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Introducción

El LHC (Large Hadron Collider) representa el experimento más importante de fı́sica de

partı́culas de altas energı́as, con una energı́a del centro de masas sin precedentes de 14 TeV

y una luminosidad de 1034 cm−2s−1. Esta luminosidad tan alta nos permitirá el estudio de

procesos de fı́sica con una sección eficaz tan pequeña como por ejemplo la producción del bo-

son Higgs. Además, la alta energı́a del centro de masas permitirá el descubrimiento de nuevas

partı́culas con masas en la escala del TeV .

El detector ATLAS (A Toroidal LHC Apparatus) es uno de los cuatro experimentos

diseñados para el estudio de las colisiones proton-proton en el LHC. ATLAS ha sido evaluado

desde 2006 mediante el uso de datos de cósmicos. Millones de cósmicos se han almacenado

desde entonces permitiendo la calibración del detector. En Septiembre del 2008 un haz de

protones circuló por primera vez en el LHC. La interacción de los protones del haz con los coli-

madores, que se encuentran a 200 metros de ATLAS, lo iluminó con una nube de partı́culas que

impactaron con cada celda del detector permitiendo realizar estudios de calibración. Debido a

un problema técnico, el LHC fue apagado por un año, reanudándose de nuevo en Noviembre de

2009.

Una gran parte de los canales de descubrimiento en ATLAS involucran electrones,

positrones y fotones en el estado final. Por ejemplo, algunos de los más importantes son

Higgs → γγ, Higgs → e+e−e+e−, Z′ → e+e− y W ′ → eν. La medida de la energı́a y de la

dirección de estas partı́culas finales establece unos requerimientos muy estrictos en la con-

strucción y en la calibración del calorı́metro electromagnético. En particular, una resolución en

energı́a con un término constante menor que 0.7 % es necesaria para conseguir una resolución

del 1 % en la medida de la masa en procesos tales como Higgs → γγ y Higgs → e+e−e+e−.

El experimento ATLAS tiene un calorı́metro electromagnético de plomo y argón lı́quido

(EMC) con forma de acordeón. Este detector ha sido construido con un alto nivel de precisión

y ha sido sometido a una meticulosa cadena de calibración para alcanzar las metas impuestas

por la fı́sica.

El trabajo expuesto en esta tesis se centra fundamentalmente en el calorı́metro electro-

magnético de ATLAS y abarca casi todas las etapas desde la calibración de los∼ 173000 canales

del EMC hasta el análisis de un prometedor canal de fı́sica con los primeros datos del LHC.

Después de la descripción de las principales caracterı́sticas del calorı́metro electromagnético

(Capı́tulo 4) y del método utilizado para la reconstrucción de la señal (Capı́tulo 5), se presenta

una detallada comparación entre la señal medida en cada celda con los datos del haz de pro-

tones y la señal predicha por dicho método de reconstrucción (Sección 5.4). Este análisis nos

permitirá extraer importantes conclusiones sobre la calidad de la señal de reconstrucción en el
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EMC y su influencia en la resolución de la medida de la energı́a.

La falta de uniformidad de la respuesta del calorı́metro debe mantenerse por debajo del

0.6 % para cumplir con los requisitos de un término constante en la resolución de la energı́a

del orden de 0.7 %. Durante la fase de construcción se midio un término constante por debajo

del requerido utilizando un haz de electrones. Sin embargo, la uniformidad de la respuesta se

debe evaluar en todo el calorı́metro electromagnético, una vez instalado dentro del experimento

ATLAS. En concreto, el gap entre los electrodos y los absorbes que componen el EM tiene

una cierta influencia en la señal de salida. De manera que, las variaciones en el espesor del

gap afectán la uniformidad de la respuesta del calorı́metro. Una cantidad muy sensible a las

variaciones del espesor del gap es el tiempo de deriva. En esta tesis, se presenta un método,

independiente de la energı́a de la partı́cula, para la medida del tiempo de deriva (Capı́tulo 6).

A partir de la obtención del tiempo de deriva somos capaces de determinar la uniformidad de

la respuesta. Obtenemos una contribución al término constante menor del 0.6 %, resultado

compatible con las medidas realizadas anteriormente.

Incluso con una perfecta calibración y uniformidad del calorı́metro electromagnético, la me-

dida de la energı́a de los electrones, positrones y fotones se ve afectada por la incertidumbre

debida a la energı́a perdida cuando las partı́culas cruzan el material en frente del calorı́metro.

Un método para corregir la energı́a ha sido desarrollado en [1, 2]. Este procedimiento se

basa en Monte Carlo y en el conocimiento de la distribución del material en frente del EMC.

Un procedimiento para localizar y determinar la cantidad de material en frente del EMC ha sido

desarrollado y documentado en [3]. En este analisis se usan simulaciones Monte Carlo con elec-

trones de alto Pt que vienen de la desintegración W → eν. La idea es combinar la alta precisión

del detector interno de ATLAS (ID) para la determinación de trazas con la información sobre

la deposición de energı́a tanto longitudinal como transversal en el calorı́metro electromagnético

de alta granularidad.

Finalmente, una vez estudiada en profundidad la reconstrucción de la energı́a en el EMC,

en el Capı́tulo 7 se estudiará el posible descubrimiento en ATLAS del boson pesado W ′ de spin

1, mediante el proceso W ′ → eν. El conocimiento de la energı́a de resolución del calorı́metro

electromagnético es aplicado para reconstruir la energı́a del electron (o positrón). Sin embargo,

un nuevo ingrediente se suma en este analysis, la conocida como energı́a perdida inducida por

la falta de interacción entre el neutrino y el detector. En esta tesis se estudiara el impacto en la

reconstrucción de la masa del W ′ usando diferentes procedimientos para reconstruir la energı́a

perdida.
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1
Introduction

The Large Hadron Collider (LHC) represents the next major step in the high-energy frontier of

particle physics, with an unprecedented center of mass energy of 14 TeV and design luminosity

of 1034 cm−2s−1. Its high luminosity allows the study of physics processes with small cross-

sections such as Higgs-boson production, while its high center of mass energy will allow the

discovery of new particles with masses at the TeV scale.

The ATLAS detector is one of four experiments designed to study proton-proton collisions

at the LHC. The ATLAS detector has been tested since 2006 using cosmic data. Millions of

cosmic events have been accumulated since then. In September 2008 a single proton beam

circulated in the LHC for the first time. Interactions of the single proton beam with collimators,

placed at a distance of 200 meters from ATLAS, illuminated the detector with a particle flow

sufficient for some calibration studies. An incident occurred requiring a shutdown of the LHC

for one year. The LHC has resumed operation in November 2009.

Some of the ATLAS discovery channels involve electrons, positrons or photons in the final

state. Higgs → γγ, Higgs → e+e−e+e−, Z′ → e+e− or W ′ → eν are some examples among

them. The measurement of the energy and direction of these final state particles sets strict

requirements on the construction and calibration of the Electromagnetic Calorimeter. In partic-

ular, an energy resolution, with constant term less than 0.7%, is required to achieve a 1% mass

resolution on the Higgs → γγ and Higgs → e+e−e+e− decay channels.

The ATLAS detector has a lead-liquid-Argon ElectroMagnetic Calorimeter (EMC) with

accordion shape. The device has been built with a high level of precision and it has been subject

to a meticulous calibration chain to achieve the physics goals.

The work in this thesis focuses on the ATLAS Liquid Argon (LAr) calorimeter and covers

almost all stages, from the detector calibration of the ∼ 173000 EMC channels to the physics

discovery potential.
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Chapter 1. Introduction

After a description of the main characteristics of the EMC (see Chapter 4) and of the signal

reconstruction procedure (see Chapter 5), the quality of the signal reconstruction is checked

by comparing the measured signal from single LHC beam data with the predicted one from

the reconstruction method (see Section 5.4). Agreement at the level of a percent is observed,

fulfilling the physics requirements.

The non-uniformity of the response must be kept below 0.6% in order to fulfill the required

0.7% for the constant term of the energy resolution. During the construction phase, a few

modules were tested with an electron beam resulting in a non-uniformity below the require-

ment. However, the uniformity of the response must be checked for the whole EMC after its

installation in the ATLAS experiment. In particular, the gap between electrodes and absorbers

influences the output signal, so that variations of the gap size with the position affect the uni-

formity of the calorimeter response. A very sensitive quantity to the gap size variations is the

LAr drift time. A method to measure the drift time is presented in this thesis (see Chapter 6),

which is independent of the particle energy, allowing it to be measured with cosmic data. The

response uniformity measured from cosmic data through the drift time is compatible with pre-

vious measurements from beam tests, and is less than 0.6%.

Even with a perfectly calibrated and uniform EMC, the energy measurement of the elec-

trons, positrons and photons is affected by uncertainties due to the energy lost when the parti-

cles cross the material in front of the EMC. A procedure to correct for these energy losses has

been proposed [1, 2] which is based on Monte Carlo and the best knowledge of the amount and

distribution of material in front of the EMC. A method to localize and determine the amount of

material in front of the EMC have been performed [3] using Monte Carlo simulations with high

Pt electrons coming from the decay W → eν. The method matches tracks, measured through

the high precision Inner Detector (ID), with calorimeter deposits exploiting the high granularity

of the EMC, both lateral as well as longitudinal 1.

Finally, Chapter 7 discusses a study of the ATLAS discovery potential for a new heavy

charged spin 1 gauge boson (W ′), through the decay mode W ′ → eν. The knowledge of the en-

ergy resolution of the EMC is applied to reconstruct the electron (or positron) energy. However,

a new ingredient is added namely the missing energy of the neutrino. The impact on the final

results of different reconstruction procedures to obtain the missing energy is presented.

1Although the author of this thesis has contributed significantly to this topic, it is not included in this document.
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2
Theoretical background

This chapter gives an overview of the Standard Model [4] and of the Extended Gauge Model [5]

that requires a new heavy Z and W bosons. The chapter covers, among others, those aspects of

the theories which are useful as background to the studies presented in this thesis.

The Standard Model (SM) describes elementary particles and their interactions. This model

has proven to be extremely successful, giving theoretical predictions that are in agreement with

experimental observations. However, it is not a complete theory because it has left many impor-

tant questions unanswered, such as why do quarks come in different flavors or why are quarks

arranged in three generations? In addition the SM does not describe the force of gravity. New

theories are being developed to address these and another questions.

2.1 Standard Model

The Standard Model (SM) of particle physics describes three fundamental interactions of nature:

the electromagnetic, weak and strong interactions. It is based on Quantum Field Theory (QFT)

and the Gauge Symmetry Principle. In the former, field operators are derived from a Lagrangian

which can create and destroy particles. The latter is a procedure to introduce interactions from

the free Lagrangian: an internal symmetry of the fields (gauge symmetry) is demanded to be

satisfied locally, at each space-time point. This method introduces gauge bosons which mediate

the forces. The gauge symmetry group of the SM is SU(3)C × SU(2)L ×U(1)Y . The sub-

indices, C, L and Y , stand for the conserved quantities, color (strong interaction) and isospin

and hypercharge (electroweak interaction), respectively. The gauge bosons obtained from the

gauge principle are always massless. This contradicts reality: W and Z bosons are massive. To

solve this problem the SM introduces the Higgs mechanism (see Section 2.1.2).
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Chapter 2. Theoretical background

The SM involves 12 fermions and their respective antiparticles, which are the constituents

of matter and 5 bosons which carry the forces (see Figure 2.1). The SM describes all known

forces of nature except gravity. All attempts to combine the force of gravity with the SM theory

are still in an early stage. There is no model available which includes all four elementary forces

and of which predictions have been verified in data. For example, in the last few years many

models assuming a large number of extra space-time dimensions have been developed which

explain the weakness of gravitation with respect to the other forces by the fact that only the

gravitational force acts in all space-time dimensions while the other forces are restricted to the

3+1 space-time dimensions which we are familiar with. New experimental results at the LHC

might give valuable hints on models where all known forces are combined.

Figure 2.1: The three generations of leptons and quarks and the interaction carriers described

in the Standard Model of particle physics.

The SM is a remarkably successful theory that describes the interactions of the presently

known particles with excellent accuracy. However, to explain why the particles have masses,

the SM requires the so called Higgs boson. The Higgs boson has the property that its coupling

is proportional to the particle mass. The Higgs boson has not yet been observed, so finding

the Higgs boson would complete the SM. In the context of the SM, there are several decay

channels which could be exploited to discover the Higgs boson at the LHC depending on its

mass. The mass of the Higgs boson is not predicted by theory but direct searches at LEP require

a mass larger than 114 GeV, while from theoretical arguments it is expected to be smaller than

300 GeV.
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2.1. Standard Model

For the light Higgs boson the most promising channel is the decay channel in two photons

(despite its small branching ratio). If the Higgs boson mass is larger than twice the Z-boson

mass, the most promising signature is the decay into two Zs, with the Zs decaying into four

leptons. In both cases an excellent performance of the electromagnetic calorimeter is needed.

The measurement of the hadronic energy in the form of jets becomes important at high Higgs

masses, when W-boson pairs are produced that decay into jets. All these channels have to be

isolated from an overwhelming background.

2.1.1 The Standard Model Lagrangian

In classical physics, a Lagrangian is constructed such that it reproduces the equations of mo-

tion, via the Euler-Lagrange equations. In Feynman’s formulation of quantum mechanics, the

Lagrangian appears in the path integral. The path integral gives the amplitude for a particle

to move from point A to point B by integrating over all the possible paths, each of which is

weighted by the action S
(

S ≡
R

Ld4x
)

that belongs to that path.

The total number of possible paths is infinite, which makes the path integral ill defined.

Thus, the integral needs to be regularized to obtain finite answers for quantities like cross sec-

tions. Many of these regularization procedures are done in the context of perturbation theory,

where a saddle point approximation is performed on the path integral. Quantities like cross

sections can then be expressed as a series expansion, where only the first few terms in the series

need to be taken into account if the expansion parameter is small. Each term in the series can

be represented by a Feynman diagram. The rules that relate the diagrams to the mathematical

expressions, the Feynman rules, are derived from the Lagrangian.

The theories in the Standard Model are based on invariance principles, i.e. there exist sets

of transformations (symmetry groups) that leave the Lagrangian L invariant. The complete

symmetry group of the Standard Model is SU(3)× SU(2)L ×U(1)Y . SU(3) is the symmetry

group associated with the strong interactions, while the SU(2)L ×U(1)Y group is associated

with the electroweak part of the theory. The gauge bosons in the theory of strong interactions

are the gluons, which act on color charge. The electroweak counterparts of the gluon fields

are the fields Wµ and Bµ, which correspond to weak isospin (only affects left-handed fermions)

and weak hypercharge respectively. These last two are the generators of the symmetry groups

SU(2)L and U(1)Y (see Table 2.1).

Interaction symbol spin Q(qe)
electromagnetic γ 1 0

weak Z 1 0

W± 1 ±1

strong g 1 0

Table 2.1: The gauge bosons in the Standard Model.
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Chapter 2. Theoretical background

The symmetry group that is associated with quantum electrodynamics (QED) is U(1), the

group of complex numbers with modulus 1. The QED Lagrangian is (h̄ = c = 1):

L = ψ̄
(

iγµDµ −m
)

ψ− 1

4
FµνFµν (2.1)

where:

Fµν = ∂µAν −∂νAµ (2.2)

Dµ = ∂µ + ieAµ (2.3)

The field ψ is a fermion field 1, while Aµ is the photon field. The Lagrangian 2.1 is invariant

under the transformation:

ψ → e−ieγ(x)ψ (2.4)

Aµ → Aµ +∂µα (2.5)

Note that α is supposed to depend on x, therefore the symmetry is called a local symmetry.

Local gauge invariance is a stronger requirement than global gauge invariance. If α does not

depend on x then the covariant derivative Dµ would not be needed in Equation 2.1, the derivative

∂µ would be sufficient. In other words, requiring local gauge invariance makes it necessary to

replace ordinary derivatives with covariant derivatives. This introduces a term proportional to

ψ̄Aµψ̄, which represents the coupling between the fermions and the photon. The fermions (ψ)

interact by exchanging gauge bosons (the photon (Aµ)).

The kinematics of the fermions, and their interactions with the weak gauge fields, are given

by the Lagrangian of electroweak interactions:

LF = i∑
A

(

ℓ̄AL
6DLℓAL

+ l̄AR
6DRlAR

+ q̄AL
6DLqAL

+ ūAR
6DRuAR

+ d̄AR
6DRdAR

)

(2.6)

where:

• The left- and right-handed fermions are grouped as follows:

ℓAL
=

(

νA

lA

)

L

, lAR
(2.7)

qAL
=

(

uA

dA

)

L

, uAR
, dAR

(2.8)

with νA = (νe,νµ,ντ), lA = (le, lµ, lτ), uA = (u,c, t) and dA = (d,s,b) (see Figure 2.1).

1Fermions are particles with spin s = 1
2
. Quarks and leptons are fermions.
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2.1. Standard Model

• The operators 6DLµ
= γµDLµ

and DRµ
= γµDRµ

are the covariant derivatives for left and

right-handed fermions:

DLµ
= ∂µ − ig1I ·Wµ − ig2

Y

2
Bµ (2.9)

DRµ
= ∂µ − ig2

Y

2
Bµ (2.10)

where g1 is the weak isospin coupling, and g2 is the weak hypercharge coupling. Note

that the right-handed fermions do not couple to the fields W. Furthermore, the value of Y

(the weak hypercharge) is different for left-handed and right-handed fermions.

Finally, the Lagrangian for strong interactions that describes the gauge fields and their self

interactions is given by:

LG = −1

4
Fa

µνFµν
a − 1

4
FµνFµν (2.11)

with:

Fa
µν = ∂µW a

ν −∂νW a
µ +g1εabcW b

µ W c
ν (2.12)

Fµν = ∂µBν −∂νBµ (2.13)

Here εabc is the Levi-Civita tensor, the structure constants of the group SU(2).

2.1.2 The Higgs mechanism

The gauge fields Wµ and Bν are massless. Adding mass terms for these fields by hand in the

Lagrangian would break the gauge invariance of the theory, which would make the theory non-

renormalizable. Such a theory cannot be used to compute observable quantities like cross sec-

tions, because of infinities that appear in the calculations. On the other hand, the W and Z

bosons are clearly not massless, so mass terms in the Lagrangian are definitely needed.

A solution for this problem is provided by the Higgs mechanism [6], in which the gauge

symmetry is spontaneously broken. Spontaneous symmetry breaking implies that the theory is

still gauge invariant, but the ground state no longer exhibits this symmetry. To accomplish this,

a complex scalar field φ is introduced, which (as it turns out) generates the masses of the gauge

bosons and the fermions. The Lagrangian that corresponds with this field is:

L =
1

2
∂µφ†∂µφ+

1

2
µ2|φ|2 − 1

4
λ2|φ|4 (2.14)

The potential in this Lagrangian reaches a minimum at |φ| = µ

λ
. Since one should expand

around the ground state to perform perturbation theory, the fields ρ = φ1 − µ
λ

and ξ = φ2 are

13



Chapter 2. Theoretical background

introduced, where φ1 and φ2 are the real and imaginary components of the field φ. In terms of

these fields the Lagrangian reads:

L =
1

2
(∂µρ)(∂µρ)−µ2ρ2 +

1

2
(∂µξ)(∂µξ)+λµ(ρ3 + ξ2)− λ2

4
(ρ4 +ξ4 +2ρ2ξ2)+

µ4

4λ2
(2.15)

This Lagrangian is no longer invariant under U(1) transformations, but the symmetry is

still there, it is merely hidden by the choice of ground state. The field ρ is called the Higgs

field. Its mass is
√

2µ, while the field ξ is massless. The field ξ corresponds to motion along

the valley of the Higgs potential, where the potential is constant. That the field ξ is massless

is no coincidence: according to Goldstone’s theorem, a massless scalar state appears for every

degree of freedom of a spontaneously broken continuous symmetry. The field ξ is called a

Nambu-Goldstone boson. It can be transformed away by choosing a suitable gauge (the unitary

gauge).

The Lagrangian is now extended with the electroweak Lagrangian. The derivatives in Equa-

tion 2.14 are replaced by covariant derivatives, which yields coupling terms between the Higgs

field and the gauge fields Wµ and Bµ. After transforming the Higgs field to the minimum of its

potential, these coupling terms generate masses for the following fields:

W±
µ =

1
√

µ
(Wµ,1 ∓ iWµ,2) (2.16)

Zµ = −sinθW Bµ + cosθWWµ,3 (2.17)

where θW is the weak mixing angle. These fields are the familiar W and Z bosons. Their masses

are:

m2
W± =

g2
2v2

4
(2.18)

mZ = (g2
1 +g2

2)
v2

4
=

m2
W

cos2θW
(2.19)

where v = µ
λ

is called the vacuum expectation value of the Higgs field. One combination remains

massless:

Aµ = cosθW Bµ + sinθWWµ,3 (2.20)

which is the photon field. Since it is massless, the Lagrangian is still invariant under U(1)EM

transformations, while the SU(2)L×U(1)Y symmetry has been broken.

The masses of the fermions are generated by introducing Yukawa couplings between the

Higgs and fermion fields, which yield masses of the form m f = GF v√
2

. The coupling GF is

different for each fermion species, which explains why their masses are different.
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2.1. Standard Model

2.1.3 The W and Z boson

The charged W and the neutral Z are the two mediators of the weak interaction. They were

discovered in 1983 at the UA1 and UA2 experiments at CERN [7, 8, 9] and their properties

were studied at LEP from 1989 up to 2000. The current world average for the masses are [10]:

mW = 80.398±0.025 GeV (2.21)

mZ = 91.1876±0.0021 GeV (2.22)

The accurate measurements will make it possible to use the boson masses for calibration of

the ATLAS detector. To this end, the widths are important. These have been measured to be:

ΓW = 2.141±0.041 GeV (2.23)

ΓZ = 2.4952±0.0023 GeV (2.24)

The W and Z bosons can be created as daughter particles of heavier particles in channels

such as the top quark decaying into a W and b−quark, or the Higgs decaying into a ZZ pair 2.

We note that W’s as well as Z’s can be produced in pairs, yet we restrict ourselves to the single

boson production channels.

�u
d̄

W+

q′, νl

q̄, l̄

(a) W

�q
q̄

q′, l

q̄′, l̄

Z

(b) Z

Figure 2.2: Leading order W (a) and Z (b) production at the LHC.

The W and Z bosons can also be created directly in the hard interaction by quark-antiquark

fusion, see Figure 2.2. Both bosons need an anti-quark to be produced; at the Tevatron this

is present as valence quarks in the anti-proton, at the LHC it is only present as a sea quark.

The two cross sections have been calculated up to NNLO and for the inclusive production at

the LHC and are expected to be σW = 20.5 nb and σZ = 2.02 nb at 14 TeV center-of-mass

energy [11]; this is including the branching ratio into one lepton generation. In this thesis the

leptonic decay of the W plays an important role and we restrict ourselves to the decays into an

electron plus νe. The branching ratios for the W’s and Z’s to the leptonic channel are [10]:

W+ → l+ν : 10.80±0.09% (3×) (2.25)

Z → l+l− : 3.3658±0.0023% (3×) (2.26)

2This channel is heavily suppressed if the Higgs mass is not large enough.
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Chapter 2. Theoretical background

The Z boson cross section is lower than that of the W boson because its branching ratio to

one lepton generation is smaller, and because its coupling constants to the fermions are smaller.

2.1.3.1 The W production cross section

The cross section for inclusive W production pp →W +X is derived from the quark subprocess

in leading order (see Figure 2.2):

σ̂(qiq̄ j →W ) = 2π|Vi j|2
GF√

2
m2

W δ(ŝ−m2
W ) (2.27)

where ŝ = xpxps , with xp the Bjorken kinematic variable (for each proton), s the square of the

center of mass energy and Vi j the Cabibbo-Kobayashi-Maskawa matrix. The inclusive produc-

tion cross section is:

σ(pp →W +X) =
1

3

Z 1

0
dxp

Z 1

0
dxp ∑

i, j

fqi
(xp,Q

2) fq̄ j
(xp,Q

2)σ̂(qiq̄ j →W ) (2.28)

where f refers to the quark density functions inside the proton.

On the other hand, the calculation at leading order of the cross section for W production and

the subsequent decay into an electron and a neutrino gives:

σ̂(qiq̄ j →W → eν) =
|Vi j|2

3π

(

GFm2
W√

2

)2
ŝ

(ŝ−m2
W )2 +(ΓW mW )2

(2.29)

where ΓW is the total decay width.

2.2 Extensions to the Standard Model

Although the Standard Model predictions agree with existing experimental data, there are rea-

sons to think it is not the ultimate theory. In particular, there are unresolved questions and

problems as, for example, why the weak force distinguishes between left and right helicities or

why such hierarchy of fermion masses (mt > mb > mc > ms > md > mu > mt ; mτ > mµ > me).

In addition, the SM contains many free parameters and it does not provide a unification of

the electroweak and strong forces. A concern for cosmology is that no SM particle can be a

candidate for the abundant dark matter.

A large variety of theories beyond the Standard Model, predict additional gauge bosons:

Grand Unified Theories, various Left-Right Symmetric Models, Kaluza Klein Theories, Little

Higgs Models, Dynamical Symmetry Breaking Models and models inspired by Superstrings.

Any charged, spin 1 gauge boson which is not included in the Standard Model is called W ′

boson and according to several predictions there is at least one W ′ boson detectable at the LHC.
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2.2. Extensions to the Standard Model

We pay our attention to the Left-Right Symmetric extension of the Standard Model, which

was first proposed by Pati and Salam [12]. It is based on the gauge group SU(3)C ×SU(2)L ×
SU(2)R×U(1)Ỹ which has to break to recover the Standard Model SU(2)C ×SU(2)L ×U(1)Y

below a certain scale. The new SU(2)R symmetry leads to additional gauge bosons (W ′ and Z′ ).

Singlets of right-handed fermions of the SM turn to doublets regarding SU(2)R which requires

the introduction of right-handed neutrinos νR:

νR, lR →
(

ν
l

)

R

(2.30)

The hypercharge has to be modified so that this quantum number is identical for left- and

right-handed particles. Using the third component of the weak isospin for left- and right-handed

particles, the following relation is derived

Q = I3L + I3R +
1

2
Ỹ (2.31)

where Ỹ = 1/2(B−L), with B and L the baryon and lepton number respectively.

In general, a new CKM mixing matrix (V R
CKM) can appear in the right-handed quark sector

which differs from the left-handed matrix (V L
CKM). However in the so called Manifest Left-Right

Symmetric Model these matrices agree: V R
CKM = V L

CKM.

A mixing (ξ) of the WL and WR eigenstates leads to the mass eigenstates W1 and W2, the first

one corresponds to the SM W boson whereas the second one to a new heavy W ′ boson. Since

the latter has not been observed yet, its mass must be large mW ′ ≫ mW .

Due to the large variety of models which predict heavy gauge bosons a more general ap-

proach is considered called Reference Model which was introduced by Altarelli et al. [5]. In

this model the new charged gauge boson W ′ appears as a heavier version of the (left- handed)

Standard Model W boson. The couplings of the W ′ boson to quarks, leptons and gauge bosons

of the electroweak interaction are assumed to be identical to the Standard Model couplings. As

a consequence, the decay channel W ′ → WZ is dominant for masses mW ′ > 2mZ , with decay

width:

Γ(W ′ →WZ) ∼ mW ′
m4

W ′

m2
Zm2

W

(2.32)

This leads to widths of the W ′ boson which are larger than the mass for mW ′ > 500 GeV.

(For a small mixing (ξ) this decay channel is suppressed.) The CKM matrix is assumed the

same as in the SM.

Due to the close affinity to the Standard Model W boson, cross sections and widths related

to W ′ are merely marginal modifications of the SM ones. In particular, the decay mode into two

fermions gives:

Γ(W ′ → fi f̄ j) =
NcGFm2

W mW ′

6π
√

2
(2.33)
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Chapter 2. Theoretical background

where Nc = 3|Vi j|2 for quarks (V = CKM matrix) and Nc = 1 for leptons. Comparing with the

corresponding width for the SM W boson, we have:

Γ(W ′ → fi f̄ j) = Γ(W → fi f̄ j)
mW ′

mW
(2.34)

This behavior translates also into the total width.

Particular attention is payed in this thesis on the decay into an electron and a neutrino. The

following cross sections are obtained:

σ̂(qiq̄ j →W ′) =
π|Vi j|2

4
g2δ(ŝ−m2

W ′) (2.35)

σ̂(qiq̄ j →W ′ → eν) =
|Vi j|2
192π

g4 ŝ

(ŝ−m2
W ′)2 +(ΓW ′mW ′)2

(2.36)

where ŝ = xpxps , with xp the Bjorken kinematic variable (for each proton) and s the center of

mass energy squared.

The total cross section for the inclusive W ′ production is obtained by integration over the

momentum fractions taken into account the Parton Density Functions (PDF):

σ(pp →W +X) =
1

3

Z 1

0
dxp

Z 1

0
dxp ∑

i, j

fqi
(xp,Q

2) fq̄ j
(xp,Q

2)σ̂(qiq̄ j →W ′) (2.37)

The W ′ bosons in the Reference Model can be either left-handed or right-handed and the

model is considered as a generalization of the Manifest Left-Right Symmetric Model with light

right-handed neutrinos.

The analysis presented in this thesis is based on the Reference Model. The production

and subsequent decay of such a new gauge boson (W ′+,W ′−, left- or right-handed) into an

electron and a light, non-detectable neutrino is searched for. This channel provides a clean final

state containing a highly energetic electron which is important for triggering. It is possible to

reconstruct electrons up to highest energies with reasonable precision, unlike the muon channel

(W ′ → µν). In the latter one suffers from the momentum resolution of the muon spectrometer

which deteriorates with increasing muon momentum.

2.3 Event generators

This section is devoted to briefly describe some of the most used Monte Carlo generator pro-

grams, linked to the previous processes described above. A successful way to produce hypothet-

ical events with the distribution predicted by theory is through the so-called event generators.

In the simulation of events both the hard interaction and the underlying event are taken into

account. The physical concept that makes such simulations possible is factorization, the ability

to isolate separate independent phases of the overall collision. These phases are dominated by

18



2.3. Event generators

different dynamics, and the most appropriate techniques can be applied to describe each of them

separately. For a detailed review on event generation we refer to [13]. In the following, we focus

on the event generators which are used in the analysis for W/W ′ → eν and their backgrounds:

• ALPGEN [14] is a Monte Carlo generator for hard multi-parton processes in hadronic

collisions. The algorithm performs leading order (LO) QCD exact matrix elements calcu-

lations for a large set of parton-level processes of interest in the study of LHC and Teva-

tron data. Parton-level events are generated providing full information on their color and

flavor structure, enabling the evolution of the partons into fully hadronized final states.

So, the development of partonic cascades, with the subsequent transformation of the par-

tons into observable hadrons are carried out by Monte Carlo programs such PYTHIA

(see below). The consistent combination of the parton-level calculations with the par-

tonic evolution given by the shower MC programs is the subject of extensive work. In the

case of W/Z(→ ll)+N jets process, N can reach for the moment, N ≤ 5.

• PYTHIA [15] is a general purpose generator for hadronic events in pp, e+e− and e+p

high-energy colliders, comprising a coherent set of physics models for the evolution from

a few-body hard processes to a complex multi-hadronic final state. In the generation

of the basic partonic processes like γ, Z0 and W± among others, initial and final-state

showers are added to provide more realistic multipartonic configurations. New versions

of PYTHIA has introduced major changes to the description of minimum bias interactions

and the underlying event. There is a more sophisticated scenario for multiple interactions,

new pT -ordered initial- and final-state showers and a new treatment of beam remnants.

• McAtNlo [16, 17] event generator includes the full next-to-leading order(NLO) QCD

corrections in the computation of hard processes. The package includes hadronic colli-

sions, with the production of the following final states: W+W−, W±Z, ZZ, bb̄, tt̄, H0, etc.

Incorporating the NLO matrix elements provides a better prediction of the rates while

improving the description of the first hard hadron emission. As with any other parton

shower based Monte Carlo, MCatNLO is capable of giving a sensible description of mul-

tiple soft/collinear emissions. One feature of MCatNLO as opposed to standard MC’s is

the presence of negative weights (which appear in higher order perturbative calculations,

like NLO).
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3
LHC machine and ATLAS detector

The LHC is now the largest and most energetic hadron collider ever constructed. ATLAS is one

of two multipurpose detectors designed to study proton-proton collisions. In this chapter, the

main features of the Large Hadron Collider and some details of the ATLAS experiment will be

briefly introduced.

3.1 The Large Hadron Collider

The LHC [18] is a proton-proton collider built at the European center for particle physics

(CERN), located in the same tunnel that was used for the LEP [19] accelerator. The LHC

will accelerate two counter-rotating proton beams to an energy of 7 TeV, which will collide

head-on at four points along the ring. The resulting interactions have an unprecedented center

of mass energy of 14 TeV, which will allow us to study a new field of physics. The acceler-

ation of the protons starts at a dedicated linear accelerator (linac), which accelerates bunches

of 1011 protons to an energy of 50 Mev. These bunches are then transferred to the PS Booster

(PSB), where the energy is increased to 1.4 GeV. The energy is further increased to 26 GeV by

the Proton Synchrotron (PS). The protons are then injected into the Super Proton Synchrotron

(SPS) where they are accelerated to 450 GeV. Finally, the SPS injects the protons clockwise

and counter-clockwise into the LHC ring, where they are accelerated to their final energy of

7 TeV. More than 1200 dipole magnets are installed along the LHC ring to keep the protons on

track in the ring. The dipoles provide a magnetic field of up to 9 Tesla. The main parameters

of the LHC accelerator are given in Table 3.1. Like its center of mass energy, the luminosity of

the LHC is also unprecedented for a proton collider. The luminosity is defined as the number of

protons crossing, per unit area, per unit time. The higher the luminosity, the more proton-proton

interactions per second will occur. At the LHC, with a design luminosity of 1034 cm−2 s−1, on

average about 27 interactions will occur per bunch crossing, with a bunch spacing of 25 ns.
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Chapter 3. LHC machine and ATLAS detector

Thus the number of proton-proton interactions per second will be around 109. Such high lumi-

nosity is needed because many interesting physics processes at the LHC energy have very small

cross sections, 1 pb or less (1 pb = 10−36 cm2).

Parameter Value Unit

Circumference 26659 m

Beam energy 7 TeV

Injection energy 0.45 TeV

Dipole field at 450 GeV 0.535 T

Dipole field at 7 TeV 8.33 T

Helium temperature 1.9 K

Coil aperture 56 mm

Distance between apertures 194 mm

Luminosity 1034 cm−2 s−1

Luminosity lifetime 10 h

Bunch spacing 25 ns

Particles per bunch 1011

Bunches per beam 2808

Table 3.1: The design parameters of the LHC accelerator.

Figure 3.1 shows the geographical location of the LHC and the position of four experiments

that have been built around the points where the beams collide: ALICE [20] (A Large Ion

Collider Experiment), ATLAS [21] (A Toroidal LHC ApparatuS), CMS [22] (Compact Muon

Solenoid) and LHCb [23] (A Large Hadron Collider beauty). ATLAS and CMS are general pur-

pose detectors, i.e. they are designed to cover a wide range of physics. Their primary task will

be to discover the Higgs particle (if it exists), but they will also explore the physics beyond the

Standard model, like supersymmetry, extra dimensions, and even mini black holes. The ALICE

experiment focus on the study of the quark-gluon plasma, by measuring the particles that are

produced in heavy ion collisions. The quark-gluon plasma is a hadronic state where quarks and

gluons are not in a bound state like protons anymore, but move freely in the plasma. The LHCb

experiment is dedicated to the study of CP-violation in the B-system, it is therefore optimized

for the detection of B-mesons. LHCb uses a low luminosity beam of about 1032 cm−2 s−1,

by defocusing the proton beams near the interaction point. This is needed because the produc-

tion and decay vertices of the B-mesons are difficult to reconstruct if there is more than one

interaction per bunch crossing.

On 10 September 2008, proton beams were successfully circulated in the LHC ring for the

first time. On 19 September 2008, the operations were halted due to a serious fault between two

superconducting bending magnets [24]. On 18 December 2009, CERN Director General Rolf

Heuer said:

“The LHC circulated its first beams of 2009 on 20 November, ushering in a re-

markably rapid beam-commissioning phase. The first collisions were recorded on

23 November, and a world-record beam energy was established on 30 November.”
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Figure 3.1: Geographical location of the 26.7 km long LHC tunnel indicating the four particle

detector experiments placed along the accelerator ring.

3.2 The ATLAS experiment

The ATLAS experiment [21] is one of the two general purpose experiments at the LHC and

is designed to explore the physics in the TeV region. Like most colliding beam experiments it

has approximate cylindrical symmetry. The detector is organized in a central barrel where the

detection elements form cylindrical layers around the beam pipe, and two endcaps organized in

cylindrical wheels. Figure 3.2 gives an overall view of the detector.

The cylindrical symmetry makes a polar coordinate system useful. The direction of the pro-

ton beams is the z-axis, being zero the ATLAS center or nominal interaction point and positive

z values corresponds to the side where the endcap A is located. The origin for the azimuthal

angle (φ) points to the center of the LHC ring (x-axis), while the origin of the polar angle θ is

the positive z-axis. Instead of the polar angle θ, the pseudorapidity η = −ln(tan(θ/2)) is used.

The pseudorapidity is a convenient quantity because the particle multiplicity is approximately

constant as a function of η.

ATLAS consists of several subdetector-systems, each with the purpose of measuring specific

observables. The detector closest to the interaction point is the Inner Detector, which detects the

track of charged particles. Next in ATLAS are two calorimeters, one to measure the energy from

electromagnetic showers, i.e. the energy from electrons and photons, and second a calorimeter

to measure all hadronic energy deposit. The outer layer of ATLAS is the muon spectrometer

which measures the momenta of the muons deflected by a toroidal magnetic field. ATLAS is

45 meters long and 22 meters high, which makes its volume an order of magnitude larger than

previous collider experiments. This is a direct consequence of the 14 TeV center of mass energy

of the LHC beams.
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Figure 3.2: Overview of the ATLAS detector. The various subsystems have been indicated.

The basic design criteria of the ATLAS detector are:

• Efficient tracking at high luminosity for momentum measurement of high pT lep-

tons, electron identification, τ-lepton and heavy-flavor identification, and full event-

reconstruction capability.

• Very good electromagnetic calorimeter for electron and photon identification and energy

measurement, complemented by full-coverage hadronic calorimetry for accurate jet and

missing traverse-energy measurements.

• High-precision muon momentum measurements, with the capability to guarantee accurate

measurements at high luminosity using the external muon spectrometer.

• Large acceptance in pseudo-rapidity with almost full azimuthal angle coverage every-

where.

• Triggering and measurements of particles at low-pT threshold, providing high efficiency

for most physics processes at LHC.

• Fast electronics are required to ”keep up” with the bunch crossing rate, which is also

higher than in previous experiments.
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3.2.1 Inner Detector

The lay-out of the ATLAS inner detector is illustrated in Figure 3.3. The Inner Detector(ID)

system [25] covers the acceptance range |η| < 2.5, matching that of the rest of the ATLAS sub-

detectors for precision physics. The resolution on momentum and vertex location required for

the physics studies and the very large track density expected at the LHC call for high-precision

measurements with fine granularity and fast detectors. The ID, thanks to the tracks bending pro-

vided by the solenoid magnet, is responsible to measure the momentum of the charged particles

coming from the interaction point. Together with the electromagnetic calorimeter, it provides

the identification of electrons and photons.

Figure 3.3: Tridimensional cut-away view of the ATLAS inner detector system.

The ATLAS ID tracking system (Figure 3.4) is composed of three different subdetectors

layers:

• The Pixel Detector (PD) is a finely segmented silicon detector located in the radial range

between 4 and 22 cm from the beam line. The PD consists of three concentric layers in

the barrel and three disks in each endcap. Silicon modules of 2×6 cm2 with a thickness

of 285±15 µm are segmented into small rectangles of 50×400 µm2, the pixels. There

are 47232 pixels per module and 1744 modules.

Because of its closeness to the beampipe, the pixel detector determines mainly the reso-

lution of the impact parameter. Its very high granularity makes it essential for the pattern

recognition.
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• The Semiconductor Tracker (SCT) is a silicon detector located in the radial range be-

tween 22 and 56 cm. It consists itself of three sub-parts, one barrel and two endcaps.

The barrel consists of four cylindrical layers with its silicon modules mounted such that

the strips run parallel to the beam axis. The two endcaps each have nine disks with the

modules oriented such that the strips run radially. Each disk can have an inner and outer

layer, mounted on the side of the disk facing the interaction point, plus a middle layer on

the other side of the disk. The exact location of the disks and their occupation in modules

are chosen such that any charged particle always hits at least four modules.

Due to its high granularity, the SCT is important for the momentum resolution and the

initial pattern recognition. It also contributes to the resolution of the impact parameter.

• Transition Radiation Tracker(TRT) is based on the use of straw tubes that can operate

at very high rate. The straw tubes are filled with a gas mixture Xe/CO2/O2. The straws

are bundled in triangular shaped modules that provides a φ-coverage without any gaps.

The TRT is important for particle identification and defines the momentum resolution,

due to its long lever arm. The large number of measurements per particle allows for

track-following, which enhances the performance of the pattern recognition and tracking.

Figure 3.4: Tridimensional cut-away view of the ATLAS inner detector system.
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3.2.1.1 Dead material

Particles traversing the inner detector will interact with the dead material (sensors, cables, sup-

port structures etc.) causing them to lose energy and deviate from their trajectory. This will

degrade the performance of the inner detector. Furthermore, the calorimeters, positioned behind

the inner detector, need to measure precisely the energy of all, also neutral, particles. There-

fore, the amount of material in the inner detector needs to be minimized. Figure 3.5 shows the

amount of material expressed in number of radiation lengths 1 contributed by the different sub-

detectors in the latest geometry version (ATLAS-CSC-03). This version used the most realistic

material description, coming from precise weighting measurements of all its components.

Figure 3.5: Material in the inner detector in term of radiation length X0 at the exit of the ID

envelope, including the services. The distribution is shown as a function of η and averaged φ
for the different sub-detectors and the various services in the latest version (ATLAS-CSC-03)

used in [11].

3.2.2 The calorimeters

The calorimetry system in the ATLAS detector identifies and measures the energy of particles

(both charged and neutral) and jets. It also detects missing transverse energy by summing all

the measured energy deposit (see Equation 7.1).

The calorimeters contain dense materials (absorber), which cause an incoming particle to

initiate a shower. Particles that are created in this shower are detected in the active material,

which is interleaved with the absorbers. The total signal in the active material is proportional

to the energy of the incoming particle. ATLAS uses two types of active material: liquid ar-

gon (LAr) and plastic scintillator. Charged particles traversing the liquid argon create charge

1One radiation length X0 is defined as the distance over which a high-energy electron on average loses all but

1/e of its energy by Bremsstrahlung.
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by ionization, which is collected on readout electrodes. The plastic scintillator is doped with

fluorescent dye molecules, which emit light when the atoms in the plastic are excited by the

crossing of a charged particle. This light is detected and amplified by photomultiplier tubes.

For the absorbers several different types of material are used, depending on factors like space

constraints and ease of manufacturing: lead, iron, copper and tungsten. The location of the

calorimeters is shown in Figure 3.6. The pseudorapidity coverage by the whole calorimetry

system is |η| ≤ 4.9.

Figure 3.6: Overview of the ATLAS calorimeter. The various subsystems are indicated.

3.2.2.1 The electromagnetic calorimeter

The electromagnetic calorimeter [26] identifies electrons and photons and measures their en-

ergy. It consists of a barrel (0 < |η| < 1.475) and two endcaps (1.375 < |η| < 3.2). It uses

liquid argon as the active medium and lead absorber plates as the passive medium. The lead

plates are folded into an accordion geometry providing complete φ-coverage without azimuthal

cracks. The readout electrodes, made of copper and kapton, are installed between the lead

plates.

The electrodes are separated from the lead by spacer meshes. The remaining space is filled

with liquid argon. The argon is cooled by a cryostat system; the barrel part shares the same

cryostat vessel with the solenoid magnet. The barrel and endcap modules are divided into three

longitudinal layers and a presampler layer that provides a measurement of the energy lost in

front of the EM calorimeter. The front layer is finely segmented in |η|, which makes a good

γ/π0 and e/π separation possible. The middle layer is the deepest, hence contains most of the
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shower energy generated by incident electrons or photons. The last layer is used to complete

the energy measurement of showers for higher energies and for estimations of leakage behind

the calorimeter. To go into more details a separate chapter is devoted to the EM calorimeter, see

Chapter 4.

One of the key ingredients for the description of the detector performance is the amount

and position of the upstream material. Figure 3.7 shows the amounts of material in front of the

electromagnetic calorimeters.

Figure 3.7: Dead material, in units of radiation length X0 and as a function of |η|, in front of

the electromagnetic calorimeters. The pink and blue distribution are the amount of material in

front of the presampler layer and in front of the accordion itself, respectively.

3.2.2.2 The hadronic calorimeter

The hadronic calorimeter [27] is built around the electromagnetic calorimeter. It will measure

the energy and direction of jets of particles, formed by the hadronization of quarks and gluons,

and by hadronically decaying τ−leptons. The barrel part, called the Tile calorimeter, consists of

a central barrel (0 < |η|< 1.0) and two extended barrels (0.8 < |η|< 1.7). The Tile calorimeter

uses iron plates as the absorber, which also serve as the return yoke for the solenoid magnet.

The active medium is formed by scintillator plastic tiles, which are read out on both sides by

optical fibers. The tiles are placed radially, normal to the beam line, and are staggered in depth.

Cells are formed by grouping tiles together. The calorimeter has three layers or samplings in

depth which are read out independently. The readout cells are approximately projective to the

interaction point, and have a granularity of δη×δφ = 0.1×0.1 ( 0.2×0.1 in the third layer).

The total number of channels is about 10,000.

The Hadronic Endcap Calorimeter (HEC) uses liquid argon technology, because of its higher

radiation tolerance. It uses 25 and 50 mm copper plates as the absorber material, arranged in a
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parallel-plate geometry. The 8.5 mm gaps between the copper plates have three parallel elec-

trodes, thus dividing the gap into four 1.8 mm drift spaces. Smaller drift spaces require a lower

voltage (typically 2 kV instead of 4 kV) which reduces the risk of ion build-up and discharge

currents. Hadronic showers are much longer than electromagnetic showers, and also much

wider. Therefore the hadronic calorimeter needs to be much thicker than the electromagnetic

calorimeter. The total thickness of the calorimeters is more than 10λ, where λ is the interaction

length (the mean free path of a hadron between two interactions). This is sufficient to stop al-

most all the particles that are created in the shower, except muon and neutrinos. However, the

calorimeters produce a large background for the muon detector, that consists mainly of thermal-

ized slow neutrons and low-energy photons from the hadronic shower. The Hadronic endcap

calorimeter is segmented longitudinally in 4 layers.

3.2.2.3 The forward calorimeter

The forward calorimeter (FCAL) is a copper-tungsten calorimeter. It covers the region 3.1 <
|η| < 4.9. It is split longitudinally into an electromagnetic layer, and two hadronic layers. The

copper and tungsten have a regular grid of holes that hold the tube- and rod-shaped electrodes.

The space between the tubes and rods is filled with liquid argon. The FCAL is integrated in the

same cryostat as the electromagnetic and hadronic endcap calorimeters. To avoid that neutrons

are backscattered into inner detector volume, the forward calorimeter is placed 1.2 m further

away from the interaction point, compared to the electromagnetic endcap calorimeter.

3.2.3 The muon spectrometer

The muon system [28] is by far the largest subdetector in ATLAS. High-pT muons are a sig-

nature of interesting physics, therefore the muon trigger and reconstruction is very important.

The muon system is designed to achieve a momentum resolution of 10% for 1 TeV muons.

Figure 3.8 gives an overview of the detector layout.

The magnet system in the muon detector is completely independent from the inner detector.

It consists of eight superconducting coils in the barrel, and and eight coils for each toroid per

endcap. The magnet is an air-core magnet system, i.e. the space between the coils is left open.

Filling this space with iron would enhance the field strength and would also make the field

more uniform, but it would also induce multiple scattering that would degrade the momentum

resolution. The air-core system has an average field strength of 0.5 T. Four types of detection

chambers are used in the muon system: Monitored Drift Tube (MDT) chambers, Resistive Plate

Chambers (RPCs), Thin Gap Chambers (TGCs) and Cathode Strip Chambers (CSCs). The

MDT chambers provide precise muon tracking and momentum measurement. The chambers

consist of aluminum tubes with a 30 mm diameter and a central wire. A muon that crosses

a tube will produce ionization clusters in the gas (Ar/CO2), which will drift to the wire. The

distance between the muon and the wire is determined by measuring the drift time of the first

cluster that reaches the wire and passes over a threshold. The resolution on the drift distance

is around 80 µm. In the inner-most ring of the inner-most endcap layer, CSCs are used instead

of MDT chambers because of their finer granularity and faster operation. They are multiwire

proportional chambers. The precision coordinate is read out with cathode strips, the second co-
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ordinate is read out using strips which are parallel to the anode wires (orthogonal to the cathode

strips). The spatial resolution on the precision coordinate is around 60 µm. The RPCs and TGCs

are the muon trigger chambers in ATLAS. Their task is also to identify the bunch crossing to

which a trigger belongs. Their adequate position resolution (about 1 cm) and excellent time

resolution (about 2 ns) make them well suited for this task. The TGCs are multiwire propor-

tional chambers. The position measurement in these chambers is obtained from the strips and

the wires, which are arranged in groups of 4 to 20 wires.

chambers
chambers

chambers

chambers

Cathode strip
Resistive plate

Thin gap

Monitored drift tube

Figure 3.8: Three-dimensional view of the ATLAS muon spectrometer.

3.2.4 ATLAS trigger system

At the design luminosity of the LHC, of the order of ∼ 109 interactions per second will occur

inside the ATLAS detector, generating 1 PB/s of data. This means the amount of data measured

in ATLAS is far too large to allow every event to be written to storage. To reduce the total data

flow without losing interesting physics events, ATLAS uses a trigger system organized in three

levels (see Figure 3.9). Each trigger level reduces the event rate by orders of magnitude. The

final rate will be 200 events per second, which corresponds to an amount of ∼ 300 MB/s for

data storage.

The three levels of the ATLAS trigger system are:

• Level 1 trigger (LVL1) is a hardware-based system that receives signals from the ATLAS

calorimeter and muon detectors. It is designed to reduce the event rate to 75 kHz within
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a latency of 2 µs. The detectors used for these searches are the calorimeter (L1Calo) and

the trigger muon chambers (L1Muon), i.e. the RPC and the TGC chambers.

The LVL1 electronics are designed to look for high-pT muons, electrons, photons, jets

and τ-leptons decaying into hadrons, as well as large missing transverse energies.

• Level 2 trigger (LVL2) is a software trigger which uses the output of LVL1 and the full

event information, which reduces the data rate to 2 kHz within a latency of 10 ms. LVL2

can access data from all subdetectores of ATLAS in the so called “Regions-of-Interest”

(ROIs) that were identified by the LVL1 system. The ROIs are reduced granularity areas,

i.e. in the calorimeter are regions of size ∆η×∆φ = 0.1× 0.1 called “Trigger Towers”

(see Figure 3.10).

• Event Filter (EF) is also based on software selection algorithms. In contrast to LVL2

it runs after the event building, such that the complete event information is available to

the EF algorithms. The event filter further reduces the event rate to 200 Hz by using

information of more complex reconstruction algorithms such as Bremsstrahlung recovery

for electrons and vertex finding.

Those events that have passed the selection criteria are tagged on basis of the results of

the EF and sorted into data streams to be available for further analysis with the ATLAS

offline software.

Figure 3.9: Schematic view of the ATLAS trigger system.

32



3.2. The ATLAS experiment

Figure 3.10: Trigger Towers of size ∆η×∆φ = 0.1×0.1 used for the e/γ and τ/hadron algo-

rithms and extensively used for commissioning with cosmic muon in the calorimeters.

(a) (b)

Figure 3.11: (a) One electro-static button electrode for the BPTX. (b) A photograph of one of

the two ALTAS BPTX stations.
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3.2.4.1 BPTX detectors

The ATLAS BPTX stations consist of electrostatic button pick-up detectors, located 175 m

away along the beam pipe on both sides of ATLAS. The pick-ups are installed as a part of the

LHC beam instrumentation and used by ATLAS for timing purposes.

One BPTX station consists of 4 electrostatic button electrodes (see Figure 3.11(a)) arranged

symmetrically in the transverse plane around the beam pipe. Since the signal from a passing

charge distribution is linearly proportional to distance, the signals from all four pick-ups are

summed to cancel out potential beam position deviations. Figure 3.11(b) shows the BPTX

station for beam 2, installed in the accelerator tunnel on the side C of ATLAS. At the bottom of

the photograph, the cables from three of the four button pick-ups are visible.

The usage of the BPTX signals in ATLAS is twofold:

• By discriminating the signals from the BPTX detectors and compensating for the lengths

of the transmission lines, BPTX detectors provides LVL1 trigger input signals syn-

chronous when a bunch passes through ATLAS.

• The BPTX signals are also used in a standalone monitoring system for the LHC beams

and timing signals. The system monitors the phase between the collisions and the LHC

clock signals and measures the structure and uniformity of the LHC beams.

During the period with beam in 2008, the BPTX system was used extensively as a trigger to

time in the readout windows of the sub-detectors of the ATLAS experiment.
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4
The ATLAS Electromagnetic Calorimeter

The UAM 1 has shared with CPPM 2 the responsibility for the design and construction of the

LAr electromagnetic endcap calorimeter. The results presented in this thesis are part of the

group contribution to the commissioning efforts.

In this chapter an overview of the principles, performance and main characteristics of the

Electromagnetic Calorimeter are given, specially those relevant to the research work of this

document.

4.1 Principle of operation

The electromagnetic calorimeters are basically blocks of matter in which charged particles lose

partially or completely their energy. To understand the operating principles of a calorimeter we

need to study first the interactions of particles with matter.

When electrons or positrons interact with matter, they lose energy in two different ways,

each dominant in a defined energy range. These two process are:

• Ionization. For energies lower than 10 MeV, electrons lose their energy mainly by ion-

izing the medium they are traversing.

• Breamstrahlung. Above 10 MeV, bremsstrahlung (braking radiation) is the main source

of energy loss.

1Universidad Autónoma de Madrid
2Centre de Physique des Particules de Marseille

35



Chapter 4. The ATLAS Electromagnetic Calorimeter

Figure 4.1 shows the energy loss processes of photons and electrons as function of their

energy. In what follows, we will explain in detail these processes with particular attention to

those that occur within the electromagnetic calorimeter.

(a) (b)

Figure 4.1: (a) Photon cross section as function of the energy in lead. (b) Fractional energy loss

of electrons and positrons per radiation length as function of the energy.

4.1.1 Electromagnetic shower development

When an electron or positron passes through matter it irradiates bremsstrahlung. The

bremsstrahlung photon gives rise to electron–positron pair production. Thus, a cascade of many

particles with lower and lower energy builds up until the energy of the particles falls below the

threshold for pair production. The remaining energy is dissipated by excitation and ionization.

4.1.1.1 Bremsstrahlung

If a charged particle is decelerated in the Coulomb field of a nucleus, a fraction of its kinetic

energy will be emitted in form of photons. The electron and positron are the only particles for

which energy loss by bremsstrahlung is significantly important (see Figure 4.1(b)).

In fact the semi–classical calculation for the bremsstrahlung cross section for any given

particle of mass M and velocity v [29]:

(

dσ

dk

)

rad

≃ 5e2

h̄c
z4Z2

(mec

Mv

)2 r2
e

k
ln

(

Mv2γ2

k

)

(4.1)
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where:

• k is the photon energy.

• me, e are the mass and charge of the electron, respectively.

• z is the charge of incident particle in units of e.

• Z is the atomic number of absorbing material.

• re is the classical electron radius (2.817×10−13 cm).

• γ is the 1/
√

(1−β) and β is the v/c of the incident particle.

It can be seen that the dependence of the previous cross section with the particle mass M is

(neglecting the logarithm term):

(

dσ

dk

)

rad

∝ M−2 (4.2)

Thus, the bremsstrahlung cross section for a muon, Mµ = 105.7 MeV, is approximately

44,000 times smaller than that for an electron, me = 0.51 MeV. Despite of this fact,

bremsstrahlung of muons has been observed in the ATLAS EM calorimeter; actually these

are the type of events mostly used in the commissioning period with cosmic rays.

We can also note in the Equation 4.1 that the cross section is proportional to Z2, i.e. to the

atomic number squared of the traversed material. This explains the use of high Z materials (

Fe, Cu, Pb, U) as absorbers in sampling calorimeters, in order to get a bigger energy loss by

radiation. Finally, the cross section becomes very large as the radiated photon becomes very

soft (k very small).

4.1.1.2 Pair production

Photons with an energy of at least twice the electron rest mass can produce an electron–positron

pair in the Coulomb field of a charged particle. The cross section for this process rises with

energy and reaches an asymptotic value at very high energies (> 1 GeV). For energies above

some MeV (depending on the absorber material), pair production becomes the dominant photon

interaction process.

4.1.1.3 Compton and Rayleigh scattering

Rayleigh scattering is a coherent process; the photon is deflected by an atomic nucleus but does

not lose any energy. In contrast, a photon that undergoes Compton scattering does transfer part

of its energy and momentum to an atomic electron that is put into an unbound state. The process

will result in a free electron and a scattered photon. For most absorber materials, Compton

scattering is by far the most likely process for photons with energies between a few hundred

keV and 5 MeV.
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4.1.1.4 Photoelectric effect

At even lower energies, the most likely process is the photoelectric effect, where a photon is

absorbed by an atom that in turn emits an electron. The atom is put into an excited state by this

process and will return into its ground state by emission of Auger electrons or X-rays. The cross

section is strongly dependent on the number of available electrons and scales with ZN , where n

is 4 to 5 and has an energy dependence like E−3.

4.1.2 Energy loss due to ionization

Let us consider a heavy particle, with charge ze, mass M and velocity v traversing a block of

matter. Let us assume that at a distance b of the incident particle direction an atomic electron is

found. One can use a semi–classical approximation assuming the electron to be free and at rest

during the time the interaction takes place. One usually further assumes that the direction of the

incident particle is not changed as it is much heavier than the atomic electron.

Within these approximations, Bohr obtained expressions for energy loss of heavy parti-

cles (α particles of heavy nuclei), which were found to properly describe experimental data.

For lighter particles like protons a disagreement with experiment was found, because quan-

tum effects were not taken into account. The correct quantum-mechanical calculation was first

performed by Bethe and Bloch, obtaining this formula:

−
(

dE

dx

)

ioniz

= 2πNar2
emec2ρ

Z

A

z2

β2

[

ln

(

2meγ2v2Wmax

I2

)

−2β2

]

(4.3)

where:

• E is the incident particle energy and x is the path length.

• Na is the Avogadro’s number (6.022 ×1023 mol−1).

• ρ, A and Z are the density, atomic weight and atomic number of absorbing material,

respectively.

• Wmax is the maximum energy transfer in a single collision.

• I is the mean excitation potential.

In practice, two more corrections are needed, the so called density effect and the shell ef-

fect [30]:

−
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)

−2β2 −δ−2
ζ

Z

]

(4.4)

where:

• δ: density effect correction, which arises from the fact that the electric field of the particle

also tends to polarize the atoms along its path.
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• ζ: shell effect correction, which accounts for effects when the velocity of the incident

particle is comparable or smaller than the orbital velocity of the bound electrons.

The maximum energy transfer occurs in head on collisions between the incident particle and

the atomic electron and is given by the expression:

Wmax =
2mec2(βγ)2

1+2s
√

1+(βγ)2 + s2
with s = me/M. (4.5)

A semi-empirical formula can be used for the excitation potential, namely:

I

Z
= 12+

7

Z
eV Z < 13

I

Z
= 9.76+58.8 Z−1.19 eV Z ≥ 13

which gives a reasonable approximation for most cases.

The energy loss per unit length depends on the energy of the incident particle. It exhibits

a sharp fall off, proportional to 1/β2 for low β values, it reaches a minimum known as the

ionization minimum (around βγ = 3), and finally shows a logarithmic increase (relativistic rise)

leading to a plateau (Fermi plateau), see Figure 4.2. For energies bigger than the ionization

minimum, each particle shows a characteristic curve. It can be used to identify particles in this

energy range.

Figure 4.2: Ionization energy loss per unit of length in liquid hydrogen, gaseous helium, carbon,

iron and lead.
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Cosmic muons lose energy in the EM calorimeter primarily through ionization. The mean

energy loss (E) is given by Equation 4.4, hence E is proportional to the path length (x) crossed

by the muon. Event by event this energy is subjected to stochastic fluctuations described by

a Landau distribution. This function is not symmetric exhibiting a characteristic tail at high

energy losses, hence the mean value of the distribution differs from the Most Probable Value

(MPV). In practice, the MPV is more relevant than the mean value, for example for calibration

studies, since the tail is often difficult to define with enough precision. It can be shown that the

MPV is related to the path length through a relation of the type MPV ∼ x(a+ lnx), although the

logarithm is usually much smaller than the term a, hence may be neglected in those cases. In ad-

dition, the ratio ω/MPV , where ω is the full width at half maximum of the Landau distribution,

decreases when x increases.

4.1.3 Energy Resolution

Charged particles in the shower loose energy permanently by ionizing the material. For high-

energy particles, the ionization loss rate rises approximately logarithmically with the energy.

Electron-Ion pairs created in the liquid argon are separated by an electric field and drift

towards the electrodes inducing an electrical signal that is proportional to the number of elec-

tron/ion pairs and the energy deposited in the liquid argon gap (see Section 4.3).

In a sampling calorimeter like the ATLAS electromagnetic calorimeter, only a fraction of

the total energy is deposited in the active part. The ratio of total energy deposit in the active

region is called the sampling fraction:

fs =
EActive

EPassive +EActive
(4.6)

The energy measured in a sampling calorimeter has to be multiplied with the inverse of the

sampling fraction to obtain the total energy deposit.

However, the number of electrons and positrons in a shower produced by a particle with

a given energy fluctuates statistically. Since the total ionization signal is proportional to the

number of charged particles, the reconstruction energy fluctuates in the same way. Fluctuations

in the deposited energy (∆E) can therefore be expressed like:

∆E

E
∝

∆N

N
∝

1√
N

∝
1√
E

(4.7)

Therefore, the calorimeter energy resolution improves with increasing energy as 1/
√

E.

This estimation is based purely on statistical arguments. The actual energy resolution of a

realistic calorimeter can be written as:

σE

E
=

a√
E
⊕ b

E
⊕ c (4.8)
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where:

• a/
√

E is called stochastic or sampling term. It represents the fluctuations related to

the physical development of the shower. Homogeneous calorimeters have a very small

stochastic term because the whole shower is absorbed in the active material (a about few

percent). The sampling calorimeters have a much bigger stochastic term because the

energy deposited in the active material can fluctuate on an event-by-event basis.

• b/E is called noise term. This term depends on the noise of the electronic read-out chain.

Methods like signal shaping and optimal filtering can help to reduce the noise term.

• c is called constant term. This term summarizes all the contributions which do not

depend on the particle energy. It includes material non-uniformities, imperfections of the

mechanical structures, temperature gradients, etc.

For very high energies, the stochastic term becomes small and the resolution of the calorime-

ter is determined by instrumental effects.

4.2 Detector requirements

One of the challenges in building the ATLAS EMC is applying the same high precision me-

chanical techniques, used successfully in the building of previous electromagnetic calorimeters,

on a scale that is an order of magnitude larger than before. Furthermore, calorimetry will be

a crucial tool for the understanding of many physics processes which will manifest themselves

through final states with electrons or photons (i.e. H → γγ or H → 4e). In this sense, the main

requirements to fulfill the physics program are:

• Rapidity coverage. Searches for rare processes require an excellent coverage in pseudo-

rapidity, as well as the measurement of the missing transverse energy of the event and the

reconstruction of jets.

• Excellent energy resolution. To achieve a 1% mass resolution for the H → γγ and H →
2e+2e− in the range 114 < mH < 219 for the standard model Higgs, the sampling term

should be at the level of 10 %/
√

E[GeV ] and the constant term should be below 0.7 %.

• Electron reconstruction capability from 1 GeV to 5 TeV. The lower limit comes from

the need of reconstructing electrons from b quark decay. The upper one is set by heavy

gauge boson decays.

• Excellent γ/ jet, e/ jet, τ/ jet separation, which requires again high transverse granular-

ity and longitudinal segmentation.

• Accurate measurement of the shower position. The photon direction must be accu-

rately reconstructed for the invariant mass measurement in H → γγ decay. This implies

a very good transverse and longitudinal segmentation, with a measurement of the shower

direction in θ with an angular resolution of ∼ 50 mrad√
E(GeV )

.
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• Small impact of Noise. The impact of noise on the calorimeter performance must be as

small as possible. At LHC, contributions to the calorimeter resolution from noise arise

from pile-up and from the electronic noise of the readout chain. These contributions are

particularly important at low energy (E < 20 GeV ) where they can dominate the accuracy

of the calorimeter energy and position measurements. Minimization of the pile-up noise

requires fast detector response and fast electronics; minimization of the electronic noise

requires high calorimeter granularity and high-performance electronics.

• Resistance to radiation. The EM calorimeters will have to withstand neutron fluencies

of up to 1015 n
cm2 and radiation doses of up to 200 kGy (integrated over ten years of

operation).

• Time resolution. The time resolution should be around 100 ps for background rejection

and for the identification of some decay modes with non-pointing photons.

• Linearity. It is necessary to obtain a linearity better than 0.1 %.

In order to fulfill these requirements precise optimal filtering coefficients (OFC) must be de-

termined, which imply an accurate knowledge of the pulse shape response of every calorimeter

channel. This will be discussed in Chapter 5.

4.3 Description of the EM calorimeter

The EM calorimeter is a sampling calorimeter with lead as passive material (absorber) and

liquid argon as an active material [26]. An accordion shape is given to all plates in order to

avoid crack regions due to cables and boards of the readout. For the sake of clarity a photograph

of the accordion shape corresponding to the EM endcap can be seen in Figure 4.3(a). Particles

would be incident from left to right on the Figure.

The LAr ionization is collected by electrodes (at high voltage) situated in between two

absorbers (see Figure 4.3(b)). To keep the electrode in the right place, honeycomb spacers

are located in between the absorber and the electrode. Hence, the calorimeter is stacked as a

sandwich of absorber, spacer, electrode, spacer, (next absorber), repeated along the azimuthal

direction up to complete the whole coverage.

The EM Calorimeter covers the whole range along the azimuthal (φ) direction and between

-3.2 and 3.2 along the η direction. It is divided in one barrel (−1.475 < η < 1.475) [31] (EMB)

and two endcaps (1.375 < |η| < 3.2) [32] (EMEC) and is segmented in depth in three layers

(see Figure 4.4). There is also a thin presampler detector in front of the calorimeter covering

the region |η| < 1.8, whose task is to correct for the energy losses of electrons and photons in

the upstream material (see Figure 3.7).

The Argon is kept liquid at a temperature of ∼ 89 oK through a cryogenic system, being the

EM barrel and endcap calorimeters inside their respective cryostat vessels.
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4.3. Description of the EM calorimeter

(a) (b)

Figure 4.3: (a) Accordion–shaped in EM endcap inner wheel. (b) Picture of an electromagnetic

module during stacking.
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Figure 4.4: Schematic view of an accordion calorimeter piece. Sampling segmentation (three

layers) and granularity of the EM calorimeter.
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Chapter 4. The ATLAS Electromagnetic Calorimeter

4.3.1 Barrel specific properties

The barrel electromagnetic calorimeter is made of two half-barrels, centered around the z-axis.

One half-barrel covers the region 0 < η < 1.475 and the other one the region −1.475 < η < 0.

The length of each half-barrel is 3.2 m, their inner and outer diameters are 2.8 m and 4 m

respectively.

Figure 4.5 shows a diagram of one half-barrel. The direction of the accordion waves is

indicated pointing to the z axis as well as the calorimeter cells which points to the ATLAS center

or nominal interaction point. The calorimeter is inside the cryostat vessel which has two walls,

warm and cold, separated with a vacuum gap for temperature isolation purposes. The cables

pass from inside to outside of the cryostat vessel using special feedthrough connectors which

keeps the temperature isolation. In the ”warm” part (outside the cryostat) crates are connected

to the feedthroughs, which contains some electronics boards: Front End Boards (FEB) and

Calibration Boards. It can also be seen in Figure 4.5 a tube on top of the cryostat through which

the cryogenic system injects the liquid Argon.

Figure 4.5: Diagram of a half of the EM Barrel.
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4.3. Description of the EM calorimeter

The size of the LAr gap on each side of the electrode is 2.09 mm, which corresponds to a

total drift time of about 450 ns for an operation voltage of 2000 V. For ease of construction,

each half-barrel has been divided into 16 modules, each covering a ∆φ = 22.5o. A picture of

one EMB module is shown in Figure 4.6.

Figure 4.6: Picture of an EMB module.

4.3.2 Endcap specific properties

There are two EMEC cylinders in ATLAS located inside the endcap Cryostat at z ∼ ±350 cm

of the nominal interaction point. A picture of one EMEC inside the endcap cryostat can be

seen in Figure 4.7(a). Since the EMEC is a cylindrical wheel, the amplitude of the accordion

waves decreases when η increases (when the radius decreases). Due to mechanical constraints

demanded by this accordion shape, a second independent wheel is needed to extend the coverage

to η = 3.2. Hence, there are two wheels, the outer wheel from η = 1.375 to η = 2.5 and the

inner wheel from η = 2.5 to η = 3.2. The lead is cladded with 0.2 mm thick stainless steel

jacket to give it enough rigidity. For the outer wheel, the thickness of the lead plates is 1.7 mm

while the LAr gap thickness between the absorber and the electrode decreases continuously

from 2.8 mm (at η = 1.375) to 0.9 mm (at η = 2.5) when η increases (see Figure 4.8). For the

inner wheel, the thickness of the lead plates is 2.2 mm while the LAr gap thickness between

the absorber and the electrode decreases continuously from 3.1 mm (at η = 2.5) to 1.8 mm (at

η = 3.2) when η increases.

To facilitate handling and logistics, the EMEC cylinder is divided into 8 octants or modules

(see Figure 4.7(b)). The 16 modules have been stacked at the CPPM and UAM clean rooms.

One module consists of 96 (32) layers for the outer (inner) wheel stacked one on top of each

other. Each layer is a sandwich of absorber, spacer (gap), electrode, spacer (gap). The design is

symmetrical in φ and projective to the interaction point in η. In particular the cells drawn in the

electrodes point to the nominal ATLAS interaction point.
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Chapter 4. The ATLAS Electromagnetic Calorimeter

(a) (b)

Figure 4.7: (a) Picture of an EMEC wheel inside the endcap Cryostat. (b) Picture of an EMEC

module or octant at the stacking frame of the UAM clean room.
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4.3. Description of the EM calorimeter

4.3.3 Segmentation and granularity

The EM Calorimeter is segmented into cells along the two angular directions, η and φ, and

the longitudinal direction (calorimeter depth). In depth, three layers are defined by reading out

three electrode regions independently, namely: front (layer 1), readout from the calorimeter

front side, middle (layer 2) and back (layer 3), both readout from the calorimeter back side (see

Figure 4.4).

The granularity along η is also defined in the electrodes as copper strips using kapton as

electrical insulator between two strips. The size of such strips depends on the layer, being

smallest in layer 1 to allow for the separation of the two photons from the decay of a π0. A

picture of an electrode for barrel and endcap is shown in Figure 4.9. The angular variable η
increases from right to left of the picture. The copper strips are clearly seen so defining the

granularity along the η direction. The three layers in depth can be clearly distinguished as the

width of the strips changes from one layer to another.

(a) EM barrel (b) EM endcap

Figure 4.9: Picture of an EMB (a) and EMEC (b) electrode of the outer wheel. The segmentation

along η and the three layers in depth front, middle and back, are clearly seen.

The granularity along the azimuthal φ direction is defined by connecting summing boards

to the electrode connectors, hence grouping the signal in φ. Each liquid argon electronic cell is

built out of several gaps connected in parallel: for layers 2 and 3, there are 4 (3) consecutive

electrodes in the barrel (endcap) respectively; there are four times as many gaps per cell in layer

1, given the coarser granularity of the readout in the azimuthal direction. Figure 4.10 shows

some summing boards plugged in the electrode connectors for layer 1 of an EMEC module.

The φ direction goes from bottom to top of the picture, while the η direction increases from left

to right. The electrode connectors can be distinguished in black between two absorbers. The

summing boards grouped the signals of 12 electrodes together in this example.
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Chapter 4. The ATLAS Electromagnetic Calorimeter

Figure 4.10: Picture of the summing boards plugged in the front face of an EMEC module.

The electromagnetic calorimeter granularity is detailed in Table 4.1. In total the number

of cells or channels in the electromagnetic calorimeter is 173,312 (101760 in barrel, 62208 in

endcaps and 9344 in presampler).

Layer 1 Layer 2 Layer 3

|η| ≤ 1.35 0.025/8×0.1 0.025×0.025 0.050×0.025

Barrel 1.35 ≤ |η| ≤ 1.4 0.025/8×0.1 0.025×0.025 –

1.4 ≤ |η| ≤ 1.475 0.025×0.025 0.075×0.025 –

1.375 ≤ |η| ≤ 1.425 0.050×0.1 0.050×0.025 –

1.425 ≤ |η| ≤ 1.5 0.025×0.1 0.025×0.025 –

1.5 ≤ |η| ≤ 1.8 0.025/8×0.1 0.025×0.025 0.050×0.025

Endcaps 1.8 ≤ |η| ≤ 2.0 0.025/6×0.1 0.025×0.025 0.050×0.025

2.0 ≤ |η| ≤ 2.4 0.025/4×0.1 0.025×0.025 0.050×0.025

2.4 ≤ |η| ≤ 2.5 0.025×0.1 0.025×0.025 0.050×0.025

2.5 ≤ |η| ≤ 3.2 0.1×0.1 0.1×0.1 –

Table 4.1: Granularity ∆η×∆φ for each calorimeter layer (front, middle and back).

4.3.4 High Voltage

The condition of projectivity to the nominal ATLAS interaction point in the construction of the

EMEC makes that the Liquid Argon gap thickness (between absorber and electrode) decreases

continuously when η increases. The relation between the energy collected by the calorimeter

(E) and the liquid Argon gap thickness (wg) is [33]:

E ∼ fs

w1+α
g

HV α (4.9)
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4.3. Description of the EM calorimeter

where HV is the High Voltage applied on the gaps and fs is the sampling fraction defined in

Equation 4.6 (which is a function of the gap thickness). The value of α has been determined to

be α = 0.3 at 88.5 K in [34].

The decrease of the liquid Argon gap thickness when η increases implies an increase of the

measured energy with η. This growth may be compensated by decreasing HV continuously

when η increases. For practical reasons a decreasing stepwise function for HV is chosen, thus

defining seven HV sectors for the outer wheel and two sectors for the inner wheel. The growth

of the measured energy with η inside a HV sector is corrected by software in the reconstruction

phase of the signal, keeping then the required uniformity of the calorimeter signal response.

In contrast, for the EM Barrel Calorimeter this problem does not occur and, as a consequence,

the High Voltage between electrodes and absorbers is kept constant, being the nominal value

2000 V. Figure 4.8 shows the nominal gap size and the nominal HV size used in the standard

geometry simulation in the ATLAS EM calorimeter until |η| < 2.5.

The High-Voltage sector definitions, consequence of the endcap geometry, is given in Ta-

ble 4.2.

Barrel End-cap Outer W. End-cap Inner W.

HV region 0 1 2 3 4 5 6 7 8 9

η range 0-1.475 1.375-1.5 1.5-1.6 1.6-1.8 1.8-2.0 2.0-2.1 2.1-2.3 2.3-2.5 2.5-2.8 2.8-3.2

HV values 2000 V 2500 V 2300 V 2100 V 1700 V 1500 V 1250 V 1000 V 2300 V 1800 V

Table 4.2: The high voltage regions of the EM calorimeter.

4.3.5 Electronics

The electric signal from the ionization of the Liquid Argon produced by a charged particle has

a triangular shape, when representing the intensity versus time, with typical duration of several

hundreds nano-seconds. This signal pass through the electrode readout paths to the Summing

Boards and the Mother Boards on top of them. Long cables connect the Mother Boards to the

electronics outside the cryostat.

A simplified schematic view of the calorimeter readout inside the detector is shown in Fig-

ure 4.11. The detector cell is represented by a capacitance C where a triangular ionization signal

(I
phys
in j (t)) is generated by the detected particle. Also linked to a cell, there appears an inductance

L due to the electrode, the Summing-Board and a small portion of the Mother-Board. The signal

travels through a 25 Ω cable in case of a middle or a back cell and a 50Ω cable in case of a front

cell. Immediately after the feedthrough of the cryostat, the signal enters a Front-End-Board

(FEB) and passes through a three gain shaper with gain factors 1, 9.3 and 93 corresponding to

low, medium and high gain respectively. The measured shaped signal gphys(t) is sampled by a

Switch Capacitor Array (SCA) located in the FEB at a frequency of 40 MHz (equivalent to a

period of 25 ns), that is the nominal bunch crossing frequency of LHC beams. The samples are

digitized by ADCs located in the FEB and the numbers are transmitted to the miniROD and the

DAQ computing system in the control room.
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Chapter 4. The ATLAS Electromagnetic Calorimeter

Figure 4.11: Diagram of the EM calorimeter readout inside the detector.

An exponential signal (Icali
in j (t)) is generated in the Calibration Board playing the role of the

triangular ionization signal of physics events. The signal Icali
in j passes the feedthrough to get into

the cryostat and travels through a long cable up to the Mother-Board. The calibration signal sees

the detector cell as a capacitance and an inductance as indicated in Figure 4.11. The response

to this injection signal continues through the same readout line as the ionization signal to reach

the SCA. The output is again seven samples of the shaped signal gcali(t) after being digitized

by the ADC.

The calibration boards allow to set the amplitude of injected current Icali
in j numerically. A

DAC unit, included in the calibration board, transforms this number into an analog amplitude.

We will refer to this number as DAC value. The calibration board is equipped with a delay unit,

which allows to delay the injection from 0 to 24 ns in steps of 1 ns with respect to the leading

edge of the 40 MHz clock (tdelay). The calibration pulse gcali(t) is obtained by representing

the sample heights as a function of tdelay
3. These delay runs were taken in between cosmic

runs. Delay runs in high (medium, low) gain with a DAC value of 500 (4000, 40000) units are

considered for the signal reconstruction studies.

3Every sample height is an average over 100 events taken for a given delay
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4.3.6 Main differences between EM endcap and barrel

Some differences between EMEC and EMB relevant to the study of this document are summa-

rized in the Table 4.3.

Barrel Endcaps (outer wheel)

Gap (absorber-electrode) (mm) 2.09 0.9 to 3.1

Bending angle (◦) 70 to 90 60 to 120

Drift time (ns) 450 600 to 200

dE/dX sampling fraction (%) 25 or 28 30 to 14

HV (V) 2000 2500 to 1000

Layer 2 Cell inductance L (nH) 25 to 35 50 to 20

Layer 2 Cell Capacitance at cold C (pF) 1400 or 1900 1200 to 600

Table 4.3: Some geometrical and electrical characteristics of the barrel and endcap outer wheel

EM calorimeter. In the former case, parameters may vary at |η| = 0.8. In the latter case, the

variation is smooth and given for increasing |η| from 1.375 to 3.2.
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5
Signal reconstruction performance

The ATLAS Liquid Argon electromagnetic calorimeter uses a digital filtering technique, called

Optimal Filtering Method, to reconstruct the signal amplitude from samplings of the ionization

pulse. Some weights, optimal filtering coefficients (OFC), are determined from the pulse shape

and its derivative, such that the weighting sum of the samples gives the amplitude of the signal

per cell. Each read-out channel can be calibrated by means of electronic pulses that mimic the

ionization signal produced by an electromagnetic shower. The calibration and the ionization

signal are slightly different in shape (exponential/triangular, respectively) and injection point

(outside/inside the detector). It is necessary to know the electrical parameters of every cell in

the detector to deduce the ionization signal from the calibration signal.

This chapter gives a brief description of the Optimal Filtering Method in Section 5.1 and a

method to predict the ionization signal from the calibration signal in Section 5.2. Section 5.3

explains an algorithm to determine the electrical parameters of the calorimeter cell. Finally, in

Section 5.4 a first global check of the signal reconstruction quality over the whole EM calorime-

ter coverage is performed with few tens of events created by the hit of LHC beams on collima-

tors 200 meters before ATLAS on 2008.

5.1 Optimal filtering method

The LAr EMC signal is generated by the drift of the ionization electrons in the electric field

provided by the High Voltage (HV) in the LAr gap. The current versus time has a triangular

shape, being the peak proportional to the energy deposited by the electromagnetic shower. The

ionization signal is pre-amplified and then shaped by a CR−RC2 bipolar filter at the end of the

readout chain. The bipolar signal is sampled every 25 ns (the LHC bunch crossing period) and

5 samples are digitized and used in the signal reconstruction procedure. For special runs more

than 5 samples are digitized and recorded (typically 25 or 32). Figure 5.1 shows a comparison
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between the original triangular signal generated inside the LAr gap and the output signal after

passing the readout electronics. It corresponds to a cell of the layer 2 for high gain of the

bipolar shaper. The maximum has been normalized to 1. The bipolar shaper is designed such

that the maximum of the triangular signal corresponds to the maximum of the shaped pulse.

Hence, the maximum amplitude of the shaped pulse is proportional to the energy deposited by

the electromagnetic shower in that cell. The dots correspond to the samples each 25 ns.
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Figure 5.1: The triangle shape (black line) corresponds to the signal as a function of time just

after the electrode, and the bell shape (blue line) corresponds to the signal after crossing the

shaper. Red dots represent the recorded amplitudes separated by 25 ns.

From these samples two relevant quantities are deduced, using a digital filtering technique,

namely the signal maximum amplitude (Amax), which is proportional to the energy deposited

in the cell, and the time shift (∆t) of the signal maximum amplitude with respect to a refer-

ence value. The Optimal Filtering (OF) method is a digital filtering technique to determine

such quantities. The inputs to the method are: the covariance or autocorrelation matrix of the

samples, which contains the information of the noise, the pulse shape (gphys), its maximum

normalized to one, and its derivative (dgphys/dt).

The outputs of the method are some weights or coefficients, ai, bi i = 1, . . . ,n, where n is

the number of samples, such that:

Amax =
n

∑
i=1

aiSi (5.1)

∆t =
∑n

i=1 biSi

Amax
(5.2)

being Si i = 1, . . . ,n the measured samples (pedestal or zero is subtracted).

The Optimal Filtering coefficients (OFC), ai, bi i = 1, . . . ,n, are calculated by the method

with the condition to minimize the noise contribution to the signal [35].
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5.1. Optimal filtering method

Two sources of noise are foreseen in the calorimeter during operation at LHC:

• Thermal (or electronic) noise. The amplitude of the thermal noise depends only upon

the characteristics of the detector and the signal processing circuitry. Figure 5.2 shows

the electronic noise measured in ADC counts at the cell level as a function of η for every

layer 1.

• Pile-up (or physics) noise. The minimum bias or soft scattering events will be superim-

posed to the hard scattering process. It is expected to have about 27 minimum bias events

per bunch crossing at nominal LHC luminosity. In addition, events of previous bunch

crossings will affect the signal of the present crossing, since the ionization time constant

of the liquid Argon is several hundred nano-seconds. The overall effect is a small signal

in the cells, fluctuating from event to event, which can be considered as a noise super-

imposed to the hard process physics event of interest. The level of pileup noise depends

therefore on the luminosity of the machine and on the size of the calorimeter cells.
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Figure 5.2: Electronic noise (σnoise) computed with 5 samples OFC in high gain for each longi-

tudinal layer of the EM calorimeter as a function of η. Results are averaged over φ. Layer 1, 2

and 3 are represented with red down triangles, black squares and blue up triangles, respectively.

In the case of cosmics muon or single beam data, only the first source of noise enters in

the analysis. In future, for the analysis of the LHC data we will need to take the pile-up noise

contribution into account as well.

For ATLAS nominal operation with collision events, the bunch crossings and the readout

clock are synchronous, hence the pulses get always sampled at the same position and one set of

OFC is sufficient. However, in the cosmic test environment this is not the case since the cosmic

signal is asynchronous to the readout clock. Depending on the phase shift between the clock

1unlike in the ATLAS standard convention, the two layers of the inner wheel are denoted layer 2 and layer 3

because they have similar geometrical and electrical characteristics as layer 2 and layer 3 of the outer wheel.
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and the particle arrival, a different fraction of the pulse is sampled. To cope with this situation,

multiple sets of OF coefficients are calculated by shifting the pulse shape gphys in steps of ∆phase.

During the cosmic commissioning period, a set of (ai,bi), i = 1, . . . ,n coefficients for each time

phase were calculated, up to a total of 50 phases in 1 ns steps and for every gain. During the

LHC single beam period in 2008, a different step was used ∆phase = 3.125 ns.

Given a certain asynchronous data event, with certain sample values Si, i = 1, . . . ,n, the

proper set of OFC is chosen such that the value of ∆t is minimum: < 1 ns or < 3.125 ns for

cosmic or beam splash data respectively.

5.2 Prediction of physics pulse

As seen in the previous section, the pulse shape of the ionization (or physics) signal is needed

to determine the Optimal Filtering Coefficients for each calorimeter cell. However this shape is

unknown and must be predicted either by an analytical model of the EM readout [36] or directly

from the cell response to a calibration pulse [37]. The second procedure is the standard ATLAS

pulse shape prediction method and has been adopted in this work.

L

C

read-out line

r
CR-RC

2

I ionIcali

Hr.o.

Figure 5.3: Basics electrical model of a LAr cell with schematic readout chain and simplified

calibration network. Shapes of calibration and ionization signals are illustrated, as well as the

output pulse.

Although the readout path and electronics are the same for physics and calibration inputs,

there are two differences at the injection point, namely:

• the physics input signal is produced inside a gap of the detector, while the calibration

input is generated outside the cryostat in a calibration board connected on a Front End

Crate. This difference makes the calibration see the calorimeter cell as a different RLC

circuit.

• the physics input signal has a triangular shape when represented as a function of time,

while the calibration charge injection has an exponential shape.
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In Figure 5.3 a simplified diagram of the electrical model for a LAr cell is shown. The

calorimeter cell is seen as an RLC circuit: the capacitance C of the LAr gap, an inductance L

which has two contributions, one from the electrode path between the gap and the Summing

Board and the other one from the path inside the Summing Board itself added to a small portion

of Mother Board, and a small resistance r of the total path. The injection point of the ionization

(physics) and calibration signals is indicated as well. Clearly these signals see the cell RLC

circuit in a different way, RL in parallel with C for physics injection signal and in serial in the

case of calibration. The different shapes of the injection current between physics and calibration

(triangular and exponential, respectively) is shown in Figure 5.4. These differences induces a

different response amplitude to a normalized input signal. The resulting bias must be taken into

account in order to correctly convert ADC counts into energy. This is achieved by using the

ratio between the maximum amplitudes of physics and calibration pulses, called Mphys/Mcali.
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Figure 5.4: Typical predicted physic shape (blue line) compared with a calibration signal (black

line). The calibration signal is normalized to 1.

The ionization electrons drift in the electric field inside the LAr gap, producing a current

with amplitude proportional to the released energy. This current has the typical ionization-

chamber triangular shape, with a fast rise time, of the order of 1 ns, followed by a linear decay

for the duration of the maximum drift time Tdri f t . Neglecting the fast rise shape, such a signal

at the input of the cell capacitor in time domain is given by:

I
phys
in j (t) = I

phys
0 θ(t)θ(Tdri f t − t)

(

1− t

Tdri f t

)

(5.3)

where θ is the Heavyside function and I
phys
0 is the amplitude of the ionization current. The drift

time for the EM Barrel, 2.09 mm gap under a voltage of 2000 V, is close to 450 ns. In contrast

it is a function of the pseudorapidity for the EMEC due to the change in the LAr gap and in the

voltage, taking values in the range 200−600 ns.
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The output physics signal can be written as:

gphys(t) =

Z +∞

−∞
Kp(t − t ′)I phys

in j (t ′)dt ′ (5.4)

where Kp contains the information of the readout circuitry.

In the Laplace domain and applying the convolution theorem [38]:

gphys(s) = I
phys
in j (s)Kp(s) (5.5)

where:

• Kp(s) can be written as the product of a factor Hdet(s), which contains the electronics

characteristics related to a detector cell (RLC circuit), and a factor Hreadout(s), which

takes into account the readout chain (line+preamplifier+shaper) common for physics and

calibration signals;

• I
phys
in j (s) is the injected ionization signal 5.3 in the Laplace frequency domain, that is:

I
phys
in j (s) = I

phys
0

(

1

Tdri f ts
− 1− e−Tdri f ts

T 2
dri f ts

2

)

(5.6)

Hence, the output physics signal can be written as:

gphys(s) = I
phys
in j (s)Hdet(s)Hreadout(s) (5.7)

The calibration charge injection aims to mimic the ionization signal, in order to be able to

measure the actual gain and properties of each channel thus assuring the proper cell equaliza-

tion. An exponential signal with decay time τcali is generated by the calibration boards (see

section 4.3.5), whose pulser is based on a RL-circuit (see Figure 4.11). The values of the R0

and L0 components are selected such that to obtain the proper exponential decay constant τcali,

which has been chosen similar to the ionization signal decay slope. The non-ideal inductance

L0 of the calibration board pulser circuit has a resistive component r0 that modifies the baseline

of the exponential ( fstep parameter below). This exponential injection current can be written as:

Icali
in j (t) = Icali

0 θ(t)( fstep +(1− fstep)e
−t/τcali) (5.8)

where Icali
0 is the amplitude of the injected current, θ(t) is the Heavyside step function, fstep

(approximately 0.09) is the fraction

fstep =
r0

r0 + R0

2

(5.9)
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and τcali is the effective exponential decay constant (which value is approximately 400 ns)

τcali =
L0

r0 + R0

2

(5.10)

Similarly to the the ionization physics signal, the calibration signal at the output of the

readout chain can be written in the Laplace frequency domain as:

gcali(s) = Icali
in j (s)Hdetcali(s)Hreadout(s) (5.11)

where

• Hdetcali(s) is the detector part of the electronics circuit as seen by the calibration injection

signal;

• Icali
in j (s) is the Laplace transform of the calibration injection signal (Equation 5.8), namely:

Icali
in j (s) = Icali

0

(

τcali(1− fstep)

1+ τcalis
+

fstep

s

)

(5.12)

Dividing gphys(s) and gcali(s) the common part Hreadout(s) cancels out and we obtain:

gphys(s)

gcali(s)
=

I
phys
0

Icali
0

Hdet(s)

Hdetcali(s)
(5.13)

Hence, the physics signal or physics pulse shape can be obtain from the calibration pulse

shape through the following expression in the Laplace frequency domain:

gphys(s) = gcali(s)
I

phys
in j (s)

Icali
in j (s)

Hdet(s)

Hdetcali(s)
(5.14)

Or in the time domain as:

gphys(t) =

[

gcali ∗L
−1

(

I
phys
in j (s)

Icali
in j (s)

)

∗L
−1

(

Hdet(s)

Hdetcali(s)

)

]

(t) (5.15)

where ∗ means convolution integral.

The second and third factors in the convolution take into account the differences in the

injection signal and injection point respectively between the physics and the calibration signals.
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5.2.1 Computation of gphys

For computational purposes the Equation 5.15 can be written as:

gphys(t) =

[

gcali ∗L
−1

(

(1+sτcali)(sTdri f t−1+e
−sTdri f t )

sTdri f t( fstep+sτcali)

)

∗L
−1
(

1
1+s2LC+sRC

)

]

(t)

=
[

gcali ∗gexp→tri ∗gMB→det
]

(t) (5.16)

where the two different time-domain convolutions are:

gexp→tri(t) = δ(t)+
[

1− fstep

τcali
e
− fstep

t
τcali − 1− fstep

fstep

(

e
− fstep

t
τcali −1

)]

θ(t)

+
1− fstep

fstep

(

e
− fstep

t−Tdri f t
τcali

)

θ(t −Td)

gMB→det(t) =
2

τa

e(τr/(2τ2
0))tθ(t) (5.17)

where τr = RC and τ0 = LC.

The procedure requires the knowledge of the calibration pulse gcali (see Chapter 4) and of

a set of five parameters, namely two related to the calibration board, τcali and fstep, two related

to the cell electrical properties, τ0 and τr, and one related to the ionization, Tdri f t . Their values

may depend on the detector conditions, temperature, radiation dose, etc., hence it is important to

monitor them on a regular basis. The parameter Tdri f t has been measured with cosmic data (see

Chapter 6), while the other four parameters can be extracted either from direct measurements or

from the calibration pulse using the algorithm called Response Transformation Method (RTM).

5.3 Response Transformation Method

The RTM method was developed by the Milan Atlas group to be applied to the barrel EM

calorimeter [37]. It has subsequently been adapted for the endcap EM calorimeter and tested

with cosmic muon data [39].

The response to a calibration injection pulse can be written in the Laplace frequency domain

as given in Equation 5.11. Let a generic current pulse Yin j(s) be injected on the system at the

Mother Board level, as it is actually done with the real calibration pulse Icali
in j (s). The response

Wout(s) of the system to this signal would be:

Wout(s) = Yin j(s) Hdetcali(s) Hreadout(s) =

=
Yin j(s)

Icali
in j (s)

Icali
in j (s) Hdetcali(s) Hreadout(s) =

Yin j(s)

Icali
in j (s)

gcali(s) (5.18)
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or, in the time domain:

Wout(t) =

[

gcali ∗L
−1

(

Yin j(s)

Icali
in j (s)

)]

(t) (5.19)

The dependence on the circuit parameters has cancels out and only remains the ratio between

the different injection functions.

The RTM bases its strategy to retrieve parameters on the computation and analysis of what

would be the response to a signal different from the ”exponential” calibration injection signal.

The system response can in fact be sensitive to a particular injected waveform, the output show-

ing in some cases easily recognizable characteristics. In the following steps, waveforms will be

sought that minimize the signal tail of Wout(t). For this purpose, a χ2-like quantity is built by

summing the squares of the values of Wout(t) along the tail, that is:

Q2 = ∑
t>ttail

W 2
out(t) (5.20)

the tail being defined as the signal portion after the time ttail.

In particular, to obtain the calibration board parameters, τcali and fstep, a step function will

be chosen for Yin j(t), and to extract τ0 a cosine function for Yin j(t) is more suitable.

5.3.1 Extraction of the calibration boards parameters: τcali and fstep

To obtain the calibration pulse parameters τcali and fstep a Heaviside step function, Yin j(t) =
θ(t), is used with unit amplitude. The Laplace transform of the step function is Yin j(s) = 1/s.

On the other hand, the expression for Icali
in j (s) of Equation 5.12 can be written, for unit amplitude

(Icali
0 = 1), as:

Icali
in j (s) =

τ′calis+ f ′step

s(1+ τ′calis)
(5.21)

Hence, the ratio between both injection signals is:

Yin j(s)

Icali
in j (s)

=
1+ sτ′cali

sτ′cali + f ′step

(5.22)

and Wout can be obtained as:

Wout(s) =
1+ sτ′cali

sτ′cali + f ′step

gcali(s) (5.23)

It can be shown that, for the correct values τ′cali = τcali and f ′step = fstep of the calibration

board parameters, Wout(t) has the property of going to zero in the tail very rapidly. This is

due to the fact that both Hdet and Hreadout functions contain only short time constants, hence

Wout(s) = Yin j(s) Hdetcali(s) Hreadout(s) cannot have a long tail in the time domain.
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Chapter 5. Signal reconstruction performance

This null-tail property of the step-response can be used to determine both calibration board

parameters τcali and fstep by minimizing the following quantity:

Q2(τ′cali; f ′step) = ∑
t>ttail

W 2
out(t;τ′cali; f ′step) (5.24)

The minimization procedure may in principle depend on the tail starting point value ttail. A

robust choice of ttail is given by ttail = tmin +100 ns, where tmin is the minimum of the negative

lobe of the shaped signal 2. Using this criterion the systematic uncertainty introduced by ttail in

the RTM procedure is small. The RTM values are in a good agreement (at the 5% level) with

the values extracted from measurements in the production laboratories [40].

Figure 5.5 shows τcali (a) and fstep (b) versus η extracted with RTM method for every cell

of the EM calorimeter in layer 2. The average value for τcali is 399.5 and fstep is 0.089 in the

outer wheel. From the dispersion of those scatter plot, an estimate of the uncertainty in the

determination of τcali and fstep can be inferred, namely 3% and 5%, respectively.

0

2

4

6

8

10

12

14

16

18

20

η

-3 -2 -1 0 1 2 3

 [
n
s
]

c
a
li

τ

350

360

370

380

390

400

410

420

430
EM LAYER 2

Endcap C Barrel Endcap A

(a) τcali

0

2

4

6

8

10

12

14

16

18

20

η

-3 -2 -1 0 1 2 3

s
te

p
f

0.06

0.07

0.08

0.09

0.1

0.11

0.12
EM LAYER 2

Endcap C Barrel Endcap A

(b) fstep

Figure 5.5: Calibration board parameters (τcali (a) and fstep (b)) as a function of η in layer 2 of

the EM calorimeter and in high gain.

5.3.2 Extraction of the detector parameters: τ0 and τr

To extract τ0, or equivalently ω0 = 1/
√

τ0, the response to a monochromatic cosine pulse

Yin j(t) = θ(t)cos(ωt) is studied, which, in the Laplace frequency domain, has the form:

Yin j(s) =
s

s2 +ω2
(5.25)

2One can look at Figure 5.1 to see the negative lobe of the shape signal, although the pulse shape corresponds

to a ionization signal instead of a calibration step function
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5.3. Response Transformation Method

The ratio between both ”cosine-type” and calibration injection signals is:

Yin j(s)

Icali
in j (s)

==
s

s2 +ω2

s(1+ sτcali)

sτcali + fstep
(5.26)

and Wout can be obtained as:

Wout(s) =
s

s2 +ω2

s(1+ sτcali)

sτcali + fstep
gcali(s) (5.27)

It turns out that the smallest amplitude for this function is obtained when ω = ω0, hence this

parameter is obtain by minimizing the following quantity:

Q2(ω) = ∑
t>ttail

W 2
out(t;ω)× (1+(ωτsh)

2)3

(ωτsh)2
(5.28)

where the last term introduces a shaper correction in this case, due to the fact that the shaper

acts as a band-pass filter suppressing the high frequency components of the injected signals.

Finally the parameter τr can be extracted by injecting Yin j = Icali
in j , however at the physics

injection point. This introduces a correction factor in the output signal, which depends on τ′r as

follows:

1

1+ sτ′r + s2τ′0
(5.29)

Hence,

Wout(s) =
1

1+ sτ′r + s2τ′0
gcali(s) (5.30)

If τ′0 6= τ0 or τ′r 6= τr the function Wout(t) will have an oscillating behavior on the tail. We

can assume that τ0 has been obtained before by the RTM method, as described in previous

subsection, or by direct measurements. Hence, the quantity to minimize in order to obtain τr is

defined as:

Q2(τ′r) = ∑
t>ttail

(Wout(t;τ′r)−gcali(t))2 (5.31)

Figure 5.6 shows ω0 and τr as a function of η for layer 2. The values of both parameters

are changed with pseudorapidity because of the capacitance variation. The dispersion of the ω0

values along azimuth φ can be considered an estimate of the parameter uncertainty, which turns

at to be about 3%. The parameter τr includes a small resistance and other effects not included

in the electronic model, hence it can be considered as an effective parameter. Its influence in

the final result is a second order effect. Therefore, the dispersion of τr is not a concern.
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Figure 5.6: Cell resonance frequency ω0 (a) and τr extracted with RTM as a function of η for

layer 2 cells of the EM calorimeter. All points have been averaged over φ.

Figure 5.7: Atlantis display with a Splash event in the ATLAS experiment. Beam was initially

directed at beam collimators just outside the detector, so that a splash of particles hit every cell

of the detectors.
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5.4 Validation of the signal reconstruction method

In September 2008, single beam circulated in the LHC for the first time. The presence of

collimators 200 meters before ATLAS illuminated the detector with a particle flow which hit

every channel of the calorimeter and depositing few PeV of energy in it. Figure 5.7 is an Atlantis

display with a splash of particles later called beam splash on 10 September 2008.

In parallel with a stable and smooth running of the electronic calibration system, the detailed

check of the signal reconstruction in each cell of the EM calorimeter is mandatory. The beam

splash data have been used to perform a systematic and quantitative comparison between data

and predicted physics pulse shapes (see Section 5.2) in the electromagnetic calorimeter (see

Chapter 4). There is a clear benefit from the use of beam splash data with respect to cosmic

data, namely the much higher number of events collected per run with sufficient energy for

analysis.

In this section a procedure to check the quality of the signal reconstruction is performed by

comparing the data samples recorded in each cell (25 ns step) with the predicted physics pulse

shape. The method was already proven to be very useful to test the signal reconstruction with

cosmic data [39, 41].

5.4.1 Beam splash data selection

On 10th of September 2008, first LHC beam circulated in ATLAS. Collimators, located in the

beam pipe 200 meters in straight line from the ATLAS interaction point, were used to dump the

beam. This produced a cascade of pions and muons, generating pulses in almost every cell of

the EM calorimeter at the same time. The energy spectrum of the incoming particles is unknown

but the flux of particle is so dense that the energy recorded per cell reflects roughly the volume

of the cell. To perform a coherent analysis of the signal reconstruction over the whole coverage

of the EM Calorimeter, a selection described in this section is applied.

A simple and robust beam-related trigger called BPTX is chosen in this analysis. The in-

formation about BPTX trigger can be found in Section 3.2.4.1. Only one run (86 events with

26 real beam splash events arriving from the C-side, z < 0) with stable enough data taking

conditions is used afterwards. Integrating over all events, an approximate energy of 20 PeV is

deposited almost uniformly in the EM calorimeter.

From this data period, EM calorimeter is functioning in a standard running mode:

• The nominal high voltage is applied everywhere (see Figure 4.8) except for 1% of cells

with lower high voltage in the barrel.

• All the front–end boards (FEBs) are functioning except four of them (512 cells), which

represents 0.3% of the total number of cells.

For each cell, 5 samples in ADC counts are recorded in free gain mode. Offline, optimal

filtering coefficients (OFC), computed by step of 3.125 ns (see Section 5.1), are applied to the

samples to calculate the maximum amplitude (Amax) in ADC counts, whenever the iterative

procedure to find the correct OFC set is successful (|∆t| < 3.125 ns). Failing cases are mainly
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due to a badly adjusted latency. When this happens, the sample with the highest amplitude is

located in the first or fifth sample, preventing the iterative procedure to converge. Such cases are

removed from our analysis. Finally, the maximum amplitude is converted in energy by applying

a factor

E[GeV ] = F(ADC−MeV )×Amax (5.32)

which includes details of the electronic chain, the sampling fraction and the absolute energy

scale [42],

F(ADC−MeV ) = fµA→GeV fDAC→µA
Mcali

Mphys

gADC→DAC (5.33)

The variation of F(ADC−MeV ) as a function of the layer and η is illustrated in Figure 5.8

for high gain.
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Figure 5.8: ADC to MeV conversion factor, F(ADC−MeV ), as a function of η for front (red

down triangles), middle (black squares) and back (blue up triangles) cells. All points have been

averaged over φ.

5.4.1.1 Cell selection

The ATLAS ”precision” region is defined by the inner detector coverage, |η| < 2.5. For com-

pleteness, we extend our study up to the EM calorimeter inner wheel acceptance, 2.5 < |η| <
3.2. Cells from the region 1.4 < η < 1.5 are removed in the following because the sample with

the highest amplitude in the A-side data signals is located in the fifth sample, preventing the

iterative procedure to converge. Although in the C-side the situation is different, the region

−1.4 < η < −1.5 is not considered in the analysis for consistency.

To minimize the fluctuations in the signal reconstruction, the energy deposited per cell

should be well above the noise. In a first step of the analysis, a lower energy cut is required,
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5.4. Validation of the signal reconstruction method

E > 500 MeV. Finally, to decorrelate and understand the biases of the signal reconstruction

from other effects, like abnormal noise level or uncorrect cell characteristics (abnormal cell

capacitance or inductance, ...), an official list of ”problematic” cells is established in the EM

calorimeter (see Appendix A). It represents about 600 pulses in total, i.e. few per mill of the

total number of hits. These pulses are rejected from the analysis.
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Figure 5.9: η−φ map (1 bin = 1 cell) of hits in layer 1 (a), layer 2 (b) and layer 3 (c) after all

selection criteria.

Table 5.1 shows the number of cells, hit at least once in the chosen run, after each step of

the selection. All cells but 1(6)% are selected in layer 2 and 3 (layer 1). As one cell can be hit

several times, it is also interesting to look at the η−φ map of those cells. Figure 5.9 shows that

almost every functioning middle cells have recorded at least 26 pulses with energy larger than

500 MeV, corresponding to the number of beam splash events (Section 5.4.1). This is also true

in layer 1 and 3 providing a total of 3.5 millions of data pulse shapes for the analysis. However
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some regions of front and back 3 are less populated in the barrel because of the φ-asymmetry

of the LHC tunnel installation : particles coming downwards encountered more material than

upwards. The eight-fold structure also visible in φ is due to the eight-fold structure of the endcap

toroid material.

Layer Layer 1 Layer 2 Layer 3 All

Total 86400 52608 24960 163968

+ remove 1.4 < |η| < 1.5 84352 50048 24960 159360

Total functioning 83968 49920 24960 158848

+ |∆t|< 3.125 ns 78995 (94.1%) 49907 (100%) 24627 (98.7%) 153529 (96.7%)

+ E> 500 MeV

+ Bad channels cut 78762 (93.8%) 49545 (99.2%) 24564 (98.4%) 152871 (96.2%)

Table 5.1: Number of hit cells per layer of the EM calorimeter after the different selection

criteria. The percentages in brackets correspond to the number of selected cells compared to

the number of functioning cells.

It is also interesting to look at the energy distribution of the selected hits. This is shown in

Figure 5.10 for the three layers of the barrel ( 5.10(a)) and of the endcap ( 5.10(b)). The energy

deposited by the particle flow is proportional to the cell volume, explaining the higher energy

in layer 2 compared to layer 3 and 1. It should be noticed that in more than 99% of the selected

shapes, the energy range corresponds to the high gain mode.
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Figure 5.10: Energy distribution of selected hits in the barrel (a) and in the endcaps (b) of the

EM calorimeter. Layer 1, 2 and 3 cells are represented with full red, black and blue lines, and

inner wheels with dashed lines.

3This is also true in layer 2, but only visible when cutting at higher energies.
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5.4.2 Matching data and predicted physics pulses

Compared to a normal LHC running, the pulses recorded in beam splash events are not correctly

timed, i.e. the maximum of the pulse is almost never located in the third sample. This is mainly

because the particles come asynchronously from a flow parallel to the LHC beam and not from

the interaction point. Moreover, as it was the first run, the FEB timing was not adjusted over the

whole calorimeter acceptance. The timing of the EM calorimeter in run analyzed is illustrated

in Figure 5.11 which shows the sample with highest amplitude averaged over each FEB. It is in

general on the second sample for side C (z < 0) and the fourth sample for side A (z > 0), but

other situations can also occur.
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Figure 5.11: Sample with highest amplitude averaged over each FEB denoted with its Slot-FT

location in the barrel C (a), barrel A (b), endcap C (c) and endcap A (d). The 5 samples from

data are labeled from 1 to 5.
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Figure 5.12: Typical cell response (5 red samples in ADC counts) in high gain to high energy

deposits in the endcap C (left), barrel C (middle left), barrel A (middle right) and endcap A

(right) for layers 1, 2 and 3 from top to bottom. The blue squares correspond to the predicted

pulse shapes using 40 samples computed by step of 3.125 ns. The gray triangles, with the scale

on the right, are the residuals, i.e. (data-prediction) normalized to the maximum amplitude. The

Q2-estimator is around 1 for all these cells. Q2 is defined in Equation (5.34), where k = 1%,

1.5% and 2% is used for layer 1, 2 and 3, respectively.
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5.4. Validation of the signal reconstruction method

Because of the complex situation of the beam splash run, a dedicated method to match data

and prediction is set-up. First, the predicted physics pulse shape (normalized to one) is mul-

tiplied by the maximum amplitude Amax computed for each cell using the OFC. To cope with

the timing situation, a global time adjustment between data and prediction is first performed by

25 ns steps through a simple χ2 minimization. This is then refined by using the OFC compu-

tation for the timing. Because of the 3.125 ns step between each point of the predicted shape,

a linear interpolation is performed between predicted points closest to the data to compute the

prediction at the data time phase.

Figure 5.12 shows typical physics shapes for each sampling (front, middle and back from

top to bottom) in the barrel (center) and in the endcaps (sides). In all cases, the predictions

agree qualitatively nicely with the data. The residuals, defined as (data-prediction) normalized

to the maximum amplitude, are indicated with gray open circles, with the scale on the right of

the plot. They are all contained within the ±2% (resp. ±3.5%) band for layer 1 and 2 (resp.

layer 3).

As only three significant samples are recorded in the A side (the two first samples are in the

pedestal), quantitative comparisons between data and predicted shapes are based on the three

highest samples for both A and C sides, to keep the same procedure in both.

5.4.3 Quality of the signal reconstruction

The distance between the predicted and the data pulse shapes can be estimated by the following

quantity, which is a measure of the signal reconstruction quality:

Q2 =
Q′2

Ndo f

=
1

Ndo f

Nsamples

∑
i=1

(

Si −Amax ∗g
phys
i

)2

σ2
noise +(k ∗Amax)2

(5.34)

where:

• Nsamples = 3 is the number of samples used to estimate the quality of the pulse shape

prediction as defined in Section 5.4.2.

• Si is the amplitude of each sample i.

• Amax is the maximum amplitude calculated from the OFC (see Equation 5.2).

• g
phys
i is the normalized predicted ionization shape.

• σnoise is the noise for a single sample in ADC counts (see Figure 5.2).

• k is an effective parameter reflecting mainly the relative accuracy of the amplitude Amax,

linked to the pulse shape residuals. The parameter k is chosen such that Q2 is independent

of Amax and close to one, as seen in Figure 5.13 for layer 2 of the barrel. The values chosen

in a first iteration are 1%, 1.5% and 2% for layer 1, 2 and 3, respectively.

• Ndo f = 3 is the number of degrees of freedom.
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Chapter 5. Signal reconstruction performance

The Q2 denominator reflects the numerator uncertainty : it is the quadratic sum of the data

amplitude uncertainty (noise term) and of the predicted amplitude uncertainty. To extract stable

results, the preferred situation correspond to kAmax > σnoise, i.e. when the noise fluctuation

for each sample is negligible compared to the uncertainty on the pulse shape prediction. This

regime is guaranteed by requiring Amax > 500 ADC counts (high gain). This new selection cut

reduces the statistics by a factor about 3, which means 1.1 millions of pulse shapes in the final

sample.

After this selection, Q2 ∼ p0 can be interpreted as a pulse shape prediction at the k
√

p0

level. For example, in layer 2 of the Barrel p0 ∼ 1.4, hence the accuracy in the signal shape is

1.5
√

1.4 = 1.8%.

It has been checked that the variable Q2 follows a normalized χ2 distribution when rescaling

k to the level of accuracy. Figure 5.14 shows an example for layer 2 of the barrel where k

has been rescaled to k = 1.8%. The distribution corresponds to Q′2 instead of Q2. The χ2

probability density function corresponding to three degrees of freedom agrees very well with

the Q′2 distribution.

Figure 5.15 shows the Q2-estimator as a function of η over the whole calorimeter accep-

tance, for the three layers of the EM calorimeter. The value of the Q2-estimator is around 1 for

central η regions of every layer and it increases at high |η| values reflecting the larger difficulty

to describe the data pulses. The variation over η, excluding regions around cracks, is at most

a factor 4 in some endcap regions. This means that the quality of the prediction is at most de-

graded by
√

4 in these regions. This is a proof of the quality of the ATLAS signal reconstruction

in the endcaps, despite its challenging aspect.

The quality factor Q2 can be used to detect bad behaved channels. Figure 5.16 shows the

Q2-estimator (colors) as a function of (η,φ). Blank regions means no event has hit those cells

with a deposit above 500 ADC units. The red color indicate a high Q2 value. For example, in

layer 2 of the Barrel red spots are seen specially around η = 1. They corresponds to Q2 > 5.5.

The re-scaled value corresponding to a normalized χ2 distribution is Q2
norm > 5.5/1.4 ∼ 3.9.

The probability to obtain such values is:

Z ∞

3.9
χ2(x)dx ∼ 0.05 (5.35)

Hence, the hypothesis that those are well-behaved channels is rejected at the 5% significant

level.
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Figure 5.13: Q2 as a function of the maximum amplitude (Amax > 500 ADC counts) for layer 2

of the barrel. Q2 is defined in Equation (5.34), where 1.5% is used for layer 2. The results of a

fit with a constant p0 are superimposed.
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Figure 5.14: Normalized distribution of Q′2 defined in Equation (5.34), using k = 1.8%, for

layer 2 cells in |η| < 0.8. A fit with a χ2 function is superimposed (full line), resulting in a

number of degrees of freedom (Ndo f ) around 3. Dotted lines indicate χ2 functions with Ndo f

fixed to 1, 2 and 4.
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Figure 5.15: Estimator Q2, representing the quality of the physics pulse shape prediction, as a

function of η for layer 1 (a), 2 (b) and 3 (c). Q2 is defined in Equation (5.34), where k = 1%,

1.5% and 2% is used for layer 1, 2 and 3, respectively. Only cells with Amax > 500 ADC counts

and 3 highest samples in high gain mode are selected. The number of selected hits are 397822

in layer 1, 502294 in layer 2 and 196487 in layer 3.
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Figure 5.16: η-φ maps (1 bin=1 cell) of estimator Q2, representing the quality of the physics

pulse shape prediction, in layer 1 (a), 2 (b), 3 (c). Q2 is defined in Equation (5.34), where

k = 1%, 1.5% and 2% is used for layer 1, 2 and 3, respectively. Only cells with Amax > 500

ADC counts and 3 highest samples in high gain mode are selected.
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5.4.4 Impact of the signal reconstruction on the constant term

It is possible to derive a rough estimate of the impact of the quality of the signal reconstruction

on the constant term c of the energy resolution. This constant term was measured around 0.5%

for the barrel EM calorimeter using 250 GeV electron beam data on 10% of the modules and

about 0.7% for the Endcap using 120 GeV electron beam on three modules [43]. The uncer-

tainty on the signal reconstruction is only one of the contributions to the constant term, which

will be labeled as cSR in the following. It has been demonstrated that an uncertainty of k = 1%

in the determination of Amax leads to a constant term in the range 0.1% < cSR < 0.3% [37].

In electromagnetic showers, most of the energy is deposited in layer 2, hence the unknowns

of the signal reconstruction in layer 2 dominates the contribution to the constant term, and the

other layers will therefore be neglected. As shown in previous section the uncertainty on the

signal reconstruction in the barrel layer 2 is about 1.8%. This value corresponds to a con-

stant term in the range 0.2% < cSR < 0.5%. Applying this argumentation for the endcap gives

0.25% < cSR < 0.7%. Both ranges are compatible with test beam results. The slightly worse

results obtained in the endcap reflects the greater unknowns on the pulse shape prediction.

5.5 Conclusions

The Optimal Filtering procedure used for the ATLAS EM Calorimeter has been described,

which converts from digital samples to the maximum amplitude of each channel signal. The

method requires the knowledge of the signal shape versus time, which is calculated from the

calibration pulse shape using a modeling of the circuit which takes into account the differences

between calibration and ionization. The four parameters entering the model, two of the calibra-

tion board and two related to the calorimeter cell, are determined using the Response Transform

Method (RTM) from the calibration pulse shape. The values of these parameters are compatible

with measurements for those cases such measurements exist. The value of the parameters has

been studied as a function of pseudorapidity. Their spread along the azimuth (φ) is at the few

per cent level.

A first global check of the signal reconstruction quality over the whole EM calorimeter

coverage is performed with few tens of events created by the hit of LHC beams on collimators

200 meters before ATLAS. Requesting that the energy deposited per cell is 100 times above the

noise allows to select 1.1 millions of signal pulse shapes in high gain mode, covering all the

EM calorimeter.

Using this high statistics, a systematic and quantitative χ2 comparison of data and predic-

tions is performed in the three layers of the EM calorimeter. It was checked that results are

independent of the deposited energy. The pulse shape prediction agrees with the data to better

than 1% and 2% for the first and second/third compartments of the barrel. Due to a less refined

description of the cell electronic chain in the endcaps, the situation is slightly degraded : the

agreement is of 1% and better than 3% in first and second/third compartments, respectively.

Only regions near the cracks at |η| = 1.4 and |η| = 2.5 give worse values. This gives confi-

dence that the energy reconstruction is in good control over the complete calorimeter coverage

|η| < 3.2.
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5.5. Conclusions

From these results, a rough estimate of the impact of the quality of the signal reconstruction

on the constant term of the energy resolution, csr, has been derived : 0.2% < csr < 0.5% in

the barrel and 0.25% < csr < 0.7% in the endcaps. This first estimate can be refined with high

energetic electrons during the LHC running, where it can probably be extended to medium gain.
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6
Drift time measurements

At the end of the summer and during autumn 2008 stable cosmic muon runs were taken with the

detector fully operational and using various trigger menus. The main challenge was to extract

the electron drift time in LAr that it is a powerful monitoring tool to measure the asymmetries

and intrinsic non-uniformities of the calorimeter. The drift time, Tdri f t , can be obtained from

the signal pulse shape resulting from ionizing particles that deposit sufficient energy above the

intrinsic noise level in a calorimeter cell. In normal data taking only 5 samples around the pulse

peak at 25 ns intervals are taken, but in order to accurately measure the drift time 32 samples

are needed. The procedure to measure the drift time presented in this chapter can be applied

to any type of events: cosmic data, beam splash, beam-beam interactions, since it is essentially

based on signal pulse shapes.

In this chapter a measurement of the LAr EMC drift time using 32-samples cosmic data,

taken in the period September - November 2008, is presented for the full ATLAS EMC (EMB

and EMEC) in its final position. The Tdri f t behavior along both pseudo-rapidity (η) and azimuth

(φ) is studied, as well as the measured values of Vdri f t in the different detector regions.

6.1 Ionization signal in the calorimeter

Electrons and photons hitting the detector induce electromagnetic showers (Section 4.1.1). The

fraction of the shower energy lost by ionization in the LAr gaps generates the device signal: the

ionization electrons drift in the field produced across the LAr gap by the high voltage, generating

a current with an amplitude proportional to the released energy. This current is then amplified,

shaped, sampled at the LHC bunch-crossing frequency and digitized by the following readout

chain [26].

In the straight section of the LAr gaps the ionization current has a typical ionization-chamber

triangular shape with a fast rise time less than 1 ns followed by a linear decay for the duration
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Chapter 6. Drift time measurements

of the maximum drift time:

Tdri f t =
wgap

Vdri f t

, (6.1)

with wgap being the LAr gap width and Vdri f t the electron drift velocity [44]. The ionization

current, I, is then modeled as:

I(t; I0,Tdri f t) = I0

(

1− t

Tdri f t

)

for 0 < t < Tdri f t (6.2)

where I0 is the current at t = 0. The peak current amplitude,

I0 = ρVdri f t , (6.3)

is proportional to the drift velocity and the negative linear charge density ρ along the direction

perpendicular to the readout electrode. The charge density ρ is proportional to the fraction of

the shower energy deposited in the LAr gap: since the determination of this energy is based on

the measurement of the current amplitude I0, it is crucial to be able to precisely evaluate and

monitor Vdri f t . While the LAr gap thickness wgap is in fact mechanically constrained, the drift

velocity depends on the actual conditions of the detector; i.e. the LAr temperature and density

and the local gap voltage.

For a fixed value of the high-voltage HV applied to a LAr gap, the corresponding Vdri f t

depends on the magnitude of the electrical field E = HV/wgap as:

Vdri f t ∼Vre f

[

E

E0

]α

= Vre f

[

HV

HV0
· wgap0

wgap

]α

(6.4)

where α = 0.3 [34] (see Section 4.3.4). In this respect, the peak current in a LAr cell is weakly

sensitive to a variation of the gap width, since (Equation 6.3):

I0 ∼ w−α
gap ≃ w−0.3

gap (6.5)

while the drift time is approximately four times more sensitive (Equation 6.1):

Tdri f t ∼ w1+α
gap ≃ w1.3

gap (6.6)

The drift time Tdri f t can be directly measured from samples of shaped ionization pulses

that have been recorded over the full length of the pulse (see Figure 5.1): the dimension of the

positive lobe of the EM calorimeter shaped pulses is in fact sensitive to the readout cell electrical

properties, while the tail length reflects the drift time duration. The Tdri f t measurements can be

performed by fitting a pulse shape prediction to the physics signal from data containing 32

digitized samples, covering ∼ 800 ns from the rising pulse edge to the end of the negative lobe.

The measurement of Tdri f t can then be used to:

• measure and monitor any variation of Vdri f t with respect to the nominal value, thus keep-

ing under control any change of LAr local temperature and electric field;
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• asses the intrinsic uniformity of the calorimeter gaps, which has an impact on the constant

term of the energy resolution (Section 4.1.3).

• improve the quality of the ionization pulse predictions, where the measured Tdri f t val-

ues enter as an external parameter (Section 5.2), and thus improve the Optimal Filtering

Coefficients (Section 5.1) computed from these predictions.

While some 32-sample physics data were recorded during past EMB test-beams, no such

long pulses were ever acquired for the EMEC modules. The data collected during the ATLAS

commissioning cosmic runs represent therefore the only opportunity to perform such a mea-

surements before the LHC collisions data-taking.

6.2 Drift time measurement method

6.2.1 Effect of the accordion bend

The ionization current collected by a readout electrode has a main contribution from the straight

part of the LAr accordion that can be accurately modeled by a triangle of drift time, as described

by Equation 6.2.

However in the bends of the accordion electrodes the gap size and shape are different from

the straight part ones, producing a different and varying electrical field. The current of the

charge collected in these regions is better modeled by a triangular pulse I(t; Ibend,Tbend) with a

longer drift time Tbend > Tdri f t than in the straight sections (see Section 6.3).

On average the total current seen in a LAr readout cell is then modeled by the superposition

of the two triangular pulses, corresponding to the electron drift in the straight and bend regions

of the accordion:

I(t) = I(t; Inom,Tdri f t)+ I(t; Ibend,Tbend)

= I0

(

fnom I(t;1,Tdri f t)+ fbend I(t;1,Tbend)
)

, (6.7)

where I0 = Inom + Ibend is the total current generated in the cell, and the weights fnom = Inom

I0
and

fbend = Ibend

I0
correspond to the straight and fold regions for the given cell, with fnom + fbend = 1.

The superimposition of the two pulses results in a combined pulse which has a triangular

form for t < Tdri f t with a drift time T n+b
dri f t > Tdri f t:

T n+b
dri f t =

Tdri f tTbend

fnomTbend + fbendTdri f t

, (6.8)

followed by the remnant of the longer current pulse in the bend for Tdri f t < t < Tbend (see

Figure 6.1).

The value of Tbend and fbend for the different EMC layers and regions is determined using a

Monte Carlo simulation (see Section 6.3), and they are kept fixed in the fitting procedure of the

physics pulses (see Section 6.2.3).
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Figure 6.1: Schematic view of the superposition (red) of two triangular pulses of different drift

time Tdri f t and Tbend (blue), corresponding to the current pulse contributions in the straight and

bend regions of the LAr accordion.

Figure 6.2: Schematic view of a LAr gap. The nominal position of the the readout electrode

(dashed) is exactly at the middle in between the lead absorbers. Any shift with respect of the

nominal position (solid) implies an increase of the gap width on one side of the electrode, and

a decrease on the other side.

82



6.2. Drift time measurement method

6.2.2 Effect of a readout electrode shift

Each EMC readout electrode is placed in between two lead absorbers, and has a LAr gap on

either side. The ionization electrons drift toward the electrode in opposite directions in the two

gaps. With an electrode centered between the absorbers the electron drift in the two gaps would

have the same drift time, and then identical pulses.

However it is possible for the readout electrode to be slightly off-centered in the gap. Hon-

eycomb spacers are used to maintain the electrodes centered between the absorbers, but the

spacers were in fact sanded to a thickness slightly smaller than the nominal gap size in order to

make possible the stacking of the modules, and additionally there is a certain tolerance on their

final thickness.

For a shift δgap of the electrode position, the gap size is smaller on one side of the electrode,

and bigger on the other (Figure 6.2):

w±
gap = wgap ±δgap = wgap(1± x) (6.9)

where x measures the shift relative to the gap width. The shift directly produces an asymmetry

in the drift times in the gaps of the electrodes (Equation 6.6):

T±
dri f t = Tdri f t(1± x)1+α ≃ Tdri f t (1± (1+α)x) (6.10)

and in the peak currents (Equation 6.5):

I±dri f t = I0(1± x)−α ≃ I0 (1∓αx) (6.11)

To take this effect into account, the current produced in the straight part of the accordion is

split into two separated triangular contributions of amplitudes Inom

2
(1∓αx), each respectively

with an increased (decreased) drift times T±
dri f t .

The superimposition of two triangular pulses corresponding to a slightly larger (smaller)

drift time T +
dri f t (T−

dri f t) and slightly smaller (larger) peak amplitude results in a pulse composed

by a faster triangle of drift time T x
dri f t < Tdri f t :

T x
dri f t = Tdri f t

(

1− 16
9

x2

1+ 8
9
x2

)

Tdri f t (6.12)

for t < T−
dri f t , followed by the remnant of the longer current pulse for T−

dri f t < t < T +
dri f t .

Note that no electrode shift is assumed in the bend regions, since it represents a second order

effect with respect to the one described in Section 6.2.1.
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6.2.3 Global drift time fit

In order to account for the effects discussed in Sections 6.2.1 and 6.2.2, the ionization pulse

generated in the LAr gap can be described by the superposition of three triangles:

I(t) = I(t; Inom/2,T+
dri f t)+ I(t; Inom/2,T−

dri f t)+ I(t; Ibend,Tbend)

= I0

[

fnom

2

(

1− 1

3
x

)

I(t;1,T+
dri f t)+

+
fnom

2

(

1+
1

3
x

)

I(t;1,T−
dri f t)+ fbendI(t;1,Tbend)

]

, (6.13)

Since the readout system is linear, each of the three triangular contributions in Equation 6.13

can be separately computed at the end of the readout chain using Equation 5.16 for the different

values of drift time T +
dri f t , T−

dri f t and Tbend , and using a common set of τcali, fstep, rC and LC

parameters. The ionization pulse at the end of the readout chain is then:

g(t; fnom,Tdri f t,x, fbend ,Tbend) =
fnom

2

(

1− 1

3
x

)

gphys(t;T+
dri f t)

+
fnom

2

(

1+
1

3
x

)

gphys(t;T−
dri f t)+ fbendgphys(t;Tbend)(6.14)

This cumulative pulse prediction is scaled by an arbitrary amplitude Amax and shifted in time

by an offset t0 to fit the samples of the data pulses:

gfit(t;Amax, t0,Tdri f t,x) = Amaxg(t; fnom,Tdri f t,x, fbend ,Tbend) for t > t0 (6.15)

The parameters Tbend and fbend are fixed to the values obtained from the Monte Carlo sim-

ulation (see Section 6.3), whereas Tdri f t and x are left free to fit the data. The computational

details of the fitting procedure are discussed in Section 6.4.

6.3 Tbend and fbend from Monte Carlo simulations

6.3.1 EM barrel

The Tbend and fbend parameters describing the drift time contribution in the accordion bend re-

gions (Section 6.2.1) are calculated for the EMB assuming a uniform charge density in the LAr

gap, corresponding to a muon flux. In the EMB simulation the current as a function of time is

obtained by transporting the ionization electrons to the electrodes; the charge q in a differential

volume dxdydz is computed from the energy deposited in that volume, and the current is deter-

mined as qVdri f t|E|/H, where E(x,y,z) is the local value of the electric field, and H the high

84



6.3. Tbend and fbend from Monte Carlo simulations

voltage. The time is incremented in δt steps and the spatial position as Vdri f t δt ~E/|E|, in order

to obtain the two triangular currents corresponding to the flat and bend parts.

The values obtained by the EMB simulation are given in Table 6.1; they are independent of

pseudo-rapidity and azimuth.

Layer Tbend (ns) fbend (%)
Layer 1 820 4.9
Layer 2 898 7.1
Layer 3 941 8.5

Table 6.1: Tbend and fbend for the three layers of the EMB.

6.3.2 EM endcap

The values of Tdri f t , Tbend and fbend in the EMEC are obtained from a Monte Carlo (MC) sim-

ulation of the sub-detector response1 to 10 GeV photons; photons are chosen since the selected

cosmic data used later to fit Equation 6.15 are electromagnetic cascades from cosmic muons

(see Section 6.4.2). The photons are generated with a projective direction pointing to the AT-

LAS Interaction Point, and a starting point (or initial vertex) at the beginning of the calorimeter.

In reality the bremsstrahlung photons (or the e+e− pairs) from cosmic muons are not projective:

this could introduce a systematic difference when comparing data with simulation. About half

a million photon events are generated.

The local drift velocity (V local
dri f t ) in LAr depends on the temperature and on the absolute value

of the electric field, and is parameterized by an empirical formula [34]. The LAr temperature

is set to the average value measured in the three EMEC modules exposed to beam tests in the

past [45, 46], namely 88.16 K. For the computation of the electric field, nominal high voltage

values are used as well as the local geometry of the accordion shaped electrodes and absorbers.

The local value of the norm of the electric field at any point is obtained from a three-dimensional

interpolation procedure, starting from the precisely computed electric field at different radial

distances from the beam line.

Although the local drift velocity in the cells can not be measured, its average over a detector

cell can be compared with real measurements. This average may depend on the geometry of the

cell and on the distribution of the ionization energy within the cell: in order to check the effect

of the latter, results for photons and muons are compared (see Section 6.3.2.2).

The distribution of the V local
dri f t within a shower is shown, for a EMEC Middle cell at η =

1.650, in Figure 6.3(a). Figure 6.3(b) shows the local drift time (T local
dri f t ) that it is obtained from

the previously determined local drift velocity for every GEANT4 step according to Equation 6.1,

where wgap is the average gap size over the GEANT4 step. The peaks in the distributions shown

in Figure 6.3 correspond to the drift velocity and drift time in the flat part of the accordion,

while the tails represent their values in the bend part. The electric field (gap) in the bend region

is in fact lower (larger) than in the flat part, which leads to an increase of the drift time.

1 This EMEC signal simulation is performed using Athena 14.2.23.1 with no magnetic field.
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Figure 6.3: Distribution of the local drift velocity (a) and local drift time (b) in a Layer 2 of the

endcap at η = 1.650, as obtained from the MC simulation of 10 GeV photons.

(a) η = 1.575 (b) η = 2.450

Figure 6.4: Local drift time distribution corresponding to a Middle cell of the endcap at η =
1.575 (a) and η = 2.450 (b). The contribution from the accordion bend is marked in blue.
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6.3. Tbend and fbend from Monte Carlo simulations

6.3.2.1 Determination of Tbend , fbend and Tdri f t

The Tbend and Tdri f t values are obtained from the distribution of the local drift time (Figure 6.4).

The right side tail (blue) is due to the bend part (Tbend distribution) whereas the left part (black)

corresponds to the flat part (Tdri f t distribution). If Tcut is the drift time value separating the two

regions, one obtains:

Tbend =
Z ∞

Tcut

T
(local)

dri f t f (T
(local)

dri f t ) dT
(local)

dri f t (6.16)

Tdri f t =
Z Tcut

0
T

(local)
dri f t f (T

(local)
dri f t ) dT

(local)
dri f t (6.17)

where f is the probability density function of T
(local)

dri f t , which is normalized to one:

Z ∞

0
f (T

(local)
dri f t ) dT

(local)
dri f t = 1 (6.18)

The function f (T
(local)

dri f t ) is obtained from the distribution histogram dividing each bin con-

tents by the total number of entries.
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Figure 6.5: Tdri f t (a) and Tbend (b) versus η for the three EMEC layers.

The computed Tdri f t and Tbend values are shown in Figure 6.5(a) and 6.5(b) respectively

as a function of pseudo-rapidity for the three EMEC layers. Both drift times decrease when η
increases, following the reduction of gap size. The difference observed between the layers is due

to a gap size variation with longitudinal depth: the gap size in the EMEC grows continuously at

constant η from the Front up to the Back layers due to the projective geometry. The fact that the

values for the Middle layer lie closer to the Front ones rather than to the Back ones is explained
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by the energy distribution of the a 10 GeV photon shower: at this energy the maximum of the

cascade is closer to the Front than to the Back layer.

As already mentioned in Section 6.2.1 the contribution of the bends to the total current is

represented by a fractional weight fbend = Ibend/I0 for each calorimeter cell. This ratio can be

obtained using the energy deposit (Ed), the drift velocity (Vdri f t) and the gap (wgap) provided by

GEANT4 for each hit or step inside a calorimeter cell. The local current on a differential volume

dxdydz of the cell is determined as Ed/(wgap/Vdri f t). Therefore fbend can be calculated as:

fbend =

R

Tdri f t>Tcut

Ed

wgap/Vdri f t
dxdydz

R Ed

wgap/Vdri f t
dxdydz

(6.19)

where Tdri f t = wgap/Vdri f t and the bend part is defined as all hits having Tdri f t > Tcut .
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Figure 6.6: fbend versus η for the three EMEC layers.

The result of this calculation is shown in Figure 6.6 as a function of pseudo-rapidity for the

three EMEC layers. The decreasing behavior of fbend for the three layers is again explained

by two characteristics of the EMEC design: the accordion bend angle increases with pseudo-

rapidity, and the gap size decreases when η grows; both effects lead to a decrease of the ratio

between bend and flat part volumes, hence to the decrease of fbend .

Another feature of the EMEC design is that both bend angle and gap size are independent

of depth for a fixed radius. This implies they both change with depth for a fixed η value: the

bend angle decreases while the gap size increases. One could thus expect a monotonous growth

of fbend with the layer, its value being the smallest for the Front and the largest for the Back

layers. In reality layer 1 shows a different trend (Figure 6.6). The reason for this behavior can

be explained by the total volume of the bend part respect to the flat part: layer 1 ends in fact

immediately after a bend crest, this fact unbalancing the equilibrium between the bend and flat

part volumes. In the front layer there are in fact 4 bends and 3 flat parts in total.

A similar argument explains the lower values of three cells of the Back layer around η =
1.65 observed in Figure 6.6. For these EMEC cells the depth of the Back layer increases in such
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6.3. Tbend and fbend from Monte Carlo simulations

a way that a flatter part of the accordion is added: this explains a smaller fbend value for these

cells, and the opposite results for the corresponding Middle cells in this region.

6.3.2.2 Difference between photons and muons

A muon flux parallel to the beam line and passing through the EMEC cells is simulated to

compare the drift velocity and time with the ones obtained from the photon simulation. The

muon energy is set to 30 GeV, hence it roughly behaves as a minimum ionizing particle.

The distributions of Vdri f t and Tdri f t for photons and muons are shown in Figure 6.7 for an

EMEC Middle cell at η = 1.650. A slight difference is systematically observed between the

photons’ and muons’ distributions, to be attributed to the difference in the energy distributions

of the two samples. Photon showers deposit in fact their maximum energy in the first part of the

cell, whereas the muon energy deposition is uniform along the cell. Since the gap size increases

with depth inside the cell, photons and muons see different electric fields and gap sizes.
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Figure 6.7: Drift velocity (a) and drift time (b) distributions for photons (squares black) and

muons (down triangles blue), in a EMEC Middle cell at η = 1.650. The histograms are normal-

ized to have the same number of entries.

The mean value of the drift velocity and time are computed for all Middle cells for the

photon and muon samples. The relative difference of the mean values among the two samples,

as averaged over all the cells, is 0.7 % for the drift velocity, and −3.0 % for the drift time. This

difference is about four times larger for the drift time than the drift velocity. This is explained

by the gap size dependence of the drift time and drift velocity (Equation 6.4 and 6.6):







1
Vdri f t

∂Vdri f t

∂wgap
∼ −αw−1

gap

1
Tdri f t

∂Tdri f t

∂wgap
∼ (1+α)w−1

gap

⇒

∣

∣

∣

∣

∣

∣

1
Tdri f t

∂Tdri f t

∂wgap

1
Vdri f t

∂Vdri f t

∂wgap

∣

∣

∣

∣

∣

∣

∼ 4 (6.20)
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6.4 Cosmic data selection

6.4.1 Data samples

Cosmic runs from the data taking period of September-November 2008 are used in this anal-

ysis, with the LAr data acquisition transmitting and saving 32 samples of the readout signals.

Figure 6.8 shows an Atlantis picture of a cosmic with hits in all barrel detectors from a run

taking in September 2008.

Figure 6.8: Atlantis display with a Cosmic event in the ATLAS experiment. Both solenoid and

toroid were on during this run.

The first level trigger system [47] was tested during this period, which labeled different

streams to be used for the different sub-detector commissioning. For the present analysis data

streams marked with L1Calo or L1CaloEM are considered (see Section 3.2.4). The former refers

to the general calorimeter trigger, which reads the energy deposits in towers of size 0.1×0.1 in

the η, φ space for both hadronic and electromagnetic calorimeters. The latter is restricted to the

electromagnetic calorimeter only. Since the trigger was fired by cosmic instead of LHC data,

its thresholds were adjusted accordingly. Most of the signals correspond to an energy deposit

smaller than 20 GeV, hence the LAr readout “High” gain is used throughout all this study.

Although the probability for bremsstrahlung emission is small because of the large muon

mass, many events were taken during the run period, assuring sufficient statistics for most of the

calorimeter regions 2. However the EMEC Inner-Wheel could not be included in the analysis

because the number of cosmic events was insufficient. Hence the pseudo-rapidity range in this

study is restricted to be from −2.5 to 2.5.

2Similar argument for e+e− emission
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6.4. Cosmic data selection

6.4.2 Energy cuts

Cells with high energy deposits - much larger than the energy lost by a minimum ionizing

particle - are selected in order to minimize the effect of noise fluctuations on the pulse shape.

This is especially important in the EMEC since the cosmic muons cross a small portion of

the cells, because they do not follow the cell projectivity to the nominal ATLAS Interaction

Point. The selected events correspond to electromagnetic cascades from cosmic muons, which

guarantee sufficient energy deposit in the cells.

Figure 6.9 shows the energy distribution in barrel cells for two typical cosmic events se-

lected for this analysis. The first one deposits most of its energy in the Front layer mostly along

the η direction, whereas the second one deposits most of its energy in the Middle layer mainly

along the azimuthal direction. A cluster can be defined in both cases using the cells with en-

ergy deposit above the mean ionization energy lost by muons; the cluster size in both cases is

compatible with an electromagnetic cascade.
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Figure 6.9: Transverse energy profiles for two cosmic muon events: one crossing the layer 1 (a)

(with 58 cells above the noise) and another one incident on layer 2 (b) (with 29 cells above the

noise).

To minimize the distortion of the signal shape, the energy deposited in a cell should be well

above its typical noise values. This is particularly important since the drift time is obtained on

an event by event basis, many cells being hit only once. We denote by Smax the amplitude of

the most energetic sample of the data pulse. The minimum required values for Smax are given

in Table 6.2 for the three layers of EMB and EMEC. These values translate to a lower bounds

for the energy between 1 and 2 GeV depending on the cell. The average noise is also quoted,

which represents between 1 and 3.5 % of the minimum value for Smax. A different treatment is

given to EMB electrode B region (0.8 < |η| > 1.4) in the Middle layer since it has a different

gain.
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Layer Smax lower limit Noise

EM barrel

Front 500 8

Middle (|η| ≤ 0.8) 160 5

Middle (|η| > 0.8) 100 3.5

Back 160 5

EM endcap

Front 500 7

Middle 160 2

Back 160 3.5

Table 6.2: Cut values for the most energetic sample of the data pulse in ADC units.

An upper limit of 3900 ADC counts for Smax plus pedestal is also required to avoid saturation

in High Gain. This cut is 3900/1.6 ADC counts for the region of EMB electrode B.

6.4.3 Pulse quality cuts

A small fraction of the data pulses show a distorted shape, most likely related to large cross-

talk contribution from the neighboring cells. In these cases the drift time cannot be determined

accurately, hence only cells with a certain shape quality are considered in this analysis. The

following notation is used here and in the rest of the document: Si (i = 0, . . . ,n− 1) are the

n measured samples of the data pulse shape at time values ti, where ti is increased by 25 ns

between two consecutive samples (ti+1 − ti = 25 ns), and tmax is the time of the most energetic

sample. The quality of the data pulse shape is assured by requiring the following selections:

• The tail of the pulse should not contain too many samples near zero. More explicitly,

for ti > tmax+5, there must be less than 12 samples for which Si > −0.1 Smax. This cut

removes pulses which rise too fast due to cross-talk in the EMB. This condition cannot

be applied to the EMEC because such shapes exist due to the expected low values of drift

time at high pseudo-rapidity.

• The data should have a negative part of the pulse shape. For ti > tmax at least 5 samples

with negative amplitude (Si < 0).

• A measure of the difference between the prediction and the data samples for the last part

of the pulse is defined as:

∆last7 =
32

∑
i=25

Si −gfit(ti;Amax, t0,Tdri f t,x)

Smax

(6.21)

where gfit is the physics pulse prediction (Equation 6.15) after the fit (see Section 6.4.4).

In order to guarantee that the data pulse tail, the portion of the signal that is more sensitive

to the drift time values, is reasonably well described by the prediction, the |∆last7| < 0.15

condition is required.

• Data pulses are required to be contained inside a ”safety” envelope to avoid shapes with

spikes (see Figure 6.10).
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Figure 6.10: Envelope definition (grey line) and an example of a cosmic data pulse (red dots) in

layer 2 of the barrel.

6.4.4 Fit quality cuts

The data pulse samples Si of every calorimeter cell selected by the criteria discussed above are

fitted by the pulse prediction described by Equation 6.15 as a function of the drift time Tdri f t ,

the electrode shift x, the maximum amplitude of the pulse Amax and the time offset of the data

pulse t0. The optimal set of Amax, t0,Tdri f t,x parameters is estimated using the least squares

method, by minimizing the quantity:

χ2
fit =

1

Ndo f

n

∑
i=1

(Si −gfit(t;Amax, t0,Tdri f t,x))
2

σ2
noise

(6.22)

where Ndo f = n−Np is the number of degrees of freedom. The total number of data sam-

ples used in the fit, n, is usually n = 32, and Np = 4 is the number of free parameters. This

minimization is perform by employing the MINUIT package [48].

Under the assumptions that the samples Si are only distorted by the electronic noise, that

the system is completely linear and that the gfit functional form is an accurate description of

the normalized ionization pulse shape in the cell under study, the minimum of χ2
fit is distributed

according to a normalized χ2 probability density function. However, since the prediction of

the pulse shape is accurate at the 2 % level but not perfect, more energetic events will have

larger χ2
fit values [49]. Figure 6.11 shows the dependence of the χ2

fit variable as a function of

the maximum data amplitude (Smax) for the Back layer of the EMEC: a clear increase of the χ2
fit

value is observed when Smax increases. The same behavior is observed in the other calorimeter

layers.
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Figure 6.11: χ2
fit variable as a function of Smax for all cells of the EMEC Back layer.

In order to be able to apply a global selection on the fit quality independently on the

data pulse amplitude, the modified quality estimator is defined following the proposal of Sec-

tion 5.4.3:

Q2 =
1

Ndo f

n

∑
i=0

(Si −gfit(t;Amax, t0,Tdri f t ,x))
2

σ2
noise +(kSmax)2

(6.23)

where the value of k is chosen such that Q2 has no dependence on Smax. Figure 6.12 shows Q2

as a function of Smax for several values of k for the Back layer of the EMEC. The one giving

a flat dependence corresponds to k = 1.3 %. A similar procedure is applied to all the other

calorimeter layers: the values of the corresponding k values are given in Table 6.3.

Calorimeter Layer k

EMB

Front 0.8 %

Middle 1.0 %

Back 1.0 %

EMEC

Front 0.9 %

Middle 1.4 %

Back 1.3 %

Table 6.3: k values for the different calorimeter layers.

The Q2 quantity represents a “normalized” χ2 per degrees of freedom, its denominator re-

flecting the numerator uncertainty, namely the quadratic sum of the data amplitude noise and

of the predicted amplitude inaccuracy. The distributions of Q2 for all EMB and EMEC layers

are shown in Figure 6.13. They all have approximately a χ2-type shape with the Most Probable

Value (MPV ) near one. To avoid bad quality fits a Q2 < 3 selection cut is applied for all layers

of both EMB and EMEC.
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Figure 6.12: Q2 as a function of Smax for several values of k.
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The behavior of the Q2 variable is studied as a function of pseudo-rapidity (Figure 6.14).

Each point represents the average profile of the events in the corresponding η bin. For all the

three layers, cells near |η| = 2.5 show a larger value of Q2, close to the selection cut of three.

The reason for the pulse prediction not describing well the data in this region is still unclear,

although it may partially be due to the difficulty to extract the RTM ω0 resonance frequency

from the calibration pulse [39] when its value is too high and gets confused with the reflection-

related frequencies.
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Figure 6.14: Most Probable Value of the Q2 distribution as a function of η.

In addition the region around η = 0.8 of the Middle layer have larger values of Q2 than the

average; this zone corresponds to the change from electrode A to electrode B of the EMB. No

special attention has been paid to this effect since the values of Q2 are still within reasonable

limits.
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Figure 6.15: Number of cells used in the analysis as a function of (η,φ) for the Front, Middle

and Back layers. The white color indicates the absence of cells. The number of selected hits are

51,492 in layer 1, 358,154 in layer 2 and 87,920 in layer 3.
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6.4.5 Final statistics

The number of pulses above energy thresholds is given in the first columns of Table 6.4. Higher

statistics is observed in the barrel than in the endcap due to a larger cross section offered to

triggered cosmic muons and the better projectivity of cells. Table 6.4 also shows the efficiencies

of the pulse and fit quality selections. The pulse quality requirements reduce the sample by

about 20 %, whereas the fit quality selection removes roughly 5 % of the events.

Calorimeter Layer Pulses above threshold Pulse quality Fit quality

EMB

Front 55197 75.66 % 94.72 %

Middle 400342 81.15 % 97.06 %

Back 92851 77.89 % 98.28 %

EMEC

Front 15474 83.90 % 91.91 %

Middle 55133 81.08 % 95.83 %

Back 23161 75.32 % 96.55 %

Table 6.4: Number of pulses above energy thresholds and efficiencies of pulse and fit quality

cuts.

The distribution of the selected pulses in the η, φ plane is shown in Figure 6.15 for the three

calorimeter layers. The white color indicates the absence of pulses. The white regions in the

EMB correspond to cells either disconnected from the readout chain or with a high voltage lower

than nominal (2 KV) which are not considered in the analysis. The white zones in the EMEC

corresponds to disconnected channels or the lack of cosmic events impacting those cells. The

EMEC cells corresponding to 1.4 < |η| < 1.5 are not included in the analysis because it is not

possible to determine the drift time using only 32 samples on the data (see Section 6.5.1). The

smaller number of pulses in the Front layer is due to the fact that the energy cut is approximately

the same expressed in GeV for the three layers, despite the Front cells being smaller than the

Middle and Back ones, which means they collect on average a smaller amount of energy.

6.5 Results and discussion

6.5.1 Quality of the pulse shape description

In order to visually present the general quality of the pulse description after the fits, six examples

of pulse shapes are shown in Figure 6.16, corresponding to cells chosen at random among the

results. The data samples in each plot correspond to a single cosmic event, thus fluctuations of

the amplitude are still observed from sample to sample because of the noise contributions. The

relative difference between the data and the prediction, (Si −gfit)/Smax is also shown. The data

are globally well described at the 2 % level. The differences between the prediction and the data

seem to be compatible with noise fluctuations on the data, although some systematic effects are

not ruled out for certain cells.
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Figure 6.16: Pulse shapes for data (red points) and prediction (blue line) for the Front (left),

Middle (center) and Back (right) layers for the EMB (top) and the EMEC (bottom) calorimeters.

The green points correspond to the relative difference between data and the prediction in an

enhanced scale.
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Figure 6.17: Pulse shapes for data (red points) and prediction (blue line) for EMEC middle

cells belonging to different HV regions. The green points correspond to the relative difference

between data and the prediction in an enhanced scale.
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Chapter 6. Drift time measurements

Because of the size variation of the gap with η in the EMEC, there are nine different high

voltage regions defined to maintain an approximatively constant electrical field in η, seven

of them in the outer-wheel (see Figure 4.8). The quality of the fit has been studied in each

endcap region separately. As an example, Figure 6.17 shows the comparison between predicted

and data pulse shapes for six cells, corresponding to six different high voltage regions for the

EMEC Middle layer. No particular degradation of the fit quality is observed in any high voltage

region.

Figure 6.17 nicely illustrates the variation of the EMEC pulse shape as a function of pseudo-

rapidity because of the gap size change: the smaller the gap (larger η) the shorter the pulse

undershoot is; as a direct consequence the EMEC drift time decreases when η increases. In

particular at the lowest η values the drift time may become as long as 700 ns, a value which is

barely covered by the time scale corresponding to 32 pulse samples. Because of this reason the

fitting procedure of these pulses is less reliable, since the final portion of the pulse tail does not

return to zero.
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Figure 6.18: Average residual over all events for the Front (left), Middle (center) and Back

(right) layers of the EMB (top) and the EMEC (bottom) calorimeters.

In order to investigate the global residuals between the pulse predictions and the data sample,

the relative difference (Si − gfit)/Smax is averaged for all events and all cells in a given layer.

Figure 6.18 shows the averaged residuals for each layer of the EM calorimeter: the data pulses of

the Front layer seem to be better described than the pulses of the other two layers; additionally,

the EMB pulses appear to be slightly better reproduced than the EMEC ones. The tail of the

pulse, which is more sensitive to variations of the drift time, is described at the 1 % level or

better. The time origin is chosen such that the maximum peaks of the pulses are at t = 0. The

description at the maximum is about two or three times worst than for the tail, however, the use

of Optimal Filtering Coefficients to obtain the signal amplitude may partially compensate for

this difference, due to the oscillatory behavior of the residuals around the peak.
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6.5. Results and discussion

6.5.2 Drift time measurement along pseudo-rapidity

The drift time (Tdri f t) averaged over the azimuth (φ) is studied as a function of pseudo-rapidity

η for the whole EM calorimeter. Figure 6.19 shows the distribution of the values and the

behavior of their mean as a function of η. An expected variation in the EMEC is observed:

due to the decrease of the gap size as |η| increases, the EMEC drift time also decreases (see

Figure 4.8). However, because of the constant gap size, Tdri f t is constant in the barrel. No

significant differences are observed between layers, despite the fact that the number of events

collected is different for each one.
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Figure 6.19: Drift time versus pseudorapidity for the Front (a), Middle (b) and Back (c) layers

of the electromagnetic calorimeter. Profile values (black points) are obtained by a weighted

average, being the weight = S2
max.
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Chapter 6. Drift time measurements

6.5.2.1 EM barrel

In the EMB the LAr gap size is designed to be constant (2.09 mm) independently of η. The

drift time is then expected to be constant, except for the presence of local non-uniformities. Fig-

ure 6.20 shows Tdri f t as a function of η for the EMB Front, Middle and Back layer. Differences

from the average behavior are mostly observed at η = ±0,±0.8,1.4, where η = 0 corresponds

to the transition between two barrels, η = 0.8 is the boundary between Electrode A and Elec-

trode B and at η = 1.4 the crack region end of the Barrel. In all of these cases the electric field

is lower, hence the drift time increases with respect to the average values.
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Figure 6.20: Drift time versus pseudo-rapidity for front (a), middle (b), and back (c) cells of the

EMB. Profile values are obtained by a weighted average, being the weight = S2
max. The number

of selected hits are 39,558 in layer 1, 315,317 in layer 2 and 71,075 in layer 3.
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6.5. Results and discussion

A positive-negative η effect is also observed: Tdri f t is higher for η < 0 than for η > 0 half

barrel. In particular, for layer 2 a difference in the average values between η < 0 (459.8 ns) and

η > 0 (455.9 ns) can be noticed in Figure 6.20(b). This may be due to the existence of small

modulations with opposite phases in the two half-barrels that appear to be more visible in the

(η,φ) map of layer 3 (see Section 6.5.4).

In the EMB the value of Tdri f t is supposed to be independent of the layer, because all layers

share the same gap sizes. Figure 6.21 shows a reasonable agreement between the drift time

values of the three layers.
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Figure 6.21: Drift time versus pseudo-rapidity for the three layer of the EMB: Front (down

triangles), Middle (squares), Back (up triangles).

Table 6.5 shows the RMS and mean values for the drift time in η direction. The relative

effect between the two half-barrels can be extracted for the middle layer: 0.9%±0.1%.

Layer η region Mean RMS

Front |η| < 1.4 462.5±0.5 2.8±0.4
η < 0 462.9±0.8 3.0±0.6
η > 0 462.1±0.7 2.6±0.5

Middle |η| < 1.4 457.8±0.3 3.7±0.2
η < 0 459.8±0.4 3.3±0.3
η > 0 455.9±0.4 3.0±0.3

Back |η| < 1.4 462.3±0.6 4.3±0.4
η < 0 464.4±0.8 4.1±0.5
η > 0 460.1±0.6 3.4±0.5

Table 6.5: Summary of the RMS and mean values for the drift time in η direction for all layers

of the EMB.
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Chapter 6. Drift time measurements

6.5.2.2 EM endcap

The measured drift time in the EMEC cells is shown in Figure 6.22, where the data from both the

A and C wheels are combined. The points for the Middle layer are more stable due to the higher

statistics. In all layers regular steps are observed at η = 1.6,1.8,2.0,2.1,2.3, corresponding to

the location of the boundaries between high voltage regions (Figure 4.8). When the high voltage

decreases from one region at lower η to the next one at higher η, drift electrons take more time

to reach the electrode, hence the drift time increases.
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Figure 6.22: Drift time versus pseudo-rapidity for front (a), middle (b), and back (c) cells of the

EMEC. Red points are the data and black points corresponds to the Monte Carlo for photons.

The data values are obtained by a weighted average, being the weight = S2
max. The number of

selected hits are 11,934 in layer 1, 42,837 in layer 2 and 16,845 in layer 3.
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6.5. Results and discussion

In Figure 6.22 the data is compared with the Monte Carlo calculation described in Sec-

tion 6.3. A good agreement is observed for the Middle and Back layers, despite the fact that

there are several effects which are not modeled in the Monte Carlo simulation (e.g. the gravita-

tional deformations). However, the Monte Carlo points are slightly higher (∼ 3 %) than the data

ones at low η for the Front layer. This may be due to the difference in the direction of incidence

between the simulated photons and the cosmic muons. The former are projective to the nominal

ATLAS interaction point, whereas the latter enter the calorimeter almost perpendicular to the

z axis. The simulated photon showers have their maximum deposition of energy near the last

bend of the Front layer, hence larger drift time, while cosmic photon showers are more evenly

distributed in the Front layer.

A comparison of the averaged Tdri f t for the three layers is shown in Figure 6.23. An increase

of the drift time with the cell gap size is clearly observed, with Tdri f t being smallest for the Front

layer and highest for the Back layer. The drift time for the Middle layer lies half way between

the Front and Back layers in contrast to the Monte Carlo simulation (Figure 6.5(a)) where

the values for the Middle are closer to the values of the Front layer. This can be explained

by the highly non-projectivity of cosmic muons, which leads to photon showers more evenly

distributed across the cells than the Monte Carlo photons.
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Figure 6.23: Drift time versus pseudo-rapidity for the three layers of the EMEC: Front (down

triangles), Middle (squares), Back (up triangles).

Ideally the drift time should be the same for both EMEC wheels, however a difference is

observed in the present data. To obtain any conclusion about this difference, sufficient statistics

are needed in the whole η range, hence only the Middle layer is considered. It turns out that the

profile points of the Middle layer for η > 0 are mostly above those for η < 0 (see Figure 6.19).

To unfold fluctuations, the drift time variation in each wheel can be fitted by a first order poly-

nomial Tdri f t(|η|) = a+b|η|. The relative difference (Tdri f t(A)−Tdri f t(C))/Tdri f t(A) obtained

by subtracting the two polynomials is about (0.5±0.5) % independent of pseudo-rapidity. The

drift time for wheel A is larger than for wheel C: this difference can be attributed to the dif-

ference of the LAr temperature between the wheels, that has been measured to be 300 mK
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Chapter 6. Drift time measurements

higher in endcap A (88.7 K) than in endcap C (88.4 K). This temperature difference approx-

imately corresponds to a 0.5 % difference in drift velocity and hence in drift time. Although

the precision of the (Tdri f t(A)−Tdri f t(C))/Tdri f t(A) measurement does not permit a quantita-

tive statement, the fact that Tdri f t(A) > Tdri f t(C) is endorse by the drift velocity extracted from

Tdri f t (see Figure 6.30 of Section 6.5.5), since Vdri f t ∼ 1
Tdri f t

.

6.5.3 Drift time uniformity along azimuth

The drift time Tdri f t obtained from the fitting procedure correspond to the contribution from the

flat part of the accordion. Ideally this quantity is symmetric in azimuth; however two mechani-

cal effects can break the symmetry: a modulation of absorber thickness, and the positioning or

deformation of the calorimeter due to gravity. The study of the drift time as a function of φ may

detect such effects, which could be unfolded during the signal reconstruction procedure, thus

improving the global response uniformity of the calorimeter.
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Figure 6.24: Drift time vs φ for Front(left), Middle(center) and Back(right) layers of the EMB

calorimeter. Profile values (black points) are obtained by a weighted average, being the weight

= S2
max.

Figure 6.24 for the EMB and Figure 6.25 for the EMEC wheels show the drift time Tdri f t

as a function of azimuth for the Front, Middle and Back layers. The two half-barrels as well

as the two EMEC wheels are shown separately. Bin sizes are chosen such that the number of
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6.5. Results and discussion

events per bin is approximately the same for all plots. For the EMEC wheels the values of

Tdri f t for each given pseudo-rapidity have been normalized to the average in order to cancel

the dependence with η. An asymmetry is observed between positive and negative values of

φ: Tdri f t(φ > 0) is larger than Tdri f t(φ < 0). This effect is clearly observed in the two EMEC

wheels, and it is also present in the EMB although is smaller. Since φ < 0 is the lower half of the

calorimeter, gravity may compress this part leading to slightly smaller gaps than in the upper

half φ > 0: this could explain the different Tdri f t values for the EMEC. The vertical dashed lines

indicate the boundaries between modules. Larger values of Tdri f t are observed between EMB

modules which correspond to higher gap sizes (see Figure 6.24 Middle). A clear modulation is

observed in the EMB Back layer with opposite phases in the two half-barrels.
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Figure 6.25: Drift time vs φ for Front(left), Middle(center) and Back(right) layers of the EMEC

calorimeter. Profile values (black points) are obtained by a weighted average, being the weight

= S2
max.

Part of the observed fluctuations can be attributed to the finite number of events used in

the fits. In particular in the EMEC the presence of highly non-projective cosmic events may

influence the drift time value, because of the variation of the gap size with depth. This effect is

enhanced by the fact that there is typically only one event per cell. This effect is less critical in

the EMB because the gap size does not depend on depth, most cosmic events have a good pro-

jectivity and the global number of events is much higher than in the EMEC. Table 6.6 shows the

RMS and mean values for the drift time in φ direction, joining the two sides of the calorimeter.
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Chapter 6. Drift time measurements

Calorimeter Layer η region Mean RMS

|φ| < π 462.6±0.3 1.6±0.2
Front φ < 0 461.8±0.3 1.1±0.2

φ > 0 463.4±0.4 1.7±0.3
|φ| < π 457.6±0.2 3.9±0.2

EMB Middle φ < 0 456.8±0.3 3.1±0.2
φ > 0 458.3±0.3 4.0±0.3
|φ| < π 462.6±0.2 2.0±0.1

Back φ < 0 462.1±0.2 1.9±0.2
φ > 0 463.2±0.2 2.0±0.2

|φ| < π 1.001±0.003 0.007±0.002

Front φ < 0 0.995±0.001 0.003±0.001

φ > 0 1.006±0.004 0.006±0.002

|φ| < π 0.993±0.002 0.012±0.001

EMEC Middle φ < 0 0.980±0.002 0.007±0.001

φ > 0 0.996±0.001 0.005±0.001

|φ| < π 0.986±0.002 0.010±0.002

Back φ < 0 0.978±0.002 0.005±0.001

φ > 0 0.994±0.002 0.006±0.002

Table 6.6: Summary of the RMS and mean values for the drift time in φ direction for all layers

of the EM calorimeter.

In order to disentangle the sources of the non-uniformities of the Tdri f t values, the Tdri f t

measurements are converted into gap variations. The drift time Tdri f t is in fact approximately

proportional to the gap size:

Tdri f t

Tdri f t0

=

(

wgap

wgap0

)(1+α)

(6.24)

From the ratio Tdri f t/Tdri f t0, where Tdri f t0 is a certain reference value, the relative variation

of the gap size wgap/wgap0 can then be extracted using the relation:

wgap

wgap0
=

(

Tdri f t

Tdri f t0

)
1

(1+α)

(6.25)

Figure 6.26 shows the distribution of wgap/wgap0 for the EMEC and the EMB. The widths

of the distributions are 2 % and 1 % for the EMEC and EMB respectively. These values are of

the order of the absorber thickness tolerance (about 1 %), being a bit higher for the EMEC due

to the larger fluctuations in the data discussed above.
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Figure 6.26: Distribution of wgap/wgap0 for middle layer of the barrel (a) and endcap (b)

calorimeter.

6.5.4 Response uniformity

When an electron or a photon coming from any physics process impact the calorimeter, a cluster

of cells is built to contain most of its shower energy. The reconstructed cluster energy should

be independent of the impact position on the calorimeter. The non-uniformity coming from

intrinsic fluctuations of the calorimeter can be determined using the drift time measurements.

The measured drift time per cell is integrated over regions of size 0.1×0.1 - the nominal size

of a trigger tower in the EMC - on the (η,φ) plane, and shown in Figure 6.27 for the different

layers. These plots can be used to identify malfunctioning regions as well as unusual patterns.

For instance, an unexpected pattern is observed in the Back layer of the EMB as a modulation

along φ (blue regions). The fact that the modulations in the two half-barrels are in opposite

phase may be related to a mechanical property, since the two half-barrels are mechanically

identical, but were placed into the cryostat after a 1800 rotation around the vertical axis with

respect to each other.

Figure 6.28 shows the distribution of Tdri f t in clusters 0.1× 0.1 for the EMEC (a) and

EMB (b) for the Middle layer. In the case of the EMEC, first order polynomials are fit to the

average drift time in each high voltage region (see Figure 6.23), which are used to normalize

the drift time in order to cancel the variation with eta due to the design gap size variation.

This study is carried out only for the Middle layer since it contains most of the shower energy

(typically > 70 %) for ordinary LHC electrons and photons. In addition, more cosmic events

have been recorded in the Middle than in the other layers, which lowers the statistical error of

the measurement.
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Figure 6.27: Mapping η -φ of the drift time measurement for front(top), middle(center) and

back(bottom) for the EM calorimeter
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Figure 6.28: Drift time uniformity within a cluster 0.1×0.1 in (∆η×∆φ ) plane for barrel (a)

and endcap (b) middle layer.
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Figure 6.29: RMS/
√

N within a cluster 0.1×0.1 in (∆η×∆φ ) plane for barrel (a) and endcap

(b) middle layer.
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To obtain the non-uniformity from the RMS of the < Tdri f t >0.1×0.1 distribution the contri-

bution from pure statistical fluctuations must be subtracted. Figure 6.29 shows the distribution

of RMS/
√

N within a 0.1×0.1 cluster, namely

ek =
1

N

√

N

∑
i=1

(T
(i)

dri f t− < Tdri f t >0.1×0.1)2 (6.26)

for a given cluster k, where N is the number of cells in the cluster. The square of the RMS, from

the distribution of Figure 6.29, is

S2 =
1

Nc

Nc

∑
k=1

e2
k −m2 (6.27)

where Nc is the number of clusters.

The mean of the < Tdri f t >0.1×0.1 distribution is 1
Nc

∑
Nc

k=1 < Tdri f t >k which error is

1
Nc

√

∑
Nc

k=1 e2
k . Hence the RMS of the < Tdri f t >0.1×0.1 distribution, assuming pure statistical

fluctuations only, is:

√
Nc

1

Nc

√

√

√

√

Nc

∑
k=1

e2
k =

√

S2 +m2 (6.28)

Therefore, the drift time uniformity is

√
(5.2)2−(1.08)2−(0.438)2

457.807
= (1.11±0.03)% for the EMB

and

√
(0.027)2−(0.011)2−(0.009)2

0.979
= (2.3±0.1)% for the EMEC.

This figures translate 3 to an uniformity of the calorimeter response due to intrinsic gap vari-

ations of (0.26±0.01)% and (0.53±0.02)% for the EMB and EMEC respectively, compatible

with results obtained from beam test using electrons of known energy [45, 46].

6.5.5 Drift Velocity

The drift velocity can be obtained from the drift time measurement using Equation 6.1 where

the nominal values for wgap are used. While wgap is constant for the EMB, it depends on η for

the EMEC where in addition there are different high voltage regions; a comparison of the drift

velocity between different calorimeter sectors is then not possible since they may have different

electric fields. In order to compare Vdri f t for barrel and endcap, a “universal” determination

must instead be adopted. Due to the fact that the drift velocity is approximately proportional

to the electric field to the power α (Equation 6.4), the actual drift velocity can be scaled to a

reference field of 1 kV/mm:

Vdri f t(1 kV/mm) =
wgap

Tdrift

[

1000V

1mm

wgap

HV

]α

(6.29)

3σ(Tdri f t ) is about four times σ of the response, since Tdri f t is about four times more sensitive to gap variations

than the signal
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Hence, the drift velocity Vdri f t for an electric field of 1 KV/mm can be used on equal footing

for both barrel and endcap. As a consistency check the universal quantity Vdri f t must be uniform

along the whole EM calorimeter. It should also be similar for the three layers Front, Middle and

Back.
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Figure 6.30: Drift Velocity (at E = 1 kV/mm) as a function of η for front (a), middle (b) and

back (c) layers of the EM calorimeter.

Figure 6.30 shows Vdri f t for the whole electromagnetic calorimeter as a function of η for

the three layers. A rather flat behavior is observed as expected. The values of Vdri f t (at

E = 1 kV/mm) for EMEC wheel C are higher than for wheel A. This can be interpreted as

a difference in the LAr temperature between the wheels, as it has been explained already in

Section 6.5.2. The deviation from a perfect horizontal line may be explained as local non-

uniformities within a cell which are not canceled out in the computation of Vdri f t . In fact, both

wgap and Tdri f t are average quantities inside the whole volume of a cell.
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Figure 6.31: Drift Velocity distribution for the Front, Middle, Back layers for barrel (a) and

endcap (b).

Figure 6.31 shows the comparison of Vdri f t for the three different layers. The mean values

of the distributions are also quoted; the statistical errors on these means are much smaller than

the systematic uncertainties. According to Equation 6.29, Vdri f t uncertainty depends both on

uncertainties on the gap size and on the drift time. The former can be extracted from Figure 6.26,

being about 1 % and 2 % for the EMB and EMEC respectively. The latter is about 0.5 % (see

Section 6.5.8). Hence, a systematic error of 1.1 % and 2.1 % for EMB and EMEC respectively

is expected for the mean value of Vdri f t . The drift velocity mean values for the different layers

of the EMB and EMEC are given in Table 6.7. They all agree within these errors.

EMB EMEC

Front 4.54±0.05 4.65±0.10

Middle 4.64±0.05 4.69±0.10

Back 4.59±0.05 4.59±0.10

Table 6.7: Average drift velocity < VD1 > in mm/µs for the three layers of EMB and EMEC.

The average of the layer 2 values of the barrel and endcap, for which most of the systematics

are uncorrelated (see Section 6.5.8), is:

Vdri f t0 = (4.66±0.07) mm/µs (6.30)

for the reference electric field of 1 kV/mm and a LAr temperature of 88.5K, which corresponds

to the average value measures during the cosmic run period.

The empirical formula obtained in [34], for the same electric field and LAr temperature,

gives 4.65mm/µs, in good agreement with the present measurement.
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6.5.6 Direct determination of local gap and drift velocity at operating

point

Using Equation 6.1 and Equation 6.4 it is possible to express the gap size as a function of the

measured Tdri f t , namely:

wgap

Tdri f t
= Vdri f t = Vdri f t0(

HV
HV0

wgap0

wgap
)α = Vdri f t0(

HV
HV0

)αwα
gap0

1
wα

gap

⇒ w1+α
gap = Tdri f tVdri f t0(

HV
HV0

)αwα
gap0 =⇒ wgap =

(

Tdri f tVdri f t0(
HV
HV0

)αwα
gap0

)
1

1+α
(6.31)

This formula can also be obtained from Equation 6.25 replacing Tdri f t0 by its relation with

Vdri f t0. The analysis presented below corresponds to layer 2 only, which has the highest number

of events. The gap size should not depend on the reference, which has been taken as wgap0 =
1 mm, HV0 = 1 kV and Vdri f t0 = 4.66 mm/µ for both Barrel and Endcaps. Data for the endcaps

have been corrected for the temperature difference, and rescaled to 88.5 K.

Figure 6.32 shows the relative difference between the calculated gap sizes from previous

formula and the design values as a function of pseudorapidity. In general, a reasonable agree-

ment is observed apart from some local effects at “transition regions”, η = 0, ±0.8 and ±1.4,

already discussed in Section 6.5.2.1. It is also observed that the gap size is a bit lower in the

Barrel for positive values of η than for negative values of η. The same effect was observed

in Figure 6.20(b) and was attributed to possible modulations with opposite phases in the two

half-barrels. In the endcaps the statistical power is unfortunately lower giving rise to larger

fluctuations, but no significant trend is observed.
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Figure 6.32: Relative difference between the design gap values and the values extracted from

Tdri f t measurements.

The drift velocity can be obtained from Equation 6.1 using as gap size the one calculated

from Equation 6.31. The result is plotted in Figure 6.33 as a function of pseudorapidity. As

opposed to Figure 6.30, which gave the speed at a reference field of 1kV/mm, Figure 6.33
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shows the drift speed at the local operating field, which is directly related to the peak current

associated with an energy deposition.
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Figure 6.33: Drift velocity versus η in the layer 2 at the operating point extracted from Tdri f t

measurements.

In the barrel region, the drift velocity is essentially flat, with a slight modulation reflecting

the variation of the absorber thickness with pseudorapidity. In the endcap region, one observes

the 6 sawteeth on each side resulting from the finite granularity of the HV distribution (see

Figure 4.8). Corrections are made in the energy reconstruction to normalize the response of

each strip in pseudorapidity to the response of the strip in the center of the HV sector, using the

power law dependence. Beside these modulations, one observes that:

• the average speed in the endcaps is smaller than in the barrel. In the energy reconstruction

this is accounted for by a global normalization factor (which also takes into account the

fact that the lead thicknesses are different) determined from beam and implemented in the

detailed Monte Carlo simulation of the full ATLAS detector.

• the measured speed averaged over an HV sector somewhat diminishes with increasing

pseudorapidity. This effect goes in the same direction (lowering the response) as the

reduced contribution of liquid argon to showering/conversion effects at large pseudora-

pidities (small gaps). Both effects are qualitatively counterbalanced by the fact that the

relative contribution of bends as compared to flat parts is lower at high pseudorapidity,

resulting in an increased response. As already mentioned, detailed Monte Carlo simula-

tions normalized with test beam scans were used to determine the HV values optimizing

the uniformity of response of the endcaps. This will be cross checked when enough

Z0 → e+e− decays become available.
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6.5.7 Electrode shift

The honeycomb spacers were cut with a thickness lower than the nominal gap size. This effect,

combined with their mechanical thickness tolerance, gives some freedom to the electrodes to

be displaced with respect to the geometrical center between two consecutive absorbers. This

displacement is expected to be less than 400 µm except perhaps in the transition regions between

modules.

The electrode shift is left as a free parameter in the fitting procedure to cosmic data (see

Section 6.2.2), to obtain a value per calorimeter cell. Only the absolute value of the movement

is accounted for. Since a cell consists of several electrodes (3 for the Middle, 12 for the Front

layers in the EMEC for example) an effective value is obtained which encompasses the real

absolute movement of each electrode within a cell.

The distributions of the electrode shift are shown in Figure 6.34 for the three layers of the

EMB and EMEC. The average, about 145 µm, is rather independent of the layer and very similar

for EMB and EMEC. The peak at zero represent events where the minimization program could

not find a clear minimum for this shift parameter. These events are kept in the global Tdri f t

determination because the drift time fit values are anyway reasonable.

For high energy deposits (more than 800 ADC counts) the noise fluctuations are negligible

and the fit quality is generally better. In particular the spike at zero is significantly decreased,

as can be seen from Figure 6.35. The shift distributions of the three layers are superimposed in

Figure 6.35: the average values of the different layers agree very well in the EMB while they

show some differences for the layer 1 of the EMEC for which no explanation has been found.

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210

3
10

Mean    145.9

RMS     74.5

Mean    145.9

RMS     74.5

2008 COSMIC MUONS EM BARREL LAYER 1

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210

3
10

410

Mean    145.6

RMS     70.3

Mean    145.6

RMS     70.3

2008 COSMIC MUONS EM BARREL LAYER 2

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210

3
10

410

Mean    138.7

RMS     69.5

Mean    138.7

RMS     69.5

2008 COSMIC MUONS EM BARREL LAYER 3

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210
Mean    168.0

RMS     100.8

Mean    168.0

RMS     100.8

2008 COSMIC MUONS EM ENDCAP LAYER 1

ATLAS

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210

3
10

Mean    146.8

RMS     79.21

Mean    146.8

RMS     79.21

2008 COSMIC MUONS EM ENDCAP LAYER 2

ATLAS

m]µ| [gapδ|

0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s

1

10

210

3
10

Mean    156.6

RMS     109.1

Mean    156.6

RMS     109.1

2008 COSMIC MUONS EM ENDCAP LAYER 3

ATLAS

Figure 6.34: Electrode shift distributions for front(left), middle(center) and back(right) for the

EMB (top) and EMEC(bottom) calorimeter.
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Figure 6.35: Electrode shift distributions for cells with more than 800 ADC counts for the Front

(red), Middle (black) and Back (blue) layers of the EMB (a) and the EMEC (b) calorimeters.
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Figure 6.36: Shift along φ for EMB (a) and EMEC (b) middle layer. Profile values are obtained

by a weighted average, being the weight = S2
max.
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6.5. Results and discussion

The behavior of the electrode shift along azimuth is studied in Figure 6.36, only for the

Middle layer,for both EMEC and EMB. A rather flat behavior is observed. Vertical dashed

lines correspond to the boundaries between consecutive modules. No particular increase of the

shift is observed at these transitions, even extending the scale to 1000 µm.

In principle the measured values of the drift time and of the electrode shift should be un-

correlated. Figure 6.37 shows the scatter plots of these two fit quantities for the Middle layer

in the EMEC and the EMB. In general an absence of correlation is observed, aside from few

events with high or lower values of both shift and drift time parameters showing a large positive

correlation.
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Figure 6.37: Shift versus drift time for all Middle cells of the EMB (a) and the EMEC (b).

The region in Figure 6.37(a) with a drift time Tdri f t comprised between 380 and 550 ns

corresponds to the expected range for the drift time in the barrel given the resolution of the

measurement. The low drift time region Tdri f t < 380 ns of Figure 6.37(a) (0.05 % of the pulses)

is dominated by low-amplitude pulses. A closer examination shows that large signals (Smax >
1500 ADC) are found as first neighbors in about 80 % of cases for the layer 2 barrel, which

corroborates a crosstalk hypothesis.

In the region Tdri f t > 550 ns of Figure 6.37(a) (0.25 % of the pulses), some pulses are

still significantly negative, more than 700 ns after the time of signal maximum. A possible

explanation is that the energy deposit originates from a photon emitted along a bent section,

thus having an abnormally enhanced fbend contribution. Unfortunately the runs taken with

32 samples do not contain information from the inner tracker which would have allowed this

hypothesis to be validated by a projectivity study. Aside from these extremely large drift time

pulses, there is a larger class of pulses which are only somewhat longer than normal. They are

distributed along specific η and φ directions: in the transition regions at |η| = 0.8 and between

the two half-barrels at η = 0 (see Figure 6.19(b)) where a slight dilution or leakage of the

electric field lines yields a larger drift time; in the intermodular regions in φ in the upper part

of the detector (see Figure 6.24), where mechanical assembly tolerances allow for a slightly

119



Chapter 6. Drift time measurements

increased gap at the interface between modules due to gravity effects.

In the endcap, the cloud of points corresponding to the expected Tdri f t is broader than in the

barrel, as can be seen in Figure 6.37(b): it ranges from 300 to 600 ns. This is a consequence

of the gap size variation with η of the endcap design. The fact that the dispersion of |δgap| is

larger at higher values of Tdri f t is explained as a consequence of the larger gap size: the larger

the gap width, the larger the displacement of the electrode can be. A few events (0.9 % of the

pulses) are observed at very high values of both Tdri f t and |δgap|. They are located at low |η|
where the drift time is very large by construction (see Figure 6.5(a)). Their pulse shape cannot

be completely readout using 32 samples, and in particular the rise following the undershoot is

partially absent, which leads to unphysical values of the shift above 400 µm.

6.5.8 Systematic uncertainties

The effect of some systematic uncertainties on the final Tdri f t result has been studied. In general,

a small impact on the final results is observed.

• The physics pulse shape gphys is predicted from the calibration signal gcali(t) following

Equation 5.16. The calibration pulse gcali(t) is not a continuous function but rather sam-

ples every ∼ ns. This implies the use of a numerical calculation of the convolutions in

Equation 5.16, with a step of ∼ 1 ns. The finite precision of these numerical convolutions

can be propagated to the drift time value obtained by the fitting procedure. In fact, the

parameter χ2
fit of Equation 6.22 appears to be a discontinuous function of Tdri f t due to the

staggered function gcali(t). This fact makes more difficult to calculate the error on Tdri f t

from the fit, which is estimated < 1 ns by using a smoothing procedure.

The other systematic uncertainties discussed in the following points which gives about

∼ 0.2 %, cannot be distinguished from the one discussed here since it corresponds to

about 1 ns.

• The drift time Tbend in the accordion bends and its relative weight to the total current fbend

are determined for the EMEC using a Monte Carlo simulation of 10 GeV photon showers.

The Monte Carlo prediction for the drift time distribution contains both Tdri f t of the flat

and Tbend of the bend regions (Figure 6.4), with Tcut the inflection point separating both

regions. The uncertainty on the value of Tcut is smaller than 2 % for the Middle and Front

layers and ∼ 4 % for the Back layer.

Using a fit to obtain Tdri f t from cosmic data while changing the value of Tcut according

to the previous interval changes the values of Tdri f t for each η cell of the Middle layer

(Figure 6.22) by about 0.2 % (0.4 %) for the Middle and Front (Back) layers.

For the EMB, the Tbend and fbend values are obtained using Monte Carlo assuming a

uniform charge distribution along the cell. However the longitudinal profile of photon

showers is not uniform: this may introduce a difference in the value of fbend since the

bend angle changes with depth inside an EMB cell. The estimated change in fbend is

about 3 % in the Middle layer which leads to an uncertainty of less than 0.2 % in Tdri f t .
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6.6. Conclusions

• The electrical circuit parameters needed in Equation 5.16 to predict the physics pulse

shape were extracted from the measured calibration pulse gcali(t), cell by cell using the

RTM method (see Section 5.3). The estimated uncertainty for the τcali and ω0 parameters

is assumed to be ∼ 3 %. The determination of Tdri f t is repeated after having modifying

these parameters within their quoted uncertainty. The values of Tdri f t are affected by

about 0.5 % from the τcali uncertainty, and less than 0.1 % from the ω0 variation.

• A correction of the calibration pulse for the skin-effect on the calibration line is added to

the algorithm to predict the physics pulse. The effect on the final result for Tdri f t is found

to be negligible.

• Throughout this work a relation between the drift velocity and the electric field is as-

sumed (see Equation 6.4), which differs slightly from the empirical formula of [34]. The

neglected terms contribute less than 0.2 %.

• During the beam test of the Module 0 calorimeter prototype for the EMEC, the energy

reconstructed for 120 GeV electrons in a 5×5 cluster of cells was studied as a function

of the high voltage [50]. This represented a measurement of the power α relating the drift

velocity and the electrical field. The result was α = 0.39. This value differs from the one

obtained in [34]. The reason could be related to the gap size variation in the EMEC. A

Monte Carlo calculation of the drift velocity as a function of the gap (see Equation 6.4)

seems to confirm this explanation: the averaged Vdri f t over the whole volume of a Middle

cell yields larger values of α (and close to 0.39) than the average over a small sector

covering only a portion of the flat part of the accordion.

For the present study, the value α = 0.3 is used for both EMB and EMEC. In the case of

the EMB this value is optimal, hence the impact in the results of a possible wrong value

for α is studied only for the EMEC. The drift time resulting from the fit procedure using

α = 0.39 is compared with Tdri f t obtained employing α = 0.3. The difference is found

about 1 ns (∼ 0.2 %), at the level of the precision of the measurement.

The power α has been used in Equations 6.25 and 6.29 for the gap non-uniformities and

the drift velocity respectively. The effect of changing the power from 0.3 to 0.39 leads to

a tiny effect in the results at the level of 0.2 %.

6.6 Conclusions

The average electron drift time in each cell of the highly granular LAr electromagnetic calorime-

ter of ATLAS, is measured from the samples of shaped ionization pulses induced by high en-

ergy deposits from cosmic muons recorded during the 2008 commissioning run. The pulses

were recorded in a wide time window (32 samples) to assure the required precision of the mea-

surement.

The drift time measurement has shown to be a powerful tool to detect asymmetries and

intrinsic non-uniformities along the calorimeter. Transition regions are clearly distinguished

both along: i) the η-direction, i.e. between the two barrel wheels, at the transition from electrode

A to B of the barrel, in the zone between barrel and endcap, and at the boundaries between
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the high voltage regions in the endcap, and ii) the φ-direction, i.e. at the boundaries between

modules.

The drift time is ∼ 4 times more sensitive to gap variations than the drift velocity and thus

the recorded energy. Taking advantage of these fact, an intrinsic non-uniformity of response

due to gap size variations has been inferred, namely ∼ 0.26% and ∼ 0.53% respectively for

the barrel and the endcaps. The other main contribution to the intrinsic non-uniformity of the

calorimeter is the dispersion of the thickness of the lead absorbers which contributes 0.18 % for

both barrel and endcaps [31, 32].

The drift velocity at 1 kV/mm is extracted from the drift time measurement, resulting in

4.59± (0.05)syst mm/µs and 4.65± (0.10)syst mm/µs for the barrel and endcap respectively.

These results are in good agreement with the expectation corresponding to the average LAr

temperature of 88.5 K measured during the run period.

The analysis method used to derive the drift time provides as another parameter the aver-

age absolute value of the amount the electrodes are off center between their two neighboring

absorbers. Electrodes are found to be shifted with respect to their nominal central position by

∼ 146 µm on average in both barrel and endcap, with a RMS of ∼ 40 µm.

Since the actual value of the drift time enters the LAr electronic calibration in several points

(e.g. OFC, current-to-energy conversion factors), the measurements presented in this analysis

can be used to improve the EM calorimeter energy reconstruction. At the same time, these

measurements will be used to correct for the measured gap variations in order to eventually

reduce the constant term of the energy resolution.
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7
W ′ → eν discovery with early data

The ATLAS discovery potential of a new heavy charged spin 1 gauge boson, denoted W ′, has

already been studied in [11], using full potentiality of ATLAS detector with 14 TeV LHC data.

Recent studies [51], repeating the CSC 1 analysis and taking into account the reduced LHC

center-of-mass energy of 7 TeV in the first months of data taking early 2010, show that an

integrated luminosity around 50 pb−1 should be sufficient to discover a W ′ slightly beyond the

actual 1 TeV Tevatron limit [52]. This study shows that the expected number of signal events

is S ∼ 20 with a signal-to-background ratio of S/B > 50. This is therefore a straightforward

analysis provided electron and 6ET reconstruction are under control. The subject of this chapter

is to include realistic detector conditions of the setup foreseen for the earliest data taken, for the

performance of both the electron and the missing transverse energy (6ET ) reconstruction, and

study their impact on the W ′ → eν discovery potential.

The complexity of the 6ET reconstruction in the early data is mainly due to the Monte Carlo

dependence of the calibration and of the cryostat (rear wall between the electromagnetic and

hadronic calorimeters) contribution, and to the muon reconstruction efficiency, which will need

some time and data to be fully mastered (e.g. to minimize fake muon contribution to 6ET tails).

We therefore consider in this analysis a 6ET measurement based on calorimeter information only

and discuss the impact of such a choice on the W ′ → eν discovery potential. This term is already

well under control in present commissioning data (random data and cosmics), as explained in

Section 7.2, while Section 7.1 recalls the simulation data set used in the analysis. Sections 7.4

and 7.5 is dedicated to the evaluation of the discovery potential of W ′ → eν when using the

calorimetric definition of 6ET , which is compared to an analysis based on the full potentiality

of ATLAS detector. We use the well known standard W → eν as control sample and perform a

similar selection comparing W and W ′ results at each stage of the analysis.

1Computing System Commissioning executed during 2008. Millions of Monte Carlo events of different physics

channels were produced on the ATLAS Grid which were useful for physics analysis.
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7.1 Monte Carlo Samples

Several models predict a W ′ : Grand Unified Theories, various Left-Right Symmetric Mod-

els, Kaluza Klein Theories, Little Higgs Models, Dynamical Symmetry Breaking Models and

models inspired by Superstrings. In this analysis, the study is restricted to a 1 TeV W ′ → eν
predicted by the Extended Gauge Model (see Section 2.2), where the W’ has “Standard Model

like” couplings to fermions and does not decay in WZ bosons. Its cross section at
√

s = 10 TeV

is predicted to be around 4.7 pb. It should be noted that 1 TeV is a compromise between what

the ATLAS could be sensitive to at LHC startup (first year at
√

s = 7 TeV) and the Tevatron

current exclusion region [52].

All the samples used in this analysis are generated for a center-of-mass energy of 10 TeV.

A full detector simulation, based on a distorted and misaligned geometry (ATLAS-GEO-02-01-

00) is used and the ATLAS software corresponds to version 14.5.0. Associated cross sections,

number of simulated events and the corresponding integrated luminosities, for both signal and

background, are summarized in Table 7.1.

Process (Generator) Filter (efficiency) σ in pb (k-factor) Events (×103) L (pb−1)

W ′ → eν (P) none 4.678 (1.37) 48 104000

W → eν (P) 200 < MT < 500 12.6 (1.22) 50 4000

W → eν (P) MT > 500 0.39 (1.22) 50 120000

Dijet J0 (P) 8 < p̂T < 17 1.17×1010 1000 8×10−5

Dijet J1 (P) 17 < p̂T < 35 8.67×108 1000 11×10−4

Dijet J2 (P) 135 < p̂T < 70 5.60×107 1000 17×10−3

Dijet J3 (P) 70 < p̂T < 140 3.28×106 1400 0.4
Dijet J4 (P) 140 < p̂T < 280 1.528×105 1000 6.4
Dijet J5 (P) 280 < p̂T < 560 5.12×103 1400 271.4
Dijet J6 (P) 560 < p̂T < 1120 1.12×102 400 4000

Dijet J7 (P) 1120 < p̂T < 2240 1.075 400000 400

Dijet J8 (P) p̂T > 2240 1.112×10−3 400 44000000

W → eν inclusive (P) | η |< 2.7 (0.88) 11754.4 4000 350

W → τν (P) | η |< 2.7 (0.87) 4160.0 400 30

Dijet JF17 (P) Econe
T > 17 GeV (0.0706) 1453.6×106 7000 0.004

tt̄ semi-leptonic (Mc) none 205.28 1700 8500

tt̄ full hadronic (Mc) none 168.12 1000 5500

Table 7.1: Characteristics of fully simulated mc08 data samples at center-of-mass energy of

10 TeV for W’ and its backgrounds (Upper part of the Table), W and its backgrounds (Center

part) and the common backgrounds (Lower part) reconstructed with version 14.5.0 of the AT-

LAS software. p̂T is the transverse momentum of the partons in their rest frame, while MT is

the transverse mass of the electron and neutrino. k− f actor is the ratio between: σNLO/σLO

and Econe
T refers to the transverse energy in a cone of size ∆η×∆φ = 0.12× 0.12. Different

generator are used to produce these MC samples: Pythia (P), McAtNlo (Mc) and Alpgen (Al)

(see Section 2.3).
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7.2. Measurement of the missing transverse energy

Backgrounds to the W ′ → eν considered in the present analysis include processes with the

following final states: W → eν, W → τν , QCD dijets and tt̄, where dijets corresponds to all

quarks except the Top. The first one has the same final state as the signal, however with a

different kinematics due to the much smaller mass: Mw << Mw′ . Two special samples have

been generated for this purpose, namely 200 < MT < 500 and MT > 500, to populate the region

of transverse masses of the W ′ decay products, in order to minimize the computing time of the

Monte Carlo production. At the generator level MT refers to the invariant mass of the electron

and neutrino on the transverse plane. The corresponding cross sections quoted on Table 7.1

take into account the efficiencies. The last three may have real or fake electron and missing

transverse energy (6ET ). For example, muons in the final state give rise to a 6ET if only the

calorimeter information is considered in the reconstruction, since muons deposit only part of its

energy in the calorimeter. The Dijet sample is split in nine bins of the transverse momentum of

the partons in their rest frame (p̂T ) which are labeled as Ji with i =0,8.

Apart from background to the heavy boson signal, the standard W → eν is also considered as

a control sample, since it has the same final state as the W ′ and similar backgrounds, despite the

mass region is quite different. Therefore, results for both W ′ and W will be carried out in parallel

along this chapter. The following backgrounds to the W → eν have been taken into account:

W → τν , QCD dijets and tt̄. A dedicated sample for Dijets is used, namely: events which have

at least one cluster of energetic final state particles in a cone of size ∆η×∆φ = 0.12× 0.12,

such that the transverse in the cone (Econe
T ) is greater than 17 GeV. This filter is applied at the

generator Pythia level to minimize the computing time. The efficiency of the filter, 0.0706, has

to be multiplied by the cross section quoted on Table 7.1 to compared with the signal.

7.2 Measurement of the missing transverse energy

In the Standard Model the only particle which goes undetected through ATLAS is the neutrino.

Its presence can be derived by measuring the missing transverse energy 6ET , that is the unbal-

anced energy in the transverse plane. Assuming a hypothetical detector covering perfectly the

entire (η,φ) plane, the 6ET is the pT of the missing particles. Complications start when multiple

neutrinos are present, there is no way of deriving the different pT ’s from one 6ET measurement.

An accurate measurement of the 6ET is needed to fully reconstruct the event and lead to a good

signature for new physics. The following definitions are used along this chapter, the first one

being the total transverse energy and the last one the missing transverse energy for each event:











































∑ET = ∑
Ncell

i=1 Ei.sinθi

6Ex = −
Ncell

∑
i=1

Ei sinθi cosϕi,

6Ey = −
Ncell

∑
i=1

Ei sinθi sinϕi,

6ET =

√

(6Ex)
2 +( 6Ey)

2.

(7.1)

where Ncell is the total number of calorimeter cells, each centered at (θi,φi) and with an energy

Ei above a certain threshold (see Section 7.2.1).
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Chapter 7. W ′ → eν discovery with early data

There are two methods in ATLAS to determine the 6ET . The Object-based algorithm starts

from the reconstructed, calibrated and classified objects in the event, taking also into account

the deposits outside these objects. The Cell-based algorithm starts from the energy deposits in

the calorimeter cells. The last procedure is expected to be robust even for the initial data taking

and it is therefore used throughout this analysis.

As it is explained in Section 4.3, the calorimeter is designed such that it covers as much as

possible of the (η,φ) plane. However the beam-pipe hole makes unfeasible the measurement

of the longitudinal energy present in the hard-scattering, hence we are restricted to a transverse

energy measurement.

The method to reconstruct the energy in the cells of the calorimeter system is based, as a

first step, on a digital filtering algorithm of the readout signal (see Section 5.1). Even with a

stable calorimeter operation and good control of problematic cells (see Appendix A), a bias

in the energy scale reconstructed in a cell can alter the 6ET performance. However, we have

demonstrated in this thesis (see Chapter 5) that the impact of the energy reconstruction accuracy

on the constant term of the energy resolution is below 0.7 % over the full EM calorimeter

coverage and similar results are extracted for the hadronic calorimeter [53]. Therefore, the

impact of such uncertainty on the 6ET can be considered negligible.

The main contribution to fake 6ET , that is missing transverse energy which is not lead by

neutrinos, are:

• Noise: The electronic noise in the EM and Tile calorimeters is in the range 10−50 MeV

depending on the layer, while it is typically a factor 10 greater in the endcap hadronic

and forward calorimeters. Another crucial issue for the 6ET computation is the pedestal

stability. As an example, a variation of the cell pedestals by 1 MeV (negligible compared

to the noise) in the EM calorimeter, where 92 % of the calorimeter cells are located, may

lead to a variation of ∑ET of about 10 GeV [54]. Figure 7.1 shows the pedestal stability

in the front-end electronic board (128 channels) of the LAr EM calorimeter over a period

of 6 months. Pedestal variation follows a Gaussian distribution with a standard deviation

of 0.02 ADC counts, i.e. of the order of 0.1 MeV. As residual cell-to-cell variation can

still occur, pedestals will be taken between fills during LHC running to be confident.

• Missed and fake muons: Muons can sometimes escape detection, especially in the gap

regions of the muon spectrometer. Fake muons can be caused for example by high pT jet

punch-through from the calorimeter to the muon spectrometer.

• Jet leakage: This is a jet energy which is not deposited in the calorimeter, but for example

in the muon spectrometer (without faking a muon) or in the cryostat. The reconstruction

algorithm can compensate on average for the latter, but the large fluctuations in these

deposits can still cause fake 6ET .

• Mismeasured jets: Due to mis-calibration of jets, or because of jets passing through

the gaps in the calorimeter. Although some corrections are applied in the measured jet

energies, the resolution in these areas is worse.
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Figure 7.1: Pedestal time stability in LAr EM calorimeter over 6 months. Each entry is averaged

of pedestal over 128 cell of a front-end electronic board (FEBs).

Most of these contributions can be kept to a minimum by a good selection and calibration

of calorimeter cells. Fake muons are kept to a minimum by using information from the Inner

Detector, missed muons are however more difficult to compensate for.

7.2.1 Cell-based reconstruction

The cell-based 6ET reconstruction method accounts for several contributions, as sketched in Fig-

ure 7.2 : one from the energy depositions in the calorimeter system (6ECalo
T ), one from measured

muons in the muon spectrometer and the ID (6EMuon
T ) and one from losses in dead material,

mainly the cryostat (6ECryo
T ) rear walls. The component in the x and y direction are thus given

by:

6EFinal
x,y = 6EMuon

x,y + 6ECryo
x,y + 6ECalo

x,y (7.2)

The 6EMuon
T is calculated from all muons measured in the rapidity range |η|< 2.7. To reduce

the amount of fake muons, the muon has to be matched to a track in the ID. With the ID covering

the range up to |η| < 2.5, muons with 2.5 < |η| < 2.7 are free of this requirement.

The cryostat between the LAr EM barrel and the Tile calorimeter is thick enough for

hadronic showers to loose non-negligible amounts of energy. The 6ECryo
T recovers this loss of

energy in the cryostat using the correlation of energies between the layer 3 of the LAr calorime-

ter and the layer 1 of the hadronic calorimeter. A similar correction for the endcap cryostats is

applied, see [11].
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Figure 7.2: Scheme of the ATLAS 6ET reconstruction in the cell-based approach.

The calorimeter contribution, 6ECalo
T , sums the calibrated energy (currently with Monte Carlo

weights taking into account the non-compensation of the calorimeters and the energy losses in

dead regions of the calorimeters [11]) of all the cells passing a noise suppression cut. Because

of the high granularity of the calorimeters it is crucial to suppress noise contributions to 6ET . In

ATLAS, this is done with two methods:

• cell-based method (6EBase
T ) selecting cells above a noise threshold of two standard devia-

tions (|E| > 2∗σnoise).

• cluster-based method (6ETopo
T ) taking cells belonging to topological clusters built around

|E| > 4σnoise seeds, gathering neighboring cells with |E| > 2σnoise.

In ATLAS, useful commissioning have been performed using events triggered randomly [55,

53] that allow to compare the two noise suppression methods explained above. For example,

Figure 7.3 shows the 6ET distributions for these data with the comparison of the two methods

with the Gaussian noise model 2. For the cell-based method (6EBase
T ), a good agreement is

observed between the data and the simple model. For the cluster-based method (6ETopo
T ) the

agreement between the data and the model is not as good as for the cell-based method, reflecting

the higher sensitivity of this method to the noise description. The understanding and good

control of the 6EBase
T (the most simple calorimeter 6ET ) makes this a more suitable option to

computed the 6ET with early data, despite the larger reduction for the noise contribution to

6ET of the cluster-based method.

2The 6ET distribution can be compared with a Gaussian noise model (where no pedestal shift or coherent noise

is present) obtained by randomizing the cell energy according to the Gaussian cell noise.
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The contribution of the three terms (see Equation 7.2) to the 6ET measurement in W ′ → eν
channel are shown in Figure 7.10(a). The contributions from muons and losses in dead material

are negligible (peaks near 0) compared to the calorimetric term, because the W ′ → eν event

signature consists in a very high energetic calorimetric deposit due to a high pT electron and

some hadronic activity. Moreover, as the real energy deposits in the calorimeter are well above

the noise, the two types of noise reduction (6EBase
T and 6ETopo

T ), are completely equivalent (red

and green histograms on the figure). We observe on Figure 7.10(a) that the calorimeter term,

with a calibration based on Monte Carlo weights (described on [11]), induces a 0.7 % shift in

the 6ET distribution (compare Base-calib with Base). It will be shown later on this chapter that,

in absence of this calibration, staying at the EM scale, induces a 6 % shift in the W ′ transverse

mass reconstruction but does not degrade the peak width and therefore the discovery potential.

This overall picture remains valid for the control sample W → eν events, even if the calori-

metric deposit is lower. This is illustrated in Figure 7.10(b), the 6ECalo
T , where it can be noticed,

that the contribution from the calorimeter Base-calib accounts for about 99 % to the total 6ET .

7.3 Electron Reconstruction

Electron candidates are built starting from clusters of calorimeter cell energy depositions, which

are matched to a track from the inner detector. The energy of each cell included in the cluster

definition is determined at the one percent level (see Chapters 5 and 6). The optimal cluster size

depends on the particle type being reconstructed and the calorimeter region. The electron need

larger clusters than photons due to their larger interaction probability in the upstream material

and also due to the fact that they bend in the magnetic field.
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Figure 7.4: Distributions of the different contributions to the ATLAS 6ET measurement in the

cell-based approach, as sketched in Figure 7.2, for 1 TeV W ′ → eν (a) and W → eν (b) events.
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Most of the energy of an electromagnetic interacting particle is deposited in the volume

of the calorimeter, including the lead absorbers and the liquid argon gaps. A small fraction is

deposited in non-instrumented material in the inner detector, the cryostats, the solenoid, and

the cables between the presampler and the first EM calorimeter layer (see Figures 3.5 and 3.7).

Energy also escapes from the back of the calorimeter in case of very high energetic electrons.

The cluster energy is calculated as a weighted sum of the energy in each of the three

calorimeter layers plus the presampler [1, 2]. The purpose of these weighted factors is to correct

for the energy losses, providing optimum linearity and resolution.

After electron candidates have been selected, some cuts can be applied to assure the electron

purity. The standard identification of high-pT electrons in ATLAS uses the following categories

of requirements:

• Loose cuts: simple electron identification based only on information from the calorime-

ters. The cuts are applied on the hadronic leakage and on shower-shape variables from the

middle layer of the EM calorimeter. This set of cuts provides an excellent identification

efficiency of about 88 %, but low background rejection.

• Medium cuts: Improvement by adding cuts on the strips in the first layer of the EM

calorimeter with a finer granularity (see Figure 4.4) and on the tracking variables. Strip-

based cuts are effective in the rejection of π0 → γγ decays. The energy deposit pattern

from π0’s is often found to have two maxima, which can be used to distinguish from the

energy deposit pattern of an electron. Track quality cuts are also added as for example:

at least one hit in the pixel detector, at least nine hits combining the pixel and the SCT,

and the transverse impact parameter lower than 1 mm. The medium cuts increase the jet

rejection by a factor of 3−4 with respect to loose cuts set, while reducing the efficiency

to about 77%. More information can be found in [11].

• Tight cuts: Use of all the particle-identification tools available for electrons. In addition

to previous cuts, cuts are applied on the number of vertexing-layer hits (rejection of elec-

trons from conversions), on the number of hits in the TRT, on the ratio of high-threshold

hits to the number of hits in the TRT (rejection of the dominant background from charged

hadrons, which radiate much less than electrons), on the difference between the cluster

and the extrapolated track positions in η and φ, and on the ratio of cluster energy to track

momentum. It increases the jet rejection up to ∼ 105 and decreases the efficiency down

to ∼ 62 %.

The present study uses the loose and medium set of selection requirements for the electron

reconstruction. Table 7.2 and 7.3 show the standard set of cuts applied on the W ′ and W , re-

spectively. Those cuts are compared with the analysis perform within the ATLAS collaboration

in [11], using full potentiality of ATLAS detector with 14 TeV LHC data. The first set of three

cuts will be referred to as “kinematic cuts”.
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Type Analysis with 10 TeV Standard analysis with 14 TeV

One electron with
pT > 25 GeV pT > 50 GeV

| η |6∈ [1.3;1.6], | η |< 2.5 |η| < 2.5

Missing Transverse Energy 6EFinal
T > 25 GeV 6EFinal

T > 50 GeV

Electron Identification medium cuts medium cuts

Lepton Isolation none yes

Lepton Fraction none yes

Invariant Transverse Mass 700 < MW ′
T ( GeV) < 1400 700 < MW ′

T ( GeV) < 1400

Table 7.2: Event selection cuts of the W ′ analysis and comparison with a reference (Standard)

analysis.

Type Analysis with 10 TeV Standard analysis with 14 TeV

One electron with
pT > 25 GeV pT > 25 GeV

| η |6∈ [1.3;1.6], | η |< 2.5 | η |6∈ [1.37;1.52], | η |< 2.4

Missing Transverse Energy 6EFinal
T > 25 GeV 6EFinal

T > 25 GeV

Electron Identification medium cuts medium cuts

Invariant Transverse Mass 40 < MW
T (GeV ) < 120 40 < MW

T (GeV )

Table 7.3: Event selection cuts of the W analysis and comparison with a reference (Standard)

analysis.

132



7.3. Electron Reconstruction

 [GeV]
T

p

0 100 200 300 400 500 600 700
-410

-3
10

-210

-110

1 ν e →W’ 

ν e →W 

tt 

 (hadro)tt 

J1

J2

J3

J4

J5

J6

J7

J8

ν e →W’ 

 [GeV]
T

p

0 50 100 150 200 250 300
-5

10

-410

-3
10

-210

-110

ν e →W 

ν τ →W 

tt 

 (hadro)tt 

JF17

ν e →W 

(a) pT

 [GeV]
Final

TE

0 100 200 300 400 500 600 700
-410

-3
10

-210

-110

1 ν e →W’ 

ν e →W 

tt 

 (hadro)tt 

J1

J2

J3

J4

J5

J6

J7

J8

ν e →W’ 

 [GeV]
Final

TE

0 50 100 150 200 250 300
-5

10

-410

-3
10

-210

-110

ν e →W 

ν τ →W 

tt 

 (hadro)tt 

JF17

ν e →W 

(b) 6EFinal
T

Figure 7.5: Kinematics distributions of all processes: pT distribution of the electron container

that passed the kinematic cuts (a) and distribution of 6EFinal
T (b) for W ′ and W signal and their

corresponding background.
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7.4 W ′ → eν analysis with standard 6ET

The standard missing transverse energy, 6EFinal
T , uses all ingredients of the detector to calculate

6ET , which are sketched in Figure 7.2. Throughout this section results for both W ′ and the

control sample, W , will be shown in parallel.

Figure 7.5 shows, the electron candidate pT distribution (a) and 6ET final distribution (b)

for W ′ → eν and W → eν together with their corresponding backgrounds. A simple electron

selection requires exactly one electromagnetic cluster loosely matched to a track. Only kine-

matics selection cuts have been applied, that is, the first three cuts of Tables 7.2 and 7.3, namely:

pT > 25 GeV , | η |6∈ [1.3;1.6], | η |< 2.5 and 6EFinal
T > 25 GeV . Every histogram is normalized

such that the integral is equal to one, in order to focus on their shapes. The mean of the pT and

6ET distribution is around 500 GeV for W ′ → eν decay, while for the W → eν is about ten times

smaller. The kinematic requirement of a minimum value of 25 GeV for both the electron trans-

verse momentum and the missing transverse energy, reduces the number of events in 24 % and

4 % for W ′ → eν and W → eν respectively. Large pT electrons are identified in the background

sample which shadow the distribution for W ′ → eν. In contrast, the 6EFinal
T distribution is more

recognizable due to its increase at about half of the generated W ′ mass.

Figure 7.6 shows the correlation between the electron pT and the 6ET for W ′ and their corre-

sponding backgrounds in the pT region with high statistic (80−520 GeV). A clear correlation

is observed for W ′ → eν between both variables, in contrast to the quark base backgrounds.

However, this two dimensional variable cannot distinguish the signal from the W → eν back-

ground.
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7.4. W ′ → eν analysis with standard 6ET

The invariant mass on the transverse plane (or simply transverse mass), MT , is calculated

from the transverse momentum of the electron, the missing transverse energy and the azimuth

angle difference between the directions of the electron and 6ET via:

MT =
√

2pT 6ET (1− cos(ϕelectron −ϕ6ET
)) (7.3)

The MT differential cross sections are shown in Figure 7.7 for W ′ (a) and W (b) with their

respective backgrounds, after kinematic cuts. The dijets contributions are added, as well as the

semi-leptonic and hadronic tt̄ for clarity. The W ′ peak appears clearly above the background

at 1 TeV despite no electron identification criteria is applied. In contrast, the W signal of the

control sample needs a more refined selection criteria to discriminated from the Dijets back-

ground. Adding the “Medium Cuts” of the electron identification criteria to the kinematic cuts,

both W ′ → eν and the control sample W → eν are more than one order of magnitude above the

backgrounds at the peak (see Figure 7.8).
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Figure 7.7: Transverse invariant mass for W’ (a) and W (b) after kinematics cuts on the electron

and 6EFinal
T < 25 GeV.

These signal and background spectra are in good agreement with those obtained in the

reference analysis at 14 TeV center of mass energy [11]. The selection cuts used are similar but

not strictly identical (see Table 7.2). To quantify the comparison, cross sections (in pb) for the

W ′ signal and its backgrounds are given in Table 7.4. They correspond to the following integral

after selection cuts:

σ =

Z 1200 GeV

700 GeV

dσ

dMT
dMT (7.4)
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Figure 7.8: Transverse invariant mass for W’ (a) and W (b) after kinematics cuts on the electron,

6EFinal
T < 25 GeV and electron identification (medium cuts).

The factor two between both analysis is due to the different center of mass energy. Re-

scaling by this factor the small differences, at the percent level, are due to the different pT ,

6EFinal
T thresholds (see Table 7.2). The signal over background ratio, S/B, is about 60, which is a

measure of the discovery potential for this new boson.

Process This Analysis (10 TeV) CSC results (14 TeV)

W ′ → eν 0.927 1.860

W → eν 0.014 0.032

tt̄ + dijets 0.000 0.000

S/B 62.44 58.68

Table 7.4: Comparison between the present analysis and the reference results, for the cross

section in the transverse mass window 700 GeV < MT(GeV) < 1200 GeV for W’ signal, its

main backgrounds and the signal over background ratio S/B. A factor ∼ 2 in the number of

events is expected from the cross section ratio between 14 and 10 TeV.
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7.5. W ′ → eν analysis with calorimetric 6ET

7.5 W ′ → eν analysis with calorimetric 6ET

In this section, the possibility of using an unweighted calorimetric definition of the missing

transverse energy (6EBase
T ) for the W ′ → eν and the control sample W → eν is investigated. This

quantity is much simpler than the standard 6EFinal
T commented in previous section, since on the

one hand it contains only information from the calorimeters and on the other hand it does not

include Monte Carlo weights on the cells to correct for energy losses in inactive parts and for

the non-compensation of the calorimeters for hadronic cascades. Hence, 6EBase
T can be kept more

under control, specially for the first LHC data when the Monte Carlo is not perfectly tuned.
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Figure 7.9: 6EFinal
T (a) and 6EBase

T (b) resolutions distributions (black line) with fit (red line) for

W’ (top) and W (bottom).

Figure 7.9 shows the distributions of 6EFinal
T and 6EBase

T relative to the value at the generator

level or Monte Carlo Truth. An underestimate, of 8 GeV and 1.5 GeV, is observed when using

6EBase
T for W ′ and W respectively. This can be understood by the energy loss in inactive parts
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of the detector, which decreases the value of 6EBase
T (see Equation 7.1). The effect of this under-

estimate affects more to the W , since the percentage variation relative to the mass is more than

twice larger for the W than for the W ′. In contrast, using 6EFinal
T an overestimate is observed,

which amounts to 15 GeV and 4 GeV for W ′ and W respectively. In addition, the distributions

deviates from a gaussian at high values. This indicates a problem in the standard procedure

which may come from the Monte Carlo dependent parts of the corrections. On the other hand,

the widths of the distributions are 11 GeV and 6 GeV for W ′ and W respectively, which repre-

sents about 1 % (8 %) of the W ′ (W ) mass 3. A more visible effect on the gauge boson width is

then expected for the W than for the W ′.

Figure 7.10 shows the transverse mass MT for W ′ → eν and W → eν after kinematic and

electron identification medium cuts are applied. Three distributions are represented correspond-

ing to Monte Carlo truth (black circles), unweighted calorimetric (red squares) and standard

(blue triangles) missing transverse energy calculation. The transverse mass at the peak is about

1 % underestimated when using 6EBase
T as transverse energy for the W ′ → eν. This effect in-

creases to about 7−8 % for the W case, where, in addition, the distribution is clearly broader

than the Monte Carlo Truth.

The next step is to quantify the effect of a calorimetric definition of the missing transverse

energy on the backgrounds. Figure 7.11 (left column) shows the distributions of MT for the

different backgrounds to W ′ → eν signal. A good agreement is observed with the Monte Carlo

Truth except for the Dijets background that increases, still being negligible compared to the

signal.

The number of events for an integrated luminosity of 100 pb−1 in the transverse mass win-

dow 700 < MW ′
T ( GeV) < 1400 is given in Table 7.5. A signal to background ratio (S/B) of

almost 70 is obtained on a total of 89 W ′ selected.

Process 6ETruth
T 6EFinal

T 6EBase
T

W ′ → eν 90.09 92.68 88.7

W → eν 1.27 1.43 1.22

Dijets 0.00 0.03 0.06

tt̄ 0.02 0.02 0.02

S/B 70.94 62.62 68.23

Table 7.5: Number events for of W’ and its backgrounds for 100pb−1 of data in a transverse

invariant mass window 700 < MT (GeV ) < 1200 for 6ETruth
T , 6EFinal

T and 6EBase
T .

Another concern raised by the use of calorimetric 6ET is the the possibility that new back-

grounds become significant when using 6EBase
T . In particular, the situation that is more likely to

fake calorimetric 6ET is the presence in the final state of jets or muons. For this purpose, events

of W → µν + 1 or 2 jets has been studied. For an integrated luminosity of 100pb−1, no events

survived after selection cuts in the W’ MT window of 700 < MW ′
T ( GeV) < 1400. A poissonian

limit predicts less than 2.3 events at 90 % CL, which is negligible compared with the number

of W ′ selected (see Table 7.5).

3These values are consistent with the expected resolution for the hadronic calorimeters, which gives for the W ′

on average: 50 %
√

< ΣET > = 50 %
√

600 ∼ 12 GeV
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Figure 7.10: Invariant transverse mass MT (Equation7.3) with 6ET truth (black), final (blue) and

base (red) for W’ (a) and W (b).
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The much higher statistics in the control sample W → eν allows for a better quantitative

study of the backgrounds. Figure 7.11 (right column) shows the distributions of MT for the

different backgrounds to W → eν signal. It confirms the good agreement with the Monte Carlo

Truth except for the Dijets background, which is still negligible compared to the signal. Ta-

ble 7.6 contains the number of events for an integrated luminosity of 100 pb−1 in the trans-

verse mass window 700 < MW ′
T ( GeV) < 1400. There is more than 300,000 W → eν. The

number of W → µν + 1 or 2 jets events that survive after the selection cuts in the window

40 < MW ′
T ( GeV) < 120 is 60 which represents less than 2 in ten thousand of the signal. This

percentage applied to the W ′ case will give rise to less than 0.02 events.

Figure 7.12 serves as a summary of the performance of the present analysis using the

6EBase
T definition for the missing transverse energy, where signal and backgrounds are compared

as a function of MT . The calorimetric definition 6EBase
T does not spoil the discovery potential of

the new gauge boson W ′, being suitable for the early data taken.

Process 6ETruth
T 6EFinal

T 6EBase
T

W → eν 316000 340148 319123

W → τν 5523 6889 5410

Dijets JF17 9968 27149 33008

tt̄ 1418 1483 1399

S/B 18.7 9.57 8.02

Table 7.6: Number of events for W and its backgrounds for 100pb−1 of data in a transverse

invariant mass window 40 < MT (GeV ) < 120 for 6ETruth
T , 6EFinal

T and 6EBase
T .

7.6 Conclusions

The main goal of this analysis was to evaluate the discovery potential of a 1 TeV W ′ → eν using

a robust definition of 6ET . In this prospect, a pure calorimetric 6ET definition was chosen since

it is already well under control and can be quickly crosschecked with first data (Section 7.2).

Simple kinematic selection cuts on the electron PT and missing transverse energy are suffi-

cient to distinguish the W ′ boson against the background from Standard W, Dijets and tt̄.

An overestimate of the W’ mass of +1.5 % has been found when using a complete weighted

definition of the missing transverse energy, while a degradation of −1.5 % has been observed

instead when using an unweighted calorimetric definition of missing transverse energy.

A signal over background of 68 has been found in a window of the W ′ transverse mass of

700 < MT (GeV ) < 1200 around the mass peak.

The analysis has been performed in parallel for the standard W → eν which became useful

as control sample, in particular for the precised evaluation of background shapes, due to the

much larger number of events in the standard W samples.

Due to the simple discrimination of backgrounds, new heavy gauge bosons will be one of

the first particles to search for with early data.
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Figure 7.11: Invariant transverse mass MT (Equation7.3) with 6ETruth
T (black circles), 6EFinal

T (blue

triangles) and 6EBase
T (red squares) for W → eν in the W’ mass window (top left), W → τν the W

mass window (top right), the dijet background in the W’ mass window (middle left), the dijet

background in the W mass window (middle right), tt̄ in the W’ mass window (bottom left) and

tt̄ in the W mass window (bottom right)
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Figure 7.12: Distribution of transverse invariant mass MT (Equation 7.3) of W’ (a) and W (b)

and their backgrounds after all the event selection and with a 6EBase
T . .
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Summary

At the CERN laboratory, the Large Hadron Collider (LHC) has been built under the french-

swiss border near Geneva, Switzerland. The LHC is designed to create proton-proton collisions

with an unprecedented luminosity of 1034 cm−2s−1 and a center of mass energy of 14 TeV. The

LHC takes particle physics research to a new frontier. On September 10th 2008, the first single

beam of 2×109 protons was circulated successfully through the entire LHC, with an energy of

0.45 TeV per proton.

ATLAS is one of the two general-purpose experiments at the LHC accelerator to search for

particles with masses up to several TeV. One of its main goals is to study the Standard Model

and look for possible new physics beyond this model. One of the greatest expectations lie in

the discovery of the Higgs boson, the last of the fundamental particles in the Standard Model

which remains undiscovered. Also in different extensions of the Standard Model new particles

are predicted with masses lying in the kinematic window of ATLAS discovery potential. Events

with electrons and photons in the final state are important signatures for many physics analyses

conceived at the LHC.

The ATLAS Liquid Argon Calorimeter is one of the largest and most sophisticated calorime-

ters ever built. It is designed to provide a precise measurement of electrons, photons, jets and

missing transverse energy. In particular, the EM calorimeter has to match challenging require-

ments in order to satisfy the physics goals, such as an energy resolution of 10 %/
√

E ⊕0.7 %

for electrons or photons of energy E, a linearity at the per mil level and a good control of the

signal for the more than 170 thousands channels.

An important part of the work presented in this thesis focuses on the calibration and com-

missioning of the EM calorimeter. In particular, the signal reconstruction in every cell of the

EMC and its performance are described extensively in this work. The data collected during

the cosmic ray and beam splash runs in the fall 2008 have been very useful to commission this

subdetector in its final position in ATLAS (see [55] and [56]).

Optimal Filtering weights (OFC) have been obtained to convert from digital data samples

to the maximum amplitude for each calorimeter channel. The determination of these weights

depends on the modeling of the readout line, in particular of four parameters which are deter-

mined by the ATLAS standard Response Transform Method (RTM) from the calibration pulse

shape.

A first global check of the signal reconstruction quality over the whole EM calorimeter

coverage is performed using events created by the hit of LHC beams on collimators 200 meters

before ATLAS. The pulse shape prediction agrees with the data to better than 1 % and 2 % for

the first and second/third compartments of the barrel. Due to a less refined description of the cell
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electronic chain in the endcaps, the situation is slightly degraded : the agreement is of 1 % and

better than 3 % in first and second/third compartments, respectively. A rough estimate of the

impact of the quality of the signal reconstruction on the constant term of the energy resolution,

csr, has been derived : 0.2 % < csr < 0.5 % in the barrel and 0.25 % < csr < 0.7 % in the

endcaps.

The average electron drift time in each cell of the highly granular LAr electromagnetic

calorimeter of ATLAS, is measured from the samples of shaped ionization pulses induced by

high energy deposits from cosmic muons recorded during the 2008 commissioning run. The

signals were recorded in a wide time window (32 samples) to assure the required precision of

the measurement.

The drift time measurement has shown to be a powerful tool to detect asymmetries and

intrinsic non-uniformities along the calorimeter. Its great sensitivity to gap variations made

possible to determine the intrinsic non-uniformity of the response due to gap size variations,

namely ∼ 0.26 % and ∼ 0.53 % respectively for the barrel and the endcaps.

From the measurement of the drift time the drift velocity has been infered, which resulted

4.59± (0.05)syst mm/µs and 4.65± (0.10)syst mm/µs for the barrel and endcap respectively,

at 1 kV/mm electric field and an average LAr temperature of 88.5 K measured during the run

period.

The analysis method used to derive the drift time provides as another parameter the aver-

age absolute value of the amount the electrodes are off center between their two neighboring

absorbers. Electrodes are found to be shifted with respect to their nominal central position by

∼ 146 µm on average in both barrel and endcap, with a RMS of ∼ 40 µm.

Since the actual value of the drift time enters the LAr electronic calibration in several points

(e.g. OFC, current-to-energy conversion factors), the measurements presented in this analysis

can be used to improve the EM calorimeter energy reconstruction. At the same time, these

measurements can be used to correct for the measured gap variations in order to eventually

reduce the constant term of the energy resolution.

A Monte Carlo analysis of the potential of discovery of ATLAS for a new gauge W ′ boson

has been carried out. The mass was assumed of 1 TeV whereas the search has been focussed

on the decay mode W ′ → eν. The performance using a pure unweighted calorimetric definition

for the missing transverse energy has been compared with a standard definition. Both leading

to similar results in terms of signal to background significance of about 70, makes the former

definition suitable for the first LHC data.
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Appendix A: Problematic channels in the EMC.

Figure 7.13 show the number of anomalous EM calorimeter channels discovered using cosmic

data. They can be classified according to the type of problem:

• P1: dead channel at the readout level.

• P2: dead channel at the detector level.

• P3: channel whose calibration pulse is distorted.

• P4: channel with another typo of distorted problems.

• P5: noise channel which is more than around 5 standard deviations from expected noise.

• P6: channel with some features unstables with respect to time.

• P7: channel with sporadic bursts of noise.

• P8: channel with a short.
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Figure 7.13: Problematic channels in the EM calorimeter.

In total, the ratio of unrecoverable channels is 0.02 % which comes from P1, P2 and P8

problem types, and those which are usable but should be masked represents 0.8 % of the full

number of channels in the EM calorimeter.
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Resumen

En el laboratorio del CERN, se ha construido el Large Hadron Collider (LHC) debajo de la

frontera franco-suiza cerca de Ginebra. El LHC está diseñado para producir colisiones protón-

protón con una luminosidad de 1034 cm−2s−1 y una energı́a en el centro de masas de 14 TeV

sin precedentes. Con el LHC se alcanzarán nuevos retos en la fı́sica de partı́culas. El 10 de

septiembre del 2008, el primer haz de 2×109 protones circuló satisfactoriamente a través del

LHC, con una energı́a de 0.45 TeV por protón.

ATLAS es uno de los dos experimentos de propósito general en el LHC que será empleado

para registrar partı́culas con masas del orden del TeV . Uno de sus principales objetivos será el

estudio del modelo estandar y la búsqueda de nueva fı́sica más allá de este modelo. Una de sus

mayores expectativas es el descubriento del bosón Higgs, la última partı́cula fundamental en el

Modelo Standard que queda por descubrir. Además, diferentes extensiones del Modelo Stan-

dard predicen nuevas particulas con masas dentro de la ventana cinemática de descubrimiento

de ATLAS. Eventos con electrones y fotones en el estado final son de gran importancia para

muchos análisis de fı́sica concevidos en el LHC.

El calorı́metro del argón lı́quido de ATLAS es uno de los más grandes y sofisticados

calorı́metros jamás construido. Está diseñado para proveer medidas precisas de electrones,

fotones, jets y energı́a perdida. En particular, el calorı́metro electromagnético (EMC) tiene que

cumplir una serie de requisitos a fin de satisfacer los objetivos de la fı́sica, tales como una res-

olución en energı́a de 10 %/
√

E ⊕0.7 % para electrones y fotones de energı́a E, un linearidad

del uno por mil y un buen control de la señal para los más de 170 mil canales que componen el

EMC.

Una parte importante del trabajo presentado en esta tesis está focalizado en la calibración y

puesta a punto del calorı́metro electromagnético. En particular, la reconstrucción de la señal en

cada celda del EMC y su comportamiento se describe detalladamente en este trabajo. Los datos

almacenados de muones cósmicos y haces de partı́culas en el otoño del 2008 han sido muy

útiles para la puesta a punto de este subdetector en su posición final dentro de ATLAS (ver [55]

y [56]).

Los coeficientes de Optimal Filtering (OFC) han sido obtenidos para convertir la señal

digital muestreada en un valor para la amplitud máxima de cada celda del calorı́metro. La de-

terminación de estos pesos depende de la modelización de la electrónica de lectura, en particular

de los cuatro parametros que son determinados usando el método estandar en ATLAS llamado

RTM (Response Transform Method) a partir de la señal de calibración.

En un primer check global se ha comprobado la calidad de la reconstrucción de la senñal

a lo largo de todo el calorı́metro, empleando sucesos en los que un haz de protones del LHC
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colisionan con colimadores situados 200 metros inmediatamente delante del detector ATLAS.

El método de predicción de la señal está de acuerdo con los datos recogidos con una precision

mejor del 1 % (2 %) para el primer (segundo/tercer) compartimento del EMC Barrel. Debido

a una descripción menos precisa de la cadena electrónica en el los EMC end-caps, la situación

se degrada ligeramente en este subdetector: el acuerdo en este caso es mejor del 1 % (3 %) en

el primer (segundo/tercer) compartimento del calorı́metro. El impacto de la calidad de recon-

strucción la señal en el término constante de la resolución de energı́a , csr, ha sido estimada con

estos datos : 0.2% < csr < 0.5% en el EMC barrel y 0.25% < csr < 0.7% en los EMC end-caps.

El tiempo de deriva de electrones en el Argón Lı́quido para cada una de las celdas del

calorı́metro electromagnético de ATLAS se ha determinado a través de las señales de ionización

producidas por altos depósitos de energı́a de muones cosmicos recogidos durante 2008. Runes

especiales de 32 muestras (32 samples) fueron requeridos para asegurar una precisión adecuada

en esta medida.

Se ha demostrado que el tiempo de deriva es una potente herramienta para la detección de

asimetrı́as y no uniformidades intrı́nsecas a lo largo del calorı́metro. Su gran sensibilidad a las

variaciones del gap de argón lq́uido ha hecho posible la medida de no uniformidades intrı́nsecas

en la señal debidas a variaciones del gap, que resultan ser ∼ 0.26 % y ∼ 0.53 % para barrel

y los end-caps respectivamente. De la medida del tiempo de deriva se ha inferido también la

velocidad de deriva, que es una cantidad directamente proporcional a la energı́a de respuesta

de cada celda. El resultado ha sido, 4.59± (0.05)syst mm/µs y 4.65± (0.10)syst mm/µs para

barrel y end-cap respectivamente, a un campo electrico de 1 KV/mm y temperatura promedio

del Argón lı́quido de 88.5 K.

El método utilizado para la medida del tiempo de deriva proporciona la posibilidad de medir

el desplazamiento efectivo de los electrodos respecto a su posición nominal entre cada dos

absorbers. El resultado de tal medida es que dicho desplazamiento es ∼ 146 µm en promedio

para ambos barrel y end-caps, con un RMS de ∼ 40 µm.

Dado que el valor del tiempo de deriva entra en la modelización de la electrónica de lectura

y en varios puntos de la cadena de calibración, como los OFC y la conversión a energı́a, las me-

didas presentadas en este analisis pueden usarse para mejorar el procedimiento de reconstrución

de la energı́a de las celdas del EMC. Al mismo tiempo estas medidas pueden ser utilizadas para

corregir no-uniformidades observadas y, de esta manera, mejorar la resolución en energı́a.

Finalmente, se ha realizado un análisis con sucesos Monte Carlo sobre el potencial de AT-

LAS para el descubrimento de nuevos bosones gauge W ′. La masa de dicho bosón se asumió

de 1 TeV y el canal de desintegración estudiado ha sido W ′ → eν. Se ha comparado el fun-

cionamiento de la definición estandar de energı́a transversa perdida con definiciones basadas

en depósitos de energı́a en las celdas del calorı́metro no corregidas. Ambos métodos han dado

lugar a significancias estadisticas, razón señal a fondo, en torno a 70. La mayor simplicidad

y control del segundo método le hace más apropiado para las búsqueda de este boson con los

primeros datos del LHC.
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