002634364 001__ 2634364
002634364 003__ SzGeCERN
002634364 005__ 20180816234840.0
002634364 0247_ $$2DOI$$a10.1016/j.nima.2013.05.186
002634364 0248_ $$aoai:inspirehep.net:1264353$$pcerncds:CERN$$qINSPIRE:HEP$$qCERN$$qForCDS
002634364 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1264353$$d2018-08-15T20:59:51Z$$h2018-08-16T04:00:08Z$$mmarcxml
002634364 035__ $$9Inspire$$a1264353
002634364 041__ $$aeng
002634364 100__ $$aBetancourt, C$$kORCID:0000-0001-9886-7427$$memail:christopher.betancourt@cern.ch$$uFreiburg U.
002634364 245__ $$aA charge collection study with dedicated RD50 charge multiplication sensors
002634364 260__ $$c2013
002634364 300__ $$a4 p
002634364 520__ $$aThis study investigates the charge collection efficiency of silicon strip detectors, produced by MICRON Semiconductor Co., Ltd. within the CERN RD50 collaboration, designed specifically to understand the effect of design parameters on the onset and magnitude of charge multiplication. Charge collection measurements are performed before and after irradiation with a proton fluence of $1 \times 10^{15} \ 1 \ \rm{MeV} \ \rm{n}_{eq}/cm^2$ ($\rm{n}_{eq}/cm^2$) and neutron fluence ranging from $1 – 5 \times 10^{15} \rm{n}_{eq}/cm^2$. Structures on these devices include varying diffusion times and energies for the implantation process, different sensor thicknesses, the use of intermediate biased or floating strips between the readout strips, and several different strip width and pitch geometries. The charge collection for these devices is studied as a function of the bias voltage, looking for indications of charge multiplication. Results are compared to standard float zone 300 $\mu \rm{m}$ thick silicon strip sensors having a strip width of 25 $\mu \rm{m}$ and pitch of 80 $\mu \rm{m}$.
002634364 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002634364 6531_ $$9author$$aSilicon strip detectors
002634364 6531_ $$9author$$aCharge multiplication
002634364 6531_ $$9author$$aRadiation damage
002634364 6531_ $$9author$$aHigh energy physics
002634364 690C_ $$aCERN
002634364 693__ $$aNot applicable$$eRD50
002634364 700__ $$aBarber, T$$uFreiburg U.
002634364 700__ $$aHauser, M$$uFreiburg U.
002634364 700__ $$aJakobs, K$$uFreiburg U.
002634364 700__ $$aKuehn, S$$uFreiburg U.
002634364 700__ $$aParzefall, U$$uFreiburg U.
002634364 700__ $$aWonsak, S$$uFreiburg U.$$uLiverpool U.$$vOliver Lodge Laboratory - Department of Physics - University of Liverpool - Oxfort St. Liverpool L69 7ZE - United Kingdom
002634364 773__ $$c62-65$$pNucl. Instrum. Methods Phys. Res., A$$v730$$wC12-10-09.1$$y2013
002634364 960__ $$a13
002634364 962__ $$b1484710$$k62-65$$nflorence20121009
002634364 980__ $$aARTICLE
002634364 980__ $$aConferencePaper
002634364 999C5 $$0631265$$hY. Unno, et al.$$o1$$sNucl.Instrum.Meth.,A511,58$$y2003
002634364 999C5 $$o2$$uhttp://rd50.web.cern.ch/rd50/
002634364 999C5 $$hS.M. Sze$$mPhysics of Semiconductor Devices (2nd ed.), John & Sons$$o3$$pWiley$$y1981
002634364 999C5 $$01090296$$hM. Koehler, et al.$$o4$$sNucl.Instrum.Meth.,A659,272$$y2011
002634364 999C5 $$hS. Sze, G. Gibbons$$o5$$sAppl.Phys.Lett.,8,111$$y1966
002634364 999C5 $$hM. Moll Recent$$madvances in the development of radiation tolerant silicon detectors for the super-LHC, astroparticle, particle and space physics, detectors and medical physics applications C. Leroy (Ed 11th Conference, Villa Olmo, Como, Italy Publishing , pp. 101-110$$o6$$pWorld Scientific$$y2010
002634364 999C5 $$hL. Atlan$$min: 20th RD50 Workshop$$o7$$y2012
002634364 999C5 $$01425764$$hL. Snoj, G. Žerovnik, A. Trkov$$o8$$sAppl.Radiat.Isot.,70,483$$y2012
002634364 999C5 $$hA. Dierlamm$$mIrradiations in Karlsruhe, 16, in: RD50 Workshop, Barcelona$$o9$$y2010
002634364 999C5 $$9CURATOR$$hR. Marco-Hernandez$$o10$$sIEEE Trans.Nucl.Sci.,56,1642$$y2009
002634364 999C5 $$hG. Casse$$min: 12th RESMDD$$o11$$y2012
002634364 999C5 $$01086687$$hV. Eremin, et al.$$o12$$sNucl.Instrum.Meth.,A658,145$$y2011
002634364 999C6 $$a0-0-1-1-0-0-0$$t2018-08-15 13:24:18$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44