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Abstract. The CernVM File System today is commonly used to host and distribute
application software stacks. In addition to this core task, recent developments expand the
scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for
container engines to distribute the container image contents. Compared to native container
image distribution (e.g. through the “Docker registry”), CernVM-FS massively reduces the
network traffic for image distribution. This has been shown, for instance, by a prototype
integration of CernVM-FS into Mesos developed by Mesosphere, Inc. We present a path for
a smooth integration of CernVM-FS and Docker. Secondly, CernVM-FS recently raised new
interest as an option for the distribution of experiment conditions data. Here, the focus is
on improved versioning capabilities of CernVM-FS that allows to link the conditions data of
a run period to the state of a CernVM-FS repository. Lastly, CernVM-FS has been extended
to provide a name space for physics data for the LIGO and CMS collaborations. Searching
through a data namespace is often done by a central, experiment specific database service. A
name space on CernVM-FS can particularly benefit from an existing, scalable infrastructure
and from the POSIX file system interface.

1. Introduction
The CernVM File System is commonly used to host and distribute scientific application software
to grids, clouds, and supercomputers [1]. Its key features include a POSIX compliant interface,
HTTP transport, multi-level caching, versioning, strong consistency, and end-to-end data
integrity. CernVM-FS not only serves the software distribution needs of large collaborations
(such as LHC or neutrino experiments) but also a long tail of smaller experiments. As of
September 2016, we are aware of more than 50 repositories that collectively host more than 350
Million files. Known software installation services are operated, for instance, by CERN, EGI,
OSG, DESY, NIKHEF, and Compute Canada.

Today there are two popular use cases:

(i) The distribution of production software, such as /cvmfs/cms.cern.ch. New software versions
are added to a stable directory tree on a weekly or daily basis.

(ii) The distribution of “nightly builds”, such as /cvmfs/lhcbdev.cern.ch. These repositories
face large volatility, where new software versions overwrite old versions, e.g. last week’s
builds. In contrast to production repositories, nightly build repositories are garbage
collected, that is old and deleted versions are not captured by CernVM-FS’ internal
versioning. Nightly build repositories are not or only sparsely replicated in order to ensure
a quick turn-around from publishing to availability on clients.

http://creativecommons.org/licenses/by/3.0
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In the following sections, we present new use cases and the corresponding new and planned
features in support of these use cases.

2. Container Distribution
Linux container virtualization [2] raised a great deal of interest in the computing industry
and academia alike. For instance, the major cloud providers Amazon, Microsoft, and Google
now all offer and propagate container technology as the next-generation application deployment
means. Linux containers combine cgroups and kernel namespaces for application isolation with
a container image that provides a Linux root file system different from the host’s file system.

There are a number of container engines, such as Docker, rkt, or Singularity [3], which
facilitate the maintenance and orchestration of containers. These container engines take a simple
approach to container image distribution. Either a directory in the host’s mount tree is used
(i.e. the “distribution” of that directory needs to be addressed elsewhere) or the images are
distributed as one or few tarballs containing layers of the final container image. Layers are
a coarse-grained division of container images; a layer can be, for instance, the Ubuntu base
operating system, or the Hadoop software stack. This results in the challenge to distribute
gigabytes worth of image layers to a large number of machines. For Virtual Machine images,
this very problem is addressed using CernVM-FS by the CernVM virtual appliance [4]. We
expect to see the same bandwidth and space savings for container images. For instance, in order
to run some basic tutorials with the R container on Docker Hub, out of the 1GB R container
only a few tens of megabytes are actually accessed and need to be distributed.

Connecting a container engine to CernVM-FS is trivial if the container image can be provided
as a directory on the host, as it is in case of Singularity or the Mesos containerizer. More
work is required to connect the widespread Docker container engine with its layer-based image
distribution to CernVM-FS. Docker has a central component, the registry, that stores layers
as content-addressed tarballs together with image manifests that list the layer hashes that are
needed to compose the image. In order to run a container, all its uncached layer tarballs need to
be downloaded and locally extracted first. Conversely, a tarball can be created from the content
of a locally modified container and pushed back to the registry. The component on the Docker
host that manages image layers is called a graph driver. Since Docker version 1.13, graph drivers
are pluggable and open for external extensions.

Ongoing work aims at a CernVM-FS graph driver for Docker. This graph driver still uses
the standard registry as a database for available images. However, instead of pushing the actual
image contents to the registry, the graph driver instead pushes a thin image. The thin image
only contains the whereabouts of the layers in CernVM-FS. The actual layer content resides
in the uncompressed form in a CernVM-FS directory. Depending on whether the graph driver
starts a normal image or a thin image, it can behave like the standard graph driver or it uses
directories from a CernVM-FS mount point to provide the container’s root file system. This
idea for seamless integration with the Docker ecosystem is borrowed from the Slacker container
image storage system [5]. When pushing thin images back to the registry, a tarball with the
local changes is sent to the CernVM-FS server for publication before the thin image itself is
pushed to the registry.

3. Conditions Data
Hosting detector conditions data, i.e. data about the state of the detector at the time of data
taking, is a use case that is foreseen in the design of CernVM-FS but it is not yet fully exploited.
In order to support the full lifecycle of hosting conditions data from data taking to analysis (and
its preservation), extensions to CernVM-FS in two areas are in development.

Firstly, we add support for multiple release manager machines that can publish content
concurrently as long as they work on different directory subtrees in the repository (see Figure 1).
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Figure 1. Multiple release manager machines acquire leases for certain subtrees of the directory
from a central lease manager. They can then concurrently hash and compress change sets. A
gateway service in front of the storage receives the signed object packs from multiple release
manager for final committing. The object packs can be reused to speed up replication to Stratum
1 servers.
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Figure 2. Possible use of file system snapshots and branching for a repository hosting conditions
data.

Besides performance improvement, multiple release manager machines can simplify operations.
For instance, provided a suitable directory structure, the data stream from data taking can be
processed independently from reprocessed conditions data from previous runs.

Secondly, we extend and better expose CernVM-FS’ internal versioning. The existing named
file system snapshots (“tags”) can be used to indicate a meaningful state of the conditions
data that should be used for analyses (see Figure 2). In order to scale the number tags
beyond 10 000-100 000, we add support for archiving old tags and making them immutable. For
swift access to the active tags, support is added for an automatically created, hidden directory
.cvmfs/snapshots. Every tag becomes a subdirectory of this path and provides access to the
corresponding file system snapshot. This interface is analogous to the .zfs/snapshots directory
in ZFS. Newly added support for branching allows to create new file system snapshots based on
an arbitrary earlier snapshot, not only the latest snapshot. This provides means for publishing
hotfixes to a released file system state.

4. Data Namespace
A combination of contributions to CernVM-FS allow for distributing a namespace of an existing
data repository (see Figure 3). In contrast to library based data access tools, clients benefit
from CernVM-FS’ POSIX interface that allows easy integration with existing applications (for
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Figure 3. A data namespace on CernVM-FS. Data files are provided on a file server different
from the CernVM-FS catalogs. Access is protected through HTTPS with X.509 authorization.

instance: ls). Clients can also benefit from CernVM-FS’ built-in data integrity verification
through content hashes. The added convenience comes at the cost of performance—CernVM-
FS is not primarily optimized for high throughput—and more complex configuration.

The new features in support of this use case are:

Grafting. Grafting allows for publications that only define the meta data of files (size, content
hash, name, etc.) without actually processing them. Thus data files can be represented in
a CernVM-FS directory tree without the need to process them.

Uncompressed files. By default, CernVM-FS uses the content hash of the zlib compressed
version of files. In order to avoid compressing existing files, CernVM-FS can now be
instructed to store the content hash of the uncompressed version of files in its catalogs.

HTTPS access. HTTPS instead of HTTP access can be used to ensure data confidentially
during transfer. CernVM-FS can also present a user’s X.509 certificate to authenticate her
to the origin web server. HTTPS access implicitly prevents the use of site proxies, i.e. the
origin servers need to be properly sized.

Authorization helpers. 3rd party authorization helpers can communicate with a CernVM-FS
client on a host through a well-defined protocol. Authorization helpers can locally grant
or deny access to a CernVM-FS mount point based on the user and process that tries to
access it.

A detailed description of this use case and the deployment in OSG’s StashCache is subject of
a separate publication in these conference proceedings [6]. The contributions help for other use
cases, too. For instance, conditions data are usually already compressed and benefit from not
compressing them again. Different “views” of existing directory trees can be efficiently created
through grafting. For instance, one can create a view that combines binaries from various
packages in different directories in a single bin directory. The HTTPS access and authorization
plugins can be used to distribute non-public software.

5. Cache Plugins
Potentially large (data) files and deployment beyond managed resources (e.g. supercomputers)
require flexible cache access by the client. The local cache is a central component in CernVM-FS,
all data accesses are routed through the local cache. While a file on CernVM-FS is held open by
an application, it has to reside in the local cache. In its default deployment, CernVM-FS uses
a local directory as a cache.
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Figure 4. External processes provide the functionality that previously was hard-wired to a
(local) cache directory. Cache plugins can be developed and deployed independently of the
CernVM-FS client itself.

A new pluggable cache interface allows to connect external cache managers processes to
the CernVM-FS client through a well-defined transport protocol (see Figure 4). The external
process is connected to the CernVM-FS client either through a local UNIX domain socket or
through a TCP port. Through a UNIX domain socket, the transport channel sustains 100 k
calls/s and 4.5GB/s. Writing of external cache plugins is being aided by a C library (see
Appendix). Proof-of-concept cache plugins exist for RAMCloud [7] and for a local, in-memory
cache. Another planned plugin should use XRootD [8] as a CernVM-FS cache. We are aware of
other groups that are working on 3rd party plugins.

In addition to cache plugins, new support for tiered caches allows to combine two cache
options. For instance, one could deploy a Ceph cluster cache plugin as a lower layer cache,
with a local directory or an in-memory cache plugin as an upper layer. Obviously, many other
deployment options are conceivable.

6. Status and Summary
In this contribution, we outlined new use cases and developments in CernVM-FS. In particular,
we presented extensions to CernVM-FS’ versioning capabilities, the publishing tools, client-side
caching, and integration with Container engines. New and recent use cases include hosting
conditions data and other potentially large files, non-public files, container distribution, and
deployment on supercomputers. Two new plugin interfaces, authorization helpers and cache
plugins, aim at increasing the developer community.

As of February 2017, there is a proof-of-concept CernVM-FS graph driver plugin for Docker.
Most of the developments for extending the versioning capabilities are merged. Support for
cache plugins and a tiered cache is merged, too. All the developments described in section 4 on
data namespace support are released.
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Appendix
The following listing outlines the callback routines developers for external cache plugins need to
implement.

// Reading data
int cvmcache chre fcnt ( struct hash ob j e c t i d , int change by ) ;
int cvmcache ob j e c t in f o ( struct hash ob j e c t i d ,

struct o b j e c t i n f o ∗ i n f o ) ;
int cvmcache pread ( struct hash ob j e c t i d ,

int o f f s e t , int s i z e ,
void ∗ bu f f e r ) ;

// Transact iona l wr i t i n g in f i x ed − s i z e d par t s
int cvmcache star t txn ( struct hash ob j e c t i d , int txn id ,

struct i n f o o b j e c t i n f o ) ;
int cvmcache write txn ( int txn id , void ∗ bu f f e r , int s i z e ) ;
int cvmcache abort txn ( int txn id ) ;
int cvmcache commit txn ( int txn id ) ;

// Optional : quota management
int cvmcache shr ink ( int sh r ink to , int ∗used ) ;
int cvmcache l i s t i n g beg i n ( . . . ) ;
int cvmcache l i s t i ng nex t ( int l i s t i n g i d , . . . ) ;
int cvmcache l i s t i ng end ( int l i s t i n g i d ) ;


