
r þ ðF collÞαμ1���μlr

¼ r _uβF
αβμ1���μl
r−1 −∇βF

αβμ1���μl
r−1 þ ðr − 1Þ∇ρuσF

αρσμ1���μl
r−2 :

ðA1Þ

Since

uαD ¼ ∂α −∇α ðA2Þ

one has

uα _F
αμ1���μl
r ¼ ∂αF

αμ1���μl
r −∇αF

αμ1���μl
r : ðA3Þ

On the other hand,

uβ∇αF
αβμ1���μl
r−1 ¼ ∇αF

αμ1���μl
r −∇αuβF

αβμ1���μl
r−1 : ðA4Þ

Therefore the projection of Eq. (A1) onto uα reads

∂αF
αμ1���μl
r −∇αF

αμ1���μl
r þ ðF collÞμ1���μlrþ1

¼ −∇αF
αμ1���μl
r þ r∂αuβF

αβμ1���μl
r−1 ; ðA5Þ

which simplifies to

∂α
_F αμ1���μl
r ¼ r∂αuβF

αβμ1���μl
r−1 − ðF collÞμ1���μlrþ1 ; ðA6Þ

i.e., an exact equation for the divergence of F μ1���μl
r . In

particular, for l ¼ 1 and r ¼ 0 the contraction of Eq. (8)
with the four velocity corresponds to the conservation of
energy and momentum:

∂μTμν ¼ −
Z

dPpνC½f� ¼ 0: ðA7Þ

14For the extreme case shown as grey lines in Fig. 4, we were
unable to achieve relative precision of 10−4 even for lmax ¼ 34,
but we are not certain whether this indicates a limitation of the
precision of the numerical method used, or slow convergence of
the resummed moment expansion.
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The same arguments can be used to extend the above result
to the Boltzmann-Vlasov equation and to the case of the
resummed moments Φμ1���μs

r defined in (25).

APPENDIX B: DERIVATION OF THE
EVOLUTION EQUATIONS FOR SPATIALLY

PROJECTED TENSOR MOMENTS

We here derive the exact evolution equations for the
spatial tensors fμ1���μsr from those for F μ1���μs

r . From the
definition Δμν ¼ gμν − uμuν it follows that

∂ρΔ
μ
ν ¼ −uν∂ρuμ − uμ∂ρuν: ðB1Þ

Some straightforward algebra using the projection property
Δμ

ν ¼ Δμ
αΔα

ν and commuting derivatives with projectors
yields

Δμ1
ν1 � � �Δμs

νs
_F ν1���νs
r ¼ Δμ1

ν1Δ
ν1
α1 � � �Δμs

νsΔ
νs
αs
_F α1���αs
r

¼ _fhμ1i���hμsir þ s _uðμ1fμ2���μsÞrþ1 ; ðB2Þ

Δμ1
ν1 � � �Δμs

νs∇αF
αν1���νs
r

¼ Δμ1
ν1Δ

ν1
α1 � � �Δμs

νsΔ
νs
αs∇αF

αα1���αs
r

¼ ∇αf
αhμ1i���hμsi
r þ θfμ1���μsr þ s∇αuðμ1f

μ2���μsÞα
r ; ðB3Þ

where θ ¼ ∂ · u is the scalar expansion rate. Eq. (10) is then
obtained by projecting all free indices withΔ in Eq. (5), and
moving all terms proportional to the acceleration _uμ to
the right.

APPENDIX C: ON- AND OFF-SHELL
FORMULATIONS OF THE

BOLTZMANN-VLASOV EQUATION

Equation (17) is the general Boltzmann-Vlasov equation
for phase-space distributions with off-shell momenta.
Writing explicitly the momentum dependence of the dis-
tribution function, it reads:

p · ∂fðx; pÞ þmðxÞð∂ρmðxÞÞ∂ρ
pfðx; pÞ

þ qFαβpβ∂α
pfðx; pÞ ¼ −C½f�ðx; pÞ; ðC1Þ

where pμ is a generic momentum four-vector. While
classical kinetic theory considers only on-shell particles,
the form (C1) is attractive because of its manifest covari-
ance, with a distribution function that transforms as a scalar
under Lorentz transformations.
The on-shell part of the distribution function is

fonðx; p̂Þ ¼
Z

dp02Θðp0Þδðp2 −m2Þfðx; pÞ; ðC2Þ

where p̂ ¼ ðp̂0;pÞ the on-shell four-momentum vector
with

p̂0ðx;pÞ ¼ −
1

g00

h
g0ipi −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0ipiÞ2 − g00ðgijpipj −m2Þ

q i
:

ðC3Þ

The x dependence of p̂0 comes from the metric tensor
which in general is not constant. To derive from (C1) the
on-shell Boltzmann-Vlasov equation, it is convenient to
write the equation in generic (non-Cartesian) coordinates.
Particle momenta are covariant vectors pμ, therefore they
transform with the inverse of the Jacobian matrix,
p0
μ ¼ ðJ −1Þαμpα, where primes indicate the transformed

coordinates and momenta. In general the Jacobian itself is
x-dependent, so the components of the momenta in the new
frame also depend on position, p0

μðx0Þ. The Vlasov term in
Eq. (C1) does not change, since the indices are dummy
indices that are being summed over:

m∂ρm∂ρ
pf þ qFαβpβ∂α

pf → m∂ 0
ρm∂ρ

p0f þ qFαβp0β∂α
p0f:

The derivative with respect to the coordinates is different.
Since in the transformed frame the (Lorentz scalar) dis-
tribution function fðx0; p0ðx0ÞÞ depends on x0 through both
arguments, the gradient in the momentum direction now
reads

p0μ∂ 0
μfðx0; p0ðx0ÞÞ

¼ p0μ
�
∂ 0
μfðx0; p0ðx0ÞÞjp0 þ

�∂p0
ν

∂x0μ
�
∂ν
p0fðx0; p0Þjx0

�
: ðC4Þ

The partial derivatives of the momenta can be rewritten
using the tensor equation (valid in any reference frame)

dμpν ¼ ∂μpν − Γα
μνpα ¼ 0 ⇒ ∂μpν ¼ Γα

μνpα ðC5Þ

where dμ denotes the covariant derivative. Summing every-
thing and dropping the primes one finds

p · ∂f þ Γα
νμpαpμ∂ν

pf þmð∂ρmÞ∂ρ
pf þ qFαβpβ∂α

pf

¼ −C½f�: ðC6Þ

Equation (C6) is well defined even in nonflat spacetime.
However, in the absence of a Cartesian frame (i.e., a global
map to Minkowski space) one needs a more refined
mathematical framework to obtain it. We just mention
the classical kinetic theory based approach presented in
[56] which can also be extended to the Boltzmann-Vlasov
case. Alternatively, the relativistic Boltzmann equation can
be extracted from an effective quantum field theory as the
classical (nonquantum) limit of the evolution of the Wigner
functions [33], which reproduces the same result [57].
Using the definitions (C2) and (C3), compatibility of the

Levi-Civita connection with the metric,
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0 ¼ dαgμν ¼ ∂αgμν − Γβ
αμgβν − Γβ

ανgβμ

⇒ ∂αgμν ¼ Γβ
αμgβν þ Γβ

ανgβμ; ðC7Þ

and the delta distribution identity

2pμδ0ðp2 −m2Þ ¼ −∂μ
pδðp2 −m2Þ; ðC8Þ

one finds after tedious but straightforward algebra that the
p0 integral of the off-shell equation (C6)

Z
dp02Θðp0Þδðp2 −m2Þp0½p · ∂f þ Γα

νμpαpμ∂ν
pf

þmð∂ρmÞ∂ρ
pf þ qFαβpβ∂α

pf�

¼ −
Z

dp02Θðp0Þδðp2 −m2Þp0C½f�≡ −Con:½fon�

ðC9Þ

corresponds exactly to

p̂μ∂μfon þ Γα
μip̂

μp̂α∂i
pfon þ qFiνp̂ν∂i

pfon ¼ −Con: ðC10Þ

Indeed, Eq. (18) is exactly the last equation, but in a
Cartesian reference frame and with the understanding that
all four-momenta are on-shell being implicit, i.e., not
denoted by hats.
A different but physically equivalent convention is to

consider the contravariant momenta pμ as the fundamental
ones, i.e., assuming a vanishing partial derivative for the
contravariant components pμ but not for the covariant ones,
pμ ¼ gμνðxÞpν. In this case, the coupling to the connection
coefficients reads

−Γα
μνpμpν∂p

αf ðC11Þ

for the off-shell case and

−Γi
μνp̂μp̂ν∂p

i fon ðC12Þ

for the on-shell case. In spite of the two conventions being
equivalent, we find it more convenient here to use Eq. (18)
because in the Milne coordinate system the contribution
from the connection coefficients simplifies exactly when
adopting the covariant moments convention, while it does
not for the contravariant one.

APPENDIX D: TREATMENT OF THE NEGATIVE
ENERGY INDEX MOMENTS

Based on completeness arguments involving irreducible
tensors [20] it is possible to approximate the fμ1���μsr

moments having a negative energy index r with a non-
dynamical series of moments of non-negative r. This has
been a very successful approach when deriving second-
order viscous hydrodynamics from the Boltzmann

equation, in which case one can restrict one’s attention
to rank-two tensors only [20]. This approach can, however,
quickly become numerically too expensive in more general
situations. In this section, we check numerically the
convergence and stability of the expansion in a simple case.
To illustrate the problem let us look at Eq. (20), assuming

a system of massless particles. At leading order, one
encounters the fμν−2 moment e.g., in the evolution equation
for the particle diffusion (or electric) current (i.e., for the f-
moment with r ¼ 0 and s ¼ 1). We consider, as an
example, an anisotropic distribution function of the form

f ¼ eðμ−p·uÞ=T
�
1 − P2

�
p · z
p · u

��
; ðD1Þ

with P2 being the second Legendre polynomial [54].
Because of the matching conditions, the particle and energy
densities are the same as for the equilibrium distribution
with chemical potential μ and temperature T. The same
argument holds for all the fn and fμn moments. The higher-
ranking tensor moments, however, differ from their equi-
librium expectation values. In particular,

fμν−2zμzν ≡ fzz−2 ¼
1

5
f0jeq: ≠

1

3
f0jeq: ¼ fzz−2jeq:: ðD2Þ

The prescription given by the authors of Ref. [20] is
probably the best nondynamical one that can be used to
approximate the moments with negative energy index,
being based on a well-tested polynomial expansion of
the factor ðp · uÞ−jrj in the definition of the moments that
makes use of the orthogonality relations of the irreducible
basis. Following their prescription, in this particular case
the moment fzz−2 can be approximated by the series

fzz−2 ¼
1

5
f0jeq:

≃ f0jeq:
�
1

3
−
12

15

XNð2Þ

n¼0

ð−1Þn ðnþ 3Þ!
ðnþ 5Þ!n!

XNð2Þ

m¼n

ðmþ 1Þ!
ðm − nÞ!

�
;

ðD3Þ
with Nð2Þ being the maximum energy index of irreducible
tensors of rank two considered, as explained in [20]. In this
particular case, the relative error therefore reads

fzz−2japprox
fzz−2jexact

¼
�
5

3
− 4

XNð2Þ

n¼0

ð−1Þn ðnþ 3Þ!
n!ðnþ 5Þ!

XNð2Þ

k¼n

ðkþ 1Þ!
ðk − nÞ!

�
;

⇒
δfzz−2
fzz−2

¼ fzz−2japprox
fzz−2jexact

− 1

¼
�
2

3
− 4

XNð2Þ

n¼0

ð−1Þn ðnþ 3Þ!
n!ðnþ 5Þ!

XNð2Þ

k¼n

ðkþ 1Þ!
ðk − nÞ!

�
:

ðD4Þ
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In Fig. 10, we show the relative precision of the approxi-
mation for different truncation ordersNð2Þ. It is necessary to
consider 12 irreducible moments (Nð2Þ ¼ 12) of positive
energy index to reproduce fzz−2 with 10−2 accuracy (relative
error smaller than 5%). One needs Nð2Þ ¼ 46 to reach 10−3

precision, and Nð2Þ ¼ 152 for 10−4.
In the particular case of interaction with an electromag-

netic field, the term proportional to fzz−2 can easily become
the dominant one in the evolution of the electric current,
and this indeed happens in the cases we tested numerically
in this paper. If the dominant contribution on the rhs of
Eq. (20) is not reproduced at the desired precision, it is very
unlikely that the desired precision can still be achieved for
dynamically evolved moment on the lhs.
This example shows that the treatment of the moments

with negative energy index proposed in [20] can become
numerically costly, because of the large number of degrees
of freedom that must be taken into account.15 Moments
with higher tensor rank have the same problems. While this
polynomial series has been very helpful for the lowest order
of the expansion needed to obtain Israel-Stewart-like
viscous hydrodynamic theories, and for situations very
close to local thermal equilibrium, it is not convenient for
the analysis done in this paper.
As a final remark we note that making use of the

resummed moments presented in Sec. IV corresponds to
having no truncation in Eq. (D4) at all, in the sense of
taking NðlÞ → ∞. The numerical precision of the code,
however, limits the accessible information on the fμ1���μsr

moments for very large r values since those are represented

by many consecutive derivatives of the resummed ϕμ1���μs
1

moments.

APPENDIX E: EXACT SOLUTIONS OF THE
COUPLED BOLTZMANN-VLASOV-MAXWELL

EQUATIONS

In this Appendix, we will consider the equation for the
on-shell distribution functions of a multi-particle gas in
Milne coordinates. We will show that it is necessary to have
at least a two component system (particles and anti-
particles) in order to have a longitudinally boost invariant
and transverse homogeneous expansion and, at the same
time, fulfill the Maxwell equations.
According to Eq. (18), making use of the simplifications

between the connection coefficients terms, one finds in
Milne coordinates (just like in the Cartesian ones)

p · ∂f þ qFiαpα ∂f
∂pi

¼ −C: ðE1Þ

We omitted the “on” in fon and the hat in p̂ because in this
section we will consider only the on-shell version of the
Boltzmann-Vlasov equation.
If one assumes that particles have a longitudinally boost

invariant and transversely homogeneous distribution one
has f ¼ fðτ; pT; pηÞ. In particular, in order to have the so-
called Bjorken expansion, one must add the requirement
fðτ; pT; pηÞ ¼ fðτ; pT;−pηÞ, i.e., Z2 symmetry. Therefore,

∂μfðτ; pT; pηÞ ¼ δτμ∂τfðτ; pT; pηÞ; ðE2Þ

∂f
∂px

¼
∂ðpT ¼

ffiffiffiffiffiffiffiffiffiffiffi
pþ
x p2

y

q
Þ

∂px

∂f
∂pT

¼ px

pT

∂f
∂pT

; ðE3Þ

∂f
∂py

¼
∂
�
pT ¼

ffiffiffiffiffiffiffiffiffiffiffi
pþ
x p2

y

q �
∂py

∂f
∂pT

¼ py

pT

∂f
∂pT

: ðE4Þ

The Vlasov term couples the fields to the particles and only
some fields configurations do not spoil the assumed
symmetry of the distribution function. Indeed, using the
last expression and decomposing the tensor Fμν along the
time direction in Milne coordinates (the Bjorken four-
velocity) one finds

qFiαpα∂i
pfðτ;pT;pηÞ

¼ qpτ

�
Expy þEypx

pT

∂f
∂pT

þEη
∂f
∂pη

�

þ q

�
pηB

xpy −Bypx

pT

∂f
∂pT

þ ðpxBy −pyBxÞ ∂f∂pη

�
: ðE5Þ

The electromagnetic tensor Fμν and, therefore, the electric
and magnetic fields do not depend on the momenta of
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FIG. 10. Convergence of the series in (D4) for different
truncations Nð2Þ. The vertical grey lines correspond to the
minimum Nð2Þ after which all the points are below the horizontal
lines.

15In [18], on the other hand, a precision of the order of 10−3 in
the final solutions is obtained already with a handful of degrees of
freedom, by using a modified set of moments.
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particles. The components of the electric Eμ and magnetic
Bμ fields are just spacetime functions and, therefore, they
cannot compensate any angular dependence in the momen-
tum space caused by the explicit terms in px and py instead

of the invariant pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. In fact, transverse fields

break homogeneity in the transverse plane explicitly and
are, thus, not allowed. Longitudinal magnetic fields do not
couple at all with the particles in this case and, therefore,
they do not break any symmetry.
If the distribution function has to be even in the

longitudinal momentum pη (Z2 symmetry), no electric
fields are allowed since ∂f=∂pη must be odd and the
electric field is momentum-independent and cannot regu-
larize this term. If one relaxes the traditional Bjorken
symmetry, maintaining the longitudinal boost invariance
and the transverse homogeneity, but relaxing the Z2

requirement, an electric field is allowed. However, only
a longitudinal component is allowed, i.e., Eμ ¼ δημEηðτÞ.
This simple analysis of the Vlasov term shows that the

only form of Fμν which does not explicitly break the
(relaxed) symmetry requirements is

Fμν ¼ ðδημδτν − δηνδτμÞEηðτÞ þ εμντηBηðτ; x; y; ηÞ: ðE6Þ
If the electromagnetic field is not external, and there is no
other source than the particles in the plasma, the Maxwell
equations provide some additional constraints. Indeed, the
Bianchi identities read

εμνρσ∂νFρσ ¼ εμνρσð2δηρδτσ∂νEη þ ερστη∂νBηÞ
¼ 2ðδμτ δνη − δμηδντÞ∂νBη ¼ 2δμτ∂ηBη − 2δμη∂τBη:

ðE7Þ

The two nontrivial equations (the longitudinal and the time
projections) require that Bη ¼ Bηðx; yÞ.
The coupling to particles is less trivial but it can be

solved with some algebraic manipulations

Jν ¼ dμFμν ¼ dμ½Eμuν − Eνuμ þ εμνρσuρBσ�
¼ ðd · EÞuν þ Eμdμuν − uνdμEν − θEν

þ εμνρσ∂μðuρBσÞ þ Γμ
μαεανρσuρBσ þ Γν

μαε
μαρσuρBσ

¼ EηΓν
ητ − δνη∂τEη − Γν

τηEη − θδνηEη þ δνy∂xBη

− δνx∂yBη þ δνyΓ
μ
μxBη − δνxΓ

μ
μyBη

¼ −δνηð∂τEη þ θEηÞ þ δνy∂xBη − δνx∂yBη: ðE8Þ

Using the fact that Eη ¼ gηηEη ¼ −1=τ2Eη, the last four
independent equations read

Jτ≡Jτ¼0; ∂yBη¼0; ∂xBη¼0; ∂τEη¼
1

τ
Eη−Jη:

ðE9Þ

The magnetic field Bη must be longitudinal and constant,
while the electric field feels the backreaction from the
particles. The time component of the electric current must
be zero and, therefore, the electric current is space-like and
cannot be used to define the Eckart frame. In particular, it is
not possible to have a single charge carrier species. The
simplest case is to consider a gas of particles (with
distribution f) and anti-particles (with distribution f̄)
following the equations of motion

∂τf þ qEη
∂f
∂pη

¼ −
1

pτ C½f; f̄�; ðE10Þ

∂τf̄ − qEη
∂f̄
∂pη

¼ −
1

pτ C̄½f; f̄�; ðE11Þ

∂τEη ¼
1

τ
Eη − qτ

Z
d3p
τ

pη

τpτ ðf − f̄Þ; ðE12Þ

Z
d3p
τ

ðf − f̄Þ ¼ 0: ðE13Þ

In order to solve such a system of equations, it is necessary
to specify the collisional kernel. The simplest situation is
the relaxation time approximation used in this work

C ¼ ðp · uÞ
τr

ðf − feqÞ; C̄ ¼ ðp · uÞ
τr

ðf̄ − f̄eqÞ;

feq ¼ exp

�
μ − p · u

T

�
; f̄eq ¼ exp

�
−μ − p · u

T

�
:

The four velocity must be the time-like eigenvector of the
stress-energy tensor as defined in the Landau frame,
otherwise the collision kernel does not conserve energy
and momentum. The effective chemical potential μ and
temperature T are defined through the matching conditions

Z
p
ðp · uÞ2ðf þ f̄Þ≡

Z
p
ðp · uÞ2ðfeq þ f̄eqÞ ¼ Eeqðμ; TÞ;

ðE14Þ

q
Z
p
ðp · uÞðf − f̄Þ≡ q

Z
p
ðp · uÞðfeq − f̄eqÞ ¼ ρeqðμ; TÞ:

ðE15Þ

In general, because we dropped the Z2 symmetry, the four-
velocity uμ is not necessarily the time direction in Milne
coordinates as it occurs in the full Bjorken symmetry group
[44]. The time direction is not any longer the only vector
that fulfills the (relaxed) symmetry requirements. However,
one can assume for simplicity that it exists a solution in
which uμ ¼ ð1; 0; 0; 0Þ and verify that, using an initial
distribution that fulfills this requirement (for instance, local
equilibrium), the four velocity remains the same throughout
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the evolution. Under this assumption the chemical potential
must be vanishing, since Jτ ¼ J · u. The remaining equa-
tions are indeed the ones in (35), (36) and (37). The solution
(as one can easily verify) is the one in Eqs. (39) and (40).
The Landau definition of the four-velocity can be

rewritten as follows:

0 ¼
Z

d3p
τ

piðf þ f̄Þ: ðE16Þ

The initial conditions f0 and f̄0 fulfill the requirement by
hypothesis. The contribution for the momentum shift

simplifies exactly when considering the particle and anti-
particle terms, as can be seen by splitting the integral in a
particle and an antiparticle contribution and performing a
change of variables pη � Δpη → pη. After a similar
manipulation of the remaining contribution, one can
use the fact that the local equilibrium distribution is
invariant under parity and prove the general statement.
The very same arguments can be used to show that,
if Jτ ¼ u · J vanishes at the initial condition, it must vanish
at all times.

[1] E. Bertschinger, Annu. Rev. Astron. Astrophys. 36, 599
(1998).

[2] Y. Mizuno, J. L. Gomez, K.-I. Nishikawa, A. Meli, P. E.
Hardee, and L. Rezzolla, Astrophys. J. 809, 38 (2015).

[3] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,
123 (2013).

[4] S. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases, 3rd ed. (Cambridge University
Press, Cambridge, England, 1970).

[5] C. Cercignani and G.M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Birkhauser
Verlag, Basel, 2002).

[6] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M.
Rangamani, J. High Energy Phys. 02 (2008) 045.

[7] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M. A. Stephanov, J. High Energy Phys. 04 (2008) 100.

[8] L. D. Landau and E. M. Lifshitz, FluidMechanics: Volume 6
(Course of Theoretical Physics) (Pergamon Press, New
York, 1987).

[9] G. Pichon, Annu. Inst. H. Poincaré Sect. A (N.S.) 2, 21
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