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We determine the phase diagram of completely asymptotically free SUðNcÞ gauge theories featuring Ns

complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the
gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a
very rich dynamics and associated phase structure. Intriguingly, we discover that the completely
asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality,
and in a regime when perturbation theory is applicable. We conclude our analysis by determining the
quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry
breaking. These models are of potential phenomenological interest as either elementary or composite
ultraviolet finite extensions of the standard model.
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I. INTRODUCTION

Gauge theories featuring gauge, scalar, and fermion
degrees of freedom constitute the back-bone of the standard
model of particle interactions. It is therefore important to
unveil their perturbative and nonperturbative dynamics.
Furthermore according to their ultraviolet properties

these models can be classified into fundamental and
effective low energy descriptions. Fundamental theories
are, according to Wilson, the ones featuring in the UV
noninteracting (free) [1–4] or interacting (safe) [5,6] fixed
points. If multiple couplings are present, one can have
complete asymptotic freedom (CAF) [1,7–14], or safety
(CAS) [6,15,16], or mixed possibilities [12,16,17]. Exact
nonperturbative results on the possible asymptotically
(un)safe nature of supersymmetric gauge theories were

investigated in [18] impacting the very existence of time-
honored super grand unified theories [19]. The existence of
controllable nonsupersymmetric models with interacting
UV fixed points led to the recent discovery [20] that the
addition of positive mass-squared terms leads to calculable
radiative symmetry breaking in the IR, a phenomenon akin
to the radiative symmetry breaking that occurs in the
supersymmetric standard model [21]. We will not consider
gravitational corrections which, however, are the subject of
interesting related work [22–24].
Here we focus our attention on the dynamics of SUðNcÞ

gauge theories with Ns complex scalars and Nf Dirac
quarks transforming in the fundamental representation of
the gauge group. Despite the in-depth study within the
supersymmetric context mostly due to the remarkable work
by Intriligator and Seiberg [25], very little is known about
the nonsupersymmetric version with only one complex
species of scalar quarks in addition to the ordinary quarks.
We therefore wish to partially close this gap by providing

an in depth study of these models within a perturbative RG
analysis along with the study of the associated quantum
effective potential in the fully calculable regime. We
discover a very rich physics associated to the various
possible phases in which the models can be.
The choice to study these models stems from the past and

recent interest in elementary [1,7–12,14] and composite
extensions of the standard model featuring scalar quarks
both in models of (super) bosonic technicolor [26–29] as
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well as in models of composite Higgs dynamics [30–32]
embodying explicit realizations [33,34] of the partial
composite mechanism for standard model mass generation
[35]. The underlying realizations1 of these composite
extensions are dubbed “fundamental partial composite
theories” [33].
For the models at hand, we first investigate the CAF

conditions. We then examine the infrared dynamics of the
unveiled CAF models to the maximum known order in
perturbation theory, allowing us to determine the perturba-
tive phase diagram. Since models with scalars can undergo
a radiative symmetry-breaking phenomenon because of the
Coleman Weinberg (CW) mechanism [38], we carefully
investigate this possibility here using the improved
Gildener Weinberg (GW) approach [39,40]. We show that
under certain conditions these models feature, besides CAF,
also large distance conformality.
We now lay out the structure of the paper. In Sec. II, we

introduce the models, their beta functions and spell out the
conditions for CAF. We move to show the emergence of
controllable interacting infrared fixed points to the maxi-
mum known order in perturbation theory. We discover that
the phase diagram is rich and that the CAF conditions lead
also to infrared conformality, at least in some coupling
direction. Spontaneous radiative symmetry breaking is
analyzed in Sec. III. Here we pay special attention to the
possible patterns of symmetry breaking in the scalar sector.
The analysis is performed in steps, with the zeroth order
corresponding to a tree-level analysis and the quantum
corrections studied at the one-loop order. The presence of
multiple couplings leads to different limits in the parameter
space of the model that can affect the radiative breaking
scenarios. We conclude in Sec. IV and add a number of
appendixes containing further technical details.

II. ULTRAVIOLET AND INFRARED
PROPERTIES OF THE MODEL

In this paper, we consider an SUðNcÞ gauge theory
involvingNs complex scalars S andNf vector-like fermions
Q in the fundamental representation (see Table I). The
Lagrangian is

L ¼ −
1

2
TrFμνFμν þ TrðQ̄iDQÞ þ TrðDμS†DμSÞ

− vðTrS†SÞ2 − uTrðS†SÞ2; ð2:1Þ
where Fμν ¼ FI

μνtIðI ¼ 1 � � � ; N2
c − 1Þ is the field strength

tensor and tI are the SUðNcÞ generators in the fundamental
representation satisfying TrðtItJÞ ¼ ð1=2ÞδIJ. We use A, B,
C, D to denote color indices in the fundamental representa-
tion, I, J,K, L in the adjoint representation, and a, b, c, d to

denote the flavor index in the fundamental representation of
UðNsÞ). In our notation, the fermion fieldsQ and the scalar
fields S are rectangular matrices with dimensions Nf × Nc

and Ns × Nc (i.e. SaA), respectively.
Note that for specific color choices, with Nc ≤ 4 and

Ns ≤ 4, additional renormalizable terms in the Lagrangian
appear. Here for example for Nc ¼ Ns we can construct the
operator det S. Similarly, for Nc ¼ 4 and Ns ¼ 2 or Nc ¼ 2
and Ns ¼ 4 we have terms, which for the latter case can be
written as εABεCDεabcdSAaSBbS

C
c SDd . Furthermore for Nc ¼ 3

a Yukawa term can be written involving one scalar and two
quarks. Additional terms of these types would give addi-
tional contributions to the beta functions, which are not
considered in this work.

A. UV behavior: Completely
asymptotically free (CAF)

Since the model has three marginal couplings we now
investigate its ultraviolet behavior and establish the con-
ditions under which it can be completely asymptotically
free. We are interested in characterizing the flow behavior
around the Gaussian fixed point, and therefore one can use
one-loop expressions for the beta functions.
Using the rescaled couplings, i.e. α ¼ g2=ð4πÞ2,

λ1 ¼ v=ð4πÞ2, λ2 ¼ u=ð4πÞ2, the one-loop beta functions
(first calculated in [33], with general RG functions to two-
loop order provided in [41]) are

βα ¼ −
1

3
ð22Nc − 4Nf − NsÞα2

βλ1 ¼ 4ðNcNs þ 4Þλ21 þ 12λ22

þ λ1

�
8ðNc þ NsÞλ2 −

6ðN2
c − 1Þ
Nc

α

�
þ 3ðN2

c þ 2Þ
4N2

c
α2

βλ2 ¼ 4ðNc þ NsÞλ22 þ λ2

�
24λ1 −

6ðN2
c − 1Þ
Nc

α

�

þ 3ðN2
c − 4Þ
4Nc

α2: ð2:2Þ

We note that, to this order, the gauge beta function only
depends on the gauge coupling, and it is of the form
βα ¼ −Bα2. Requiring asymptotic freedom (AF), is equiv-
alent to restricting the coefficient B to be positive. The

TABLE I. Matter field content of the model including the
quantum symmetry group. Fermion fields are presented in the
left-handed spinor convention.

Fields

Gauge symmetries Global symmetries

SUðNcÞ SUðNfÞL SUðNfÞR UðNsÞ
Q □ □ 1 1
Q̃ □ 1 □ 1
S □ 1 1 □

1A list of underlying fundamental theories for near conformal
dynamics and composite Higgs models, before considering
fermion mass generation, can be found in [36,37].
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critical number of fermion flavors, N�
f, for which asymp-

totic freedom is lost in the gauge coupling, B ¼ 0, is
N�

f ¼ ð22Nc − NsÞ=4. The gauge coupling will be AF for
models with non-negative integer valuesNf < N�

f. We thus
have an upper bound on Ns, i.e. Ns ≤ 22Nc.
The two beta functions for the quartic couplings depend

on all three couplings but only on Nc and Ns. At
sufficiently high energies, the scalar potential of a CAF
model is well approximated by the tree-level terms

V ¼ λ1ðTrS†SÞ2 þ λ2TrðS†SÞ2 ð2:3Þ

This potential is positive definite for values of the couplings
satisfying λ1 þ rλ2 > 0 for all r ¼ TrðS†SÞ2=ðTrS†SÞ2,
which ranges from 1=minðNc; NsÞ and 1. Note that this
allows one of the two couplings to be negative, but not both
simultaneously.
For CAF to exist we first need to find solutions to the

following fixed flow relation,

ðβα; βλ1 ; βλ2Þ ¼ cðα; λ1; λ2Þ; ð2:4Þ

for a nonzero scale-dependent coefficient c. In
Appendix A, we discuss how Eq. (2.4) is related to other,
equivalent CAF requirements. When the gauge coupling is
zero, α ¼ 0, the quartic couplings are only asymptotically
free along lines that correspond to unstable scalar poten-
tials, Eq. (2.3).
We will now outline the criteria under which solutions

exist and count the number of solutions. The fixed flow
solution for α > 0 will necessarily satisfy c ¼ −Bα, which
can be substituted into the remaining equations. Since βλ2
depends linearly on λ1, we can easily solve for λ1ðλ2; αÞ and
substitute this into the equation for βλ1. The result is a
quartic equation in λ2. The coefficients of this equation
depend on Nc, Ns, B. Introducing the quantity
Nx ¼ N�

f − Nf, we can express B ¼ 4Nx=3. The number
of fixed flow solutions corresponds to the number of real
roots of the quartic polynomial, which can be calculated
using the discriminant method. The full expression for the
quartic polynomial and the expressions for classifying the
nature of the roots can be found in Appendix B. For a fixed
value of Nx, we find a region with two distinct real
solutions (region I) and a smaller region with four distinct
real solutions (region II). The upper border of region II is
shared with region I.
In Fig. 1, we show how the borders of these regions

change when varying the number of fermion flavors
(Nx ∈ f0; 1; 2; 3; 4g). It should be noted, that for small
values of Nx, the effect of increasing Nx is to move the
upper border of region I downward, while the borders of
region II largely remains unchanged. Furthermore, we note
that in the limit Nx ¼ 0 (Nf ¼ N�

f), Eq. (2.4) no longer
describes fixed flows, since the one-loop beta function for

the gauge coupling is vanishing and higher-order terms will
dictate the running. Nonetheless, solving the quartic
function with Nx ¼ 0 corresponds to finding fixed points
in the subsystem βλ1 , βλ2 and is closely related to finding
infrared fixed points for the full model (see more details in
later section). The region with two distinct sets of solutions
for Nx ¼ 0 is marked with light gray in Fig. 1, while the
region with four distinct sets of solutions is marked with
gray. From Fig. 1, we see that for fixed values of Ns ≥ 2
and Nx > 0, there exists a lower bound of Nc above which
the models have two fixed flow solutions For even higher
values of Nc, two additional fixed flow solutions appear.
Increasing either Nx (i.e. lowering Nf) or Ns will push the
lower bound on Nc towards higher values, whereas the
transition from two to four fixed flow solutions is only
mildly dependent on Nx. In Table II, the values of Nc, Ns,
Nf for models with CAF are tabulated.
Existence of fixed flows only implies that specific

directions flow out of the Gaussian fixed point.
However, to complete the picture, we need information
about the behavior of the RG trajectories in the neighbor-
hood of the fixed flow lines. To investigate this, we
parametrize the couplings ðα; λ1; λ2Þ using spherical coor-
dinates,

α¼ rsinθcosϕ; λ1¼ rsinθsinϕ; λ2¼ rcosθ; ð2:5Þ

and obtain expressions for the RG beta functions of
ðr; θ;ϕÞ, i.e. ðβr; βθ; βϕÞ.

0 5 10 15 20 25
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FIG. 1. Regions in Nc, Ns for constant Nx for which the model
is CAF. The solid lines show the borders of the region with two
fixed flow solutions (region I) for Nx ∈ f0; 1; 2; 3; 4g The blue
boundary Nx ¼ 0 represents a limit and does not satisfy CAF.
The light gray (dark gray) region marks the region where two
(four) real distinct sets of solutions exist for the limiting case
Nx ¼ 0. The dashed black lines are the asymptotic behavior of
the borders of the two fixed flow solution region.
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At one loop, the beta functions, βθ, βϕ, depend only
multiplicatively on the radial coordinate, i.e. βθ;ϕ ¼
rfθ;ϕðθ;ϕÞ, and the direction ðθ;ϕÞ, therefore, does not
depend on r. Factoring out the radial coordinate r, we can
examine the UV behavior in a reduced space of only two
parameters. This is shown in Fig. 2 for a model in region I

(top panels) and a model in region II (bottom panels), with
the arrows pointing from UV to IR.
In order for a trajectory to be connected to the

Gaussian UV fixed point, the radial coordinate has to
go to zero in the UV. Within the one-loop approximation,
the change in r is of the form βr ¼ r2frðθ;ϕÞ. The radial

TABLE II. Windows in Nf for Ns ¼ f2; 9g, Nc ¼ f5; 12g for which the model is CAF, i.e. allow for fixed flow solutions to Eq. (2.4).
There exist two fixed flow solutions for every value of Nf in each window. There are no solutions for Nc ¼ f3; 4g and Ns > 1.

Nc ¼ 5 Nc ¼ 6 Nc ¼ 7 Nc ¼ 8 Nc ¼ 9 Nc ¼ 10 Nc ¼ 11 Nc ¼ 12

Ns ¼ 2 25–26 29–32 33-37 37–43 41–48 44–54 48–59 52–65
Ns ¼ 3 31–32 35–37 38–43 42–48 46–54 50–59 54–65
Ns ¼ 4 36–37 40–42 44–48 48–53 52–59 55–64
Ns ¼ 5 37 41–42 45–48 49–53 53–59 57–64
Ns ¼ 6 47 51–53 55–58 59–64
Ns ¼ 7 52–53 56–58 60–64
Ns ¼ 8 58 62–63
Ns ¼ 9 63

FIG. 2. UV behavior around the fixed flow solutions in spherical coordinates ðθ;ϕÞ. Upper left: Full phase space in case of two fixed
flow solutions. Upper right: Close-up at the region close to the two fixed points. Lower left: Full phase space in case of four fixed flow
solutions. Lower right: Close-up at the region close to the four fixed points. UV divergent flows are in grey regions. Flows between fixed
flows that do not cross the tree-level instability lines are in white regions; those that do cross are in red or blue regions depending on
which quartic coupling is negative.
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coordinate is, thus, only decreasing in regions
of ðθ;ϕÞ where frðθ;ϕÞ < 0. In Fig. 2, the transition
(frðθ;ϕÞ ¼ 0) is shown as dashed grey lines. The regions
with flows that cross this line and are, thus, not con-
nected to the Gaussian UV fixed point, are colored grey.
Similarly, we mark the regions with red and blue, where
the flows cross the conditions for a bounded tree-level
potential (dashed red and blue lines) depending on which
quartic coupling is negative.
We show the UV behavior for the full phase space in the

case of two solutions in the upper left panel of Fig. 2 and a
close-up of the region around the two fixed flow points in
the upper right panel. We note that one point is completely
repulsive, while the other has one repulsive direction and
one attractive direction (mixed). For the mixed case, the
repulsive directions (the red and blue solid lines) separate
the flows with UV asymptotic freedom (the red and blue
shaded regions) from the ones that are UV divergent, i.e.
the grey region. The attractive direction (the black line
between two fixed flow points) separates the two tree-level
symmetry-breaking regions. In the lower two panels of
Fig. 2, we show the case of four fixed flow solutions. In this
case, the two additional fixed points for the fixed flow open
up a two-dimensional region where the flows are between
fixed points without crossing the tree-level symmetry-
breaking lines. This region is marked with white. One of
the two additional fixed points for the fixed flows is fully
attractive, while the other is with mixed properties. For the
fully attractive one, only this exact relation of the three
couplings is connected to the UV. This case therefore offers
full predictability in the IR. This will be further discussed in
Sec. II C.
In the results discussed above, we factor out the

r-dependence of the couplings, which is valid within the
one-loop approximation of the beta functions. Therefore
Fig. 2 is only adequate for describing the behavior close to
the Gaussian UV fixed point. Starting from a point where
r ≪ 1, such that the beta functions are well approximated
by the one-loop expressions, we trust the flows in the
backward direction (towards higher energies) outside the
grey regions, since r is decreasing. On the contrary, we
cannot follow the flows too far forwards, since the
approximation is getting worse (r increasing). However,
we note that the change in r is generally suppressed by a
factor of r compared to the change in θ and ϕ, except at
points close to the fixed flow directions, where
fθ;ϕðθ;ϕÞ ∼ 0. This means that the relations among the
three couplings can change substantially while the one-loop
approximation is still valid. Seen from the UV perspective
of the Gaussian fixed point (one-loop approximation), we
expect the four-solution case to offer more possibilities to
flow from the UV Gaussian fixed point to a possible IR
fixed point because of the fully attractive fixed flow
solution, which provides a region that seemingly does
not cross the symmetry-breaking lines.

Here we summarize our conclusions from restricting the
model to be CAF:

(i) In Fig. 1, we show the region in Ns and Nc within
which there exists a window in Nf (with upper
endpoint given by N�

f), for which the models are
CAF. We note that Nc > Ns in the whole region.

(ii) The size of the window depends on the position in
the grey region of Fig. 1. Close to the upper border
(i.e. Nx ¼ 0 line) of the light grey region, the size of
the window is vanishing. This behavior is evident
from Table II, where we show the range of the
window in Nf for the lowest combinations of Ns

and Nc.
(iii) In Fig. 2, we illustrate the UV behavior in the

vicinity of the Gaussian fixed point. In the two fixed
flow solution case, there is one fully UV attractive
direction and one with mixed properties. In the four
fixed flow solution case, one of the two additional
directions is fully UV repulsive while the other
is mixed.

B. Long distance conformality

In Fig. 1, we see that the whole region in Ns and Nc
corresponding to CAF models is contained in the region
with Nx ¼ 0. In Appendix B, we show that the existence
of solutions to Eq. (2.4) for Nx ¼ 0, guaranties the
existence of fixed points to the one-loop ðβλ1 ; βλ2Þ-
subsystem, where α is treated as any nonzero, positive
scale-dependent value.
In other words, if the gauge coupling has a fixed point

(βα ¼ 0), then we already know that there exist values λ1,
λ2 satisfying βλ1 ¼ 0, βλ2 ¼ 0 at one loop in the quartic
subsystem. Following the ordering from the Weyl-consis-
tency conditions [42–44], we should treat the system at
three loops in the gauge beta function together with the
one-loop quartic beta functions. To keep the analysis in the
main section light, we study here the two-loop gauge beta
function together with the one-loop quartic beta functions,
while the full result is presented in the Appendix D. At this
order, the running of the gauge coupling still decouples
from the quartic couplings. We derive the gauge fixed
point, and compute the accompanying fixed points values
of the quartic couplings. We find that in most cases all three
couplings at the fixed points are perturbatively small, and
we therefore do not expect the three-loop contributions to
the running of the gauge couplings to quantitatively change
the preliminary findings of the this section. In fact, we find
that each higher-loop order contribution will be suppressed
by a factor ofNx=Nc. This, on the other hand, requires us to
restrict our IR analysis to models close to losing AF, such
that Nx ≪ Nc, to achieve perturbative control of the loop
expansion. In the generalized Veneziano limit, where Nc,
Ns, Nf → ∞ in such a way that all ratios are kept constant,
the loop suppression can be arbitrarily small, whereas for
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finite values of Nf, Ns and Nc the smallest value for Nx is
Nx ¼ 1=4. Further details are found in Appendix D.
If we write the two-loop gauge beta function as

βα ¼ −Bα2 þ Cα3, then the nontrivial fixed point occurs
for α� ¼ B=C. For B > 0 and C > 0, this is an IR fixed
point. The two-loop coefficient for the gauge beta function
takes the form

C ¼ 8

3
NcNs −

68N2
c

3
−
2Nf

Nc
þ 26NcNf

3
−
2Ns

Nc
ð2:6Þ

The critical number of fermion flavors for this coefficient to
be positive is

N̄f ¼ 34N3
c − 4N2

cNs þ 3Ns

13N2
c − 3

ð2:7Þ

and since in our case, where Nc > 2, we always have that
N�

f > N̄f, the functions N̄f and N�
f define the window of

existence for the infrared fixed point in the gauge coupling.
From requiring the model to be CAF, we already know
from the UV analysis, that if the gauge beta function has a
nontrivial fixed point, then so does the quartic coupling
subsystem. Therefore, the window for the existence of IR
fixed points is the grey region in Fig. 1 for Nf within
Nf ∈ ½N̄f; N�

f�. The result is summarized in Table III,
where the fixed points are determined numerically, and
nonperturbative fixed points (α; λi > 1) have been dis-
carded. Comparing Table II with Table III, we conclude
that the CAF condition is stronger than the condition for the
existence of IR fixed points, meaning that any CAF model
of this kind always possesses IR fixed points to this order in
perturbation theory.
In order for the results not to be significantly altered by

higher-order contributions, we need to show that these
higher-loop contributions are suppressed. This is shown in
Appendix D. Here it is sufficient to say that a Banks-Zaks-
like analysis [45,46] is possible.
In the following, we will characterize the IR fixed points.

To find eigendirections of the IR fixed points, we need to
study the following matrix:

M ¼

0
BBB@

∂βα∂α
∂βα∂λ1

∂βα∂λ2
∂βλ1∂α

∂βλ1∂λ1
∂βλ1∂λ2

∂βλ2∂α
∂βλ2∂λ1

∂βλ2∂λ2

1
CCCA

���������
α¼α�;λ1¼λ�

1
;λ2¼λ�

2

; ð2:8Þ

where ðα�; λ�1; λ�2Þ corresponds to the coupling solutions at
the IR fixed points. In the convention that the RG flow runs
from UV to IR, the positive (negative) eigenvalues re-
present IR attractive (repulsive) directions. In the region,
where we have perturbative control of our IR fixed points,
they inherit their characteristics from the corresponding
fixed flow solutions. The third eigendirection, which is not
part of the fixed flow picture (Fig. 2), is dominated by the
gauge coupling, and is always IR attractive. Within the
region with two IR fixed points, we have one, which has
two repulsive eigendirections, while the other fixed point
has one repulsive and one attractive eigendirection.
Combined with the third eigendirection, we can conclude
that the one with two repulsive directions is only connected
to the UV along a single trajectory, while the other one is
connected through a one parameter family of trajectories.
These trajectories all originate from the fully repulsive
fixed flow direction. There is also a trajectory connecting
the two IR fixed points. In Fig. 3, we show the flow
behavior around the IR fixed points on the plane of constant
α ¼ α� in spherical coordinates. This allows us to see the
similarities with the UV picture (Fig. 2). In the case with
four IR fixed points, we have additionally one fixed point
with mixed properties and one which is fully IR attractive.
Unlike from the previous case, the fully IR attractive fixed
point has a three dimensional basin of attraction, implying
IR conformal stability in all directions. In Fig. 3, this is
illustrated by a two dimensional region, since α is kept
fixed. In Table IV, we provide a summary of the IR fixed
points.
We learn that CAF models with spin zero and spin half

quarks also feature IR interacting fixed points. In
Appendix C, we explore the connection in detail. In short,
we can show that for fixed flows to exist with both λ1 and λ2
positive, there must be fixed points in the quartic subsystem
of beta functions. These fixed points correspond fixed

TABLE III. Window in Nf that allow for IR fixed points with perturbative couplings, i.e. α; λi < 1 for Ns ¼ f2; 9g, Nc ¼ f4; 12g.
There are no solutions for Nc ¼ 3 for Ns > 1.

Nc ¼ 4 Nc ¼ 5 Nc ¼ 6 Nc ¼ 7 Nc ¼ 8 Nc ¼ 9 Nc ¼ 10 Nc ¼ 11 Nc ¼ 12

Ns ¼ 2 11–21 14–26 16–32 19–37 21–43 24–48 27–54 29–59 32–65
Ns ¼ 3 13–26 16–32 18–37 21–43 24–48 26–54 29–59 31–65
Ns ¼ 4 16–31 18–37 21–42 23–48 26–53 29–59 31–64
Ns ¼ 5 18–37 20–42 23–48 26–53 28–59 31–64
Ns ¼ 6 20–42 23–47 25–53 28–58 31–64
Ns ¼ 7 22–47 25–53 28–58 30–64
Ns ¼ 8 27–58 30–63
Ns ¼ 9 30-63
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points for the full system since the gauge coupling has an
IR fixed point as well (C > 0 in the region with fixed points
in the subsystem). The case where both λ1 and λ2 are
negative can be discarded by demanding a bounded scalar
potential in the UV. The cases with one of the quartic
coupling negative, could be realized without the existence
of fixed points in the subsystem. However, for the particular
Nc and Ns dependence of the coefficients for this model,
this does not occur.

C. Phase diagram

From the previous section, we know there exist two
kinds of phase structures; one with two IR fixed points and
another with four IR fixed points. On one hand, the four IR
fixed points case requires quite large number of colors Nc
and flavors Nf even for small values of Ns. On the other
hand, this scenario provides a fully IR predictive case. In
other words, this group of models possesses a fully UV
repulsive fixed flow, for which all relations among cou-
plings are fixed, and we can thus fully determine the IR fate
of the model at the highest known order in perturbation
theory. We will in the following do this for the minimal
choice of colors, i.e. Nc ¼ 26, which in order to satisfy the

CAF conditions requires Ns ¼ 2 and Nf ¼ 138.
Afterwards, we will focus our attention on the general
phases of the two types of phase structures. Note that, for
simplicity, we assume all the particles to be massless. In
general, the RG functions will be modified after symmetry
breaking and a more sophisticated treatment will be
required (e.g. threshold contributions need to be consid-
ered). In this sense, we only consider what happens until
spontaneous symmetry breaking occur. A detailed study of
the IR phases after symmetry breaking is beyond the scope
of this work.
In Fig. 4, for our particular choice of Nc, Ns and Nf, we

show the running of the couplings from the UV (with
coupling ratios fixed by the fully repulsive fixed flow)
towards the IR. We show the result from using both the

FIG. 3. IR flow behavior around the IR fixed points in spherical coordinates ðθ;ϕÞ with α kept fixed at the IR fixed point, α� ¼ B=C.
Left: Close-up of the case with two IR fixed points. Right: Full phase space in the case of four IR fixed points. Each fixed point (magenta
dot), has its eigendirections superimposed. Color coding: Red is IR attractive, Blue IR repulsive. The red dashed lines are the projections
of the third eigen-directions (IR attractive) of the fixed point in ðr; θ;ϕÞ onto the ðθ;ϕÞ-subspace. The shaded white region marks the
region in ðθ;ϕÞ, where the quartic couplings become comparable to the gauge coupling at the fixed point, λ21 þ λ22 ¼ 5α2�, and higher-
order corrections are expected.

TABLE IV. Summary of IR fixed points and the number of their
relevant and irrelevant eigenvalues.

Fixed point Eigenvalue

FP1 þ − −
FP2 þ − þ
FP3 þ þ þ
FP4 þ þ −

0 500000 1.0 106 1.5 106 2.0 106–0.5

0.0

0.5

1.0

1.5

FIG. 4. Renormalization group running of all couplings from
the fully IR attractive fixed point to the fully UV repulsive fixed
flow. All couplings are normalized in units of α�. We use the one-
loop beta functions for the quartic couplings together with the
one-loop (dotted), two-loop (dashed), and three-loop (solid)
gauge beta function.
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one-, two- and three-loop gauge beta function together with
the one-loop beta function for the quartic couplings. It is
evident, that both in the two-loop and three-loop gauge
case, the IR fate of the model is long distance conformality.
Similarly, we can solve the differential equations for

each direction out of the Gaussian UV fixed point, and
determine the IR fate anticipating and using the symmetry-
breaking conditions derived in Sec. III. In this way, we
distinguish between three IR phases connected to the
Gaussian UV fixed point. Long distance conformality
(white) along with two kinds of spontaneous symmetry
breaking (blue and red). Gray regions are not connected to
the Gaussian UV fixed point.
In the left panel of Fig. 5, we show the result of this

analysis for a representative model with the two IR fixed
point phase structure. We see that practically all directions
connected to the UV, lead to spontaneous symmetry
breaking. On the separatrices of the two symmetry-break-
ing regions, we find fine-tuned solutions reaching the IR
fixed points, and solutions crossing the intersection of the
two symmetry-breaking lines.
In the right panel of Fig. 5, the phase diagram for the

other phase structure with four IR fixed points is shown.
Here we have all three IR phases present.
We notice that the phase diagrams are basically identical

to the UV picture in Fig. 2. From this we conclude, that the
lowest-order approximations to the symmetry-breaking
conditions together with the one-loop beta functions are
good indicators for the IR fate of CAF models. This is
tightly connected to the relation between fixed flows in the
UVand fixed points in the IR together with the fact that βr
is r-suppressed (in the UV) compared to βθ and βϕ.
However, for directions close to the fixed flows or the

separatrices (where βr ∼ βθ;ϕ) we need higher-order terms
to correctly describe the RG evolution. Even so, for r ≪ 1
the affected regions are not directly visible, except for the
phase of long distance conformality in between the four
fixed flows.
For values of the gauge coupling larger than the one at

the IR fixed points, other phases exists. However, these are
not UV free and are therefore outside the focus of this work.
In Fig. 6, we show the RG flow of the couplings

projected onto the ðα; λiÞ-planes and ðλ1; λ2Þ-plane with
the third coupling fixed. In each panel, we show the lines
where spontaneous symmetry breaking occurs using the
one-loop result from Sec. III B. In the upper left panel, it is
clear that the flows above the fixed flow line are not
originating from the UV Gaussian fixed point (blue dot),
whereas the flows below (unless in the broken phase,
marked with gray) all emanate from the fixed point along
the other fixed flow line. The same features are seen in the
upper right panel. In the lower left panel, we see that only
flows in the broken phase originate from the Gaussian UV
fixed point, when the gauge coupling is kept fixed, α ¼ 0.
The lower right panel, shows the two IR fixed points on the
plane α ¼ α�. We see that the symmetry-breaking lines
both with α ¼ 0 and α ¼ α� seem to be identical. This
illustrates that for couplings less than or comparable to α�,
the tree-level result is still a good approximation. From
these diagrams it is clear that the fixed points are all in the
unbroken phase.
We have so far uncovered the conditions for the models

to be completely asymptotically free and shown numeri-
cally that these conditions are stronger than the conditions
for the existence of IR fixed points. Furthermore, we have
described the phase structure of the models anticipating

FIG. 5. Phase diagram for the case of two (four) fixed flows are shown in the left (right) panel in spherical coordinates θ and ϕ. The
initial radial coordinate, r, is chosen close to the Gaussian fixed point, i.e. r ≪ 1. The phases are then determined by analyzing the
numerical solutions to the beta functions at three-loop order in the gauge coupling, together with the one-loop for the quartic couplings.
The diagrams illustrate three IR phases connected to the Gaussian UV fixed point. Long distance conformality (white), two different
spontaneous symmetry-breaking patterns (blue and red). Directions with trajectories not originating from the Gaussian UV fixed point
are colored gray. The light red and light blue regions correspond to initial conditions with unbounded tree-level scalar potentials.
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three infrared phases (two types of radiative symmetry
breaking and a phase of long distance conformality) using
conditions which will be derived in the following section.

III. SYMMETRY BREAKING

In order to understand the infrared phases of the models,
we now address the question of radiative stability of the
scalar potential. In this section, we will derive the tree-level
stability conditions (flat directions) for the relevant vacuum
configurations and derive their corresponding symmetry-
breaking patterns. Afterwards, we will address the same
problem beyond the tree-level analysis, referring the reader
to the Appendix for the computational details.

A. Tree-level analysis

The tree-level analysis is the limiting case when
the gauge contributions are turned off (i.e. α ¼ 0) and

higher-order terms proportional to λnðn > 1Þ are ignored.
Thus, the boundary of the broken phase is a line in the
λ1 − λ2 coupling space rather than a two-dimensional
surface in the λ1 − λ2 − α space.
The tree-level potential has the following form:

V ¼ m2TrS†Sþ λ1ðTrS†SÞ2 þ λ2TrðS†SÞ2; ð3:1Þ

where the Nc × Ns scalar field matrix S is invariant under
SUðNcÞ ×UðNsÞ rotations. For the scalar potential to be
bounded from below, at sufficiently high-energy scales, the
quartic couplings have to satisfy λ1 þ rλ2 > 0 for all
r ¼ TrðS†SÞ2=ðTrS†SÞ2, which ranges from 1=Ns and 1.
To illustrate the symmetry-breaking pattern, it will be
convenient to replace the traces with sums over the
eigenvalues and subsequently find the minimum of the
potential in the eigenvalue space. To that end, it will be
useful to write the matrix S in the form

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.5

0.0

0.5

1.0

−0.1 0.0 0.1 0.2 0.3

−0.1

0.0

0.1

0.2

0.3

−0.1 0.0 0.1 0.2 0.3

−0.1

0.0

0.1

0.2

0.3

FIG. 6. Projected RG flow of the couplings onto the ðα; λiÞ-planes (upper left and right) and ðλ1; λ2Þ-plane with the third coupling fixed
to α ¼ 0 (lower left) and α ¼ α� (lower right). In each panel, we show the lines where spontaneous symmetry breaking occurs (red and
blue) including one-loop effects. The gray regions here are the broken phases. Solid dots are fixed points in the full system, while circles
mark fixed points in the reduced systems with one coupling kept fixed. Dashed lines mark the fixed flow lines for the reduced systems.
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SðxÞ ¼ U†
cðxÞDðxÞUsðxÞ; ð3:2Þ

where Uc and Us are unitary matrices and D is a matrix
which is diagonal in a Ns × Ns block (with real entries) and
zero everywhere else, assuming that Nc > Ns (which is
true for the CAF conditions to be satisfied). Although this is
a well-known result, we summarize the proof in
Appendix E. We emphasize that this is not a local flavor
and color transformation, but simply rewriting the matrices
S in terms of different degrees of freedom. In the symmetry-
breaking section, we are just interested in finding the
vacuum configurations which are spacetime independent.
Once the minimum is found, the matrix D can be rotated
back to give the field value corresponding to the minimum
in the original basis. As a result, this procedure does not
give rise to additional terms from the kinetic part of the
Lagrangian. Thus, the potential can be rewritten as

V ¼ m2TrD†Dþ λ1ðTrD†DÞ2 þ λ2TrðD†DÞ2; ð3:3Þ

i.e. all the dependence on the unitary matrices Uc and Us
vanishes. The one-loop effective potential will likewise
depend only on the components of D and so only the
components of D can obtain nonzero vacuum expectation
values.
The relevant degrees of freedom relevant in understand-

ing the behavior of the effective potential are the diagonal
part diag ðρ1; ρ2;…; ρNs

Þ ofD. The tree-level potential can,
thus, be simplified into the following form,

V ¼ m2
XNs

i¼1

ρ2i þ λ1

�XNs

i¼1

ρ2i

�2

þ λ2
XNs

i¼1

ρ4i ; ð3:4Þ

wherem2 could be positive, zero or negative. For a positive
mass term, i.e. m2 > 0, the potential has minimum at
ρi ¼ 0, and this excludes symmetry breaking, while for
m2 < 0, we will have spontaneous symmetry breaking as
long as the potential is bounded. One can further show that
the nontrivial vacuum configurations for them2 < 0 case at
tree level are the same as in the massless cases at tree level
(a detailed proof is in [47]).
Restricting to the m2 ¼ 0 case,2 we will now follow

Ref. [40] to determine the rays along which the potential
vanishes. Without loss of generality we constrain the ρi’s
on an Ns-dimensional hypersphere, i.e.

PNs
i¼1 ρ

2
i ¼ l. The

constraint is imposed on the potential through a Lagrange
multiplier L, leading to

V ¼ λ1l2 þ λ2
XNs

i¼1

ρ4i þ L

�XNs

i¼1

ρ2i − l

�
: ð3:5Þ

The condition to minimize the potential is then given by

∂V
∂ρj ¼ 4λ2ρ

3
j þ 2Lρj ¼ 0; ð3:6Þ

providing the solutions

ρ2j ¼ −
L
2λ2

or ρ2j ¼ 0: ð3:7Þ

It is clear that at the extrema of V on the sphere, all nonzero
elements of ρ2i will be equal. Suppose there are k nonzero
elements with value ρ, then we find that ρ2 ¼ l

k, and we
obtain

Vjext ¼ l2
�
λ1 þ

λ2
k

�
: ð3:8Þ

When λ2 > 0, the potential attains a minimal value at the
extremum with k as large as possible, leading to k ¼ Ns

Vjmin ¼ l2
�
λ1 þ

λ2
Ns

�
; for λ2 > 0; ð3:9Þ

whereas if λ2 < 0, the potential will be minimal for k ¼ 1,
i.e.,

Vjmin ¼ l2ðλ1 þ λ2Þ; for λ2 < 0: ð3:10Þ

In order for the direction to be flat, we require the
Vjmin ¼ Vðρi ¼ 0Þ ¼ 0 to obtain a ray on which loop
effects can induce spontaneous symmetry breaking.
These rays exist under two conditions:

For λ2 > 0∶ Nsλ1 þ λ2 ¼ 0 ð3:11Þ

For λ2 < 0∶ λ1 þ λ2 ¼ 0: ð3:12Þ

These lines are summarized in Fig. 7. In the figure, we
overlap two sets of coordinates ðλ1; λ2Þ and ðλ1s; λ2sÞ, with
λis ¼ λi=α, for which the lines coincide. Requiring the
potential to be bounded from below, implies the RG flow in
the UV (t → ∞) to be in region I. However for a completely
asymptotically free model, λi ¼ 0. To plot these models in
the diagram, it is useful to use the alternative parameters λis,
for which the UV fixed point is not at the origin. This
condition was used in Sec. II A to correctly find the CAF
models. For spontaneous symmetry breaking to occur,
the RG flow (from UV to IR) must run from region I to
region II regardless of the chosen set of coordinates.

2The massless case corresponds to classically conformal
models which possess many interesting features such as provid-
ing naturally light Higgs in asymptotically safe or free scenarios
[17] (see also earlier works [48–50]).
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We will now discuss the symmetry-breaking patterns.
These can be directly read from the vacuum configurations
as follows.
For λ2 < 0, V is minimized when there is only one

nonzero ρa, which leads to the following form of the
vacuum configuration:

hSAai ¼ ρδA1δa1: ð3:13Þ

The corresponding symmetry-breaking pattern is

SUðNcÞ ×UðNsÞ
→ SUðNc − 1Þ ×UðNs − 1Þ ×Uð1Þ: ð3:14Þ

For λ2 > 0, V is minimized when there are Ns nonzero ρa,
providing

hSAai ¼ ρδAa: ð3:15Þ

In this case, the symmetry-breaking pattern is

SUðNcÞ ×UðNsÞ
→ SUðNc − NsÞ × SUðNsÞ ×Uð1Þ: ð3:16Þ

These symmetry-breaking patterns are worked out in detail
in Appendix F.
This concludes the tree-level analysis, naturally leading

to the question as to whether or not higher orders can affect
these findings. This will be discussed momentarily.

B. Quantum corrections

At the quantum level, there are two interesting cases
classified according to how quartic coupling λ scaling with
gauge coupling α.

(i) The Gildener Weinberg case [39]: λ scale linearly
with α (i.e. λ ∼ α)

(ii) Alternative symmetry-breaking case (main focus in
this section): λ scale with α2 (i.e.λ ∼ α2)

The Gildener Weinberg case works where the scalar
couplings λi scale linearly with α (i.e. λ ∼ α). In this region,
the classical (tree-level) symmetry-breaking lines
Eq. (3.11) or (3.12) derived in the previous section remains
intact. This is because quantum corrections will provide
extra term ∼α2 in the tree-level lines Eq. (3.11) or (3.12)
which is negligible since we are studying in the region
α ≪ 1 and thus α2 ≪ λ. In Gildener Weinberg case, the
curvature of the effective potential generally will be
proportional to λ ∼ α and we need to choose a flat direction
(to make curvature ∼α2), along which quantum corrections
can induce radiative symmetry breaking when the RG
flows cross the lines Eq. (3.11) or (3.12).
At the quantum level, interesting possibilities for the

vacuum structure of the model may emerge when scalar and
gauge couplings start competing (i.e. λi ∼ α2). As it can be
seen from the UV picture in Fig. 2, there are UV free
trajectories which run arbitrarily close to the origin in
ðλ1; λ2Þ-space (indicated by a black dot), where the con-
dition for the second case λi ∼ α2 holds. In these cases, the
tree-level potential is approximately flat in all directions,
and the symmetry breaking is dominated by the gauge loop
contributions. The symmetry breaking is therefore no
longer restricted to the symmetry-breaking patterns dis-
cussed in the previous section. This possibility was first
pointed out in [40] and we will explore the possibilities of
alternative symmetry-breaking patterns by using RG
improvement in the following. This scenario is phenom-
enologically interesting, since when all directions are flat,
the model could radiatively generate a spectrum for all the
scalar masses (see e.g. [50–52]), as compared to the
Gildener-Weinberg scenario [39], where the only radia-
tively generated scalar mass is the mass of the scalon.
There are two main ways to implement the one-loop

effects: explicit logarithmic summation (see e.g. [51–54])
or implicit logarithmic summation (see e.g. [55]). In this
work, we focus mainly on the method of implicit RG
improvement because the explicit calculations shown in
Appendix H require diagonalization of the mass matrices
which quickly becomes impractical for Nc ≥ 4, Ns ≥ 3 in
the fundamental representation. The RG improvement
method developed in this section could be generalized to
arbitrary symmetry groups and representations.
The renormalization group improved effective

potential is:

VðfρigÞ ¼
�
λ1ðtÞ

�XNs

i¼1

ρ2i

�2

þ λ2ðtÞ
XNs

i¼1

ρ4i

�

× exp

�
4

Z
t

0

dt0γðt0Þ
�
; ð3:17Þ

FIG. 7. Boundary lines in the parameter space λ1 − λ2
(λ1s − λ2s), with λis ¼ λi=α, across which symmetry breaking
can occur. In region I, the tree-level potential is bounded from
below, whereas it is unbounded in region II.
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where t is defined as t ¼ log ½PNs
i¼1 ρ

2
i =μ

2� with renorm-
alization scale μ and γðtÞ is the anomalous dimension of
the scalar field. The model at hand generally does not
allow for a Yukawa coupling, and therefore the anomalous
dimension γðtÞ will, at one-loop level, be of order α. In the
case where λðtÞ ∼ α2, the anomalous dimension will give
rise to terms of the form λðtÞγðtÞ ∼ α3 in the minimization
condition which can be regarded as higher-order effects.
We can therefore further simplify the RG improved
effective potential, Eq. (3.17), to

VðfρigÞ ¼ λ1ðtÞ
�XNs

i¼1

ρ2i

�2

þ λ2ðtÞ
XNs

i¼1

ρ4i

≡ λ1ðtÞf1ðρiÞ þ λ2ðtÞf2ðρiÞ; ð3:18Þ

where we introduced functions f1 and f2 for convenience.
The RG improved minimization condition is given by:

Vð1Þ
ρi ≡ ∂V

∂ρi ¼
X2
j¼1

�
dλj
dt

∂t
∂ρi fj þ λj

∂fj
∂ρi

�

¼
X2
j¼1

�
βλj

∂t
∂ρi fj þ λj

∂fj
∂ρi

�
: ð3:19Þ

Now it is clear that although the effective potential is of the
form of the tree level potential, the one-loop information is
encoded through the RG functions (βλ1 ; βλ2).
In order for alternative vacuum configurations to exist,

we need a number of distinct values of ρi to satisfy
Eq. (3.19), which is different from the tree level assign-
ments of ρi [i.e. Eqs. (3.13) and (3.15)]. For each distinct
nonzero value of ρi, the minimization condition corre-
sponds to a nontrivial constraint on the couplings. Since we
have three marginal couplings ðα; λ1; λ2Þ, we therefore
expect that at most there could be two distinct vacuum
expectation values to fully determine symmetry-breaking
lines in ðα; λ1; λ2Þ-space. In the case with three distinct
vacuum expectation values, all three couplings will be fully
determined and the system is already overdetermined. An
exception to this is when λ2 ¼ 0; then there is only a single
constraint on the remaining couplings which depends on f1
and f2.
We assume in the following that the vacuum configu-

ration to be such that n1 values of ρi are ρ, n2 are κρ, with κ
positive and different from unity, and Ns − n1 − n2 values
equal to zero. From Eq. (3.19), we get two constraints on
the couplings.
By solving Eq. (3.19), we obtain λ2 ¼ 0 at the broken

scale. In this special case, the boundary sheets between the
unbroken phase and broken phases become boundary lines;
for each κ, this corresponds to a particular curve on the
ðλ1; αÞ plane. It seems we could have alternative vacuum
configurations and symmetry-breaking patterns since κ

could be any non-negative value. As we explore further,
we find in this case one of the eigenvalues of the mass
matrix will always be negative, violating the vacuum
stability conditions discussed below. Hence the alternative
symmetry-breaking patterns scenario yields unphysical
solutions.
Furthermore, the effective potential needs to be stable at

the vacuum configuration, we therefore derive the eigen-
values of the Hessian matrix

Vð2Þ
ρiρj ≡ ∂2V

∂ρi∂ρj
����
vacuum

; ð3:20Þ

where all three RG functions (βλ1 ; βλ2 ; βα) are encoded.
A stable vacuum and physical scalar masses requires the
eigenvalues to be non-negative.
We find that these requirements cannot be met [two

distinct VEVs will always lead to one negative mass
eigenvalue throughout Eq. (3.20)] unless n2 ¼ 0, and n1
is either 1 or Ns. These are exactly the tree level vacuum
configurations, implying no alternative symmetry-breaking
patterns are found in this model beyond the two discussed
at the tree level analysis, i.e. Eq. (3.14) and Eq. (3.16).
In Appendix G, we carry out the analysis of the case with

(Nc ¼ 6, Ns ¼ 3, Nf ¼ 31). We find that the RG improved
boundary lines (G3) and (G5) for the broken phases
actually shift the tree level boundary lines when
λi ∼ α2 ≪ 1. While, when λi ∼ α ≪ 1 the RG improved
reduces to the tree level result. In this way, Fig. 14 provides
a detailed view of region near the origin of Fig. 7.
Similarly, in Appendix H, we perform the same analysis

based on the explicitly calculated one-loop effective poten-
tial in the Coleman-Weinberg renormalization scheme.
There are differences in the exact conditions on the
couplings for spontaneous symmetry breaking, but the
corresponding vacuum configurations, and thus symmetry-
breaking patterns, are identical and the regions satisfying
the vacuum stability conditions (comparing Fig. 16 with
Fig. 12) are similar and consistent in both renormalization
schemes.

IV. SUMMARY

We have simultaneously carried out a detailed study of
the UV behavior and a classification of the IR phases of
SUðNcÞ gauge theories with Ns complex scalars and Nf

vector-like fermions in the fundamental representation.
This entailed a careful analysis of the conditions for

complete asymptotic freedom (CAF). Interestingly, due to
the presence of fundamental scalars, CAF requires a large
number of colors, Nc, and a large number of fermions. We
find for specific combinations of Nc and Ns a window in
Nf for which the CAF conditions are satisfied. The most
minimal case is Nc ¼ 5 with Ns ¼ 2. The CAF allowed
number of fermions, Nf, is found to be close to the loss of
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asymptotic freedom in the gauge beta function. We show
that the CAF conditions are, remarkably, more restrictive
than the requirement for the model to have IR fixed points,
when considering higher orders. This means that any CAF
model of this kind displays long distance conformality, at
least in some coupling direction. We stress that our results
are within perturbative control.
When considering the infrared fate of the model, we

discover two distinct phase structures. For most combina-
tions of Nc, Nf and Ns we have two IR fixed points, while
for larger values of Nc and Nf with Ns small, four IR fixed
points exist. For the models featuring two IR fixed points,
neither of them are fully IR attractive and furthermore they
reside on the separatrix between two radiatively broken
phases. However for models featuring the four IR fixed
points we observe that a fully IR attractive fixed point
appears allowing for a stable phase of long distance
conformality.
To investigate the possible existence of radiative sym-

metry breaking, we performed analyses both at tree- and
one-loop levels. For the tree-level analysis, we used the
conventional Gildener-Weinberg method, while at the
quantum level, we used the renormalization group improved
effective potential. The same two symmetry-breaking pat-
terns were found for both analyses: SUðNcÞ × UðNsÞ →
SUðNsÞ × SUðNc − NsÞ ×Uð1Þ and SUðNcÞ × UðNsÞ →
SUðNc − 1Þ × UðNs − 1Þ × Uð1Þ. This is despite the fact
that the loop-level analysis allows one to study regions of
phase space, where quantum corrections are dominating the
vacuum configuration of the scalar fields.
Our analysis has shed light on the UV behavior and rich

low energy phase structure of minimal extensions of QCD-
like models featuring scalar quarks. We discovered that
ensuring these models to be fully asymptotically free is
related to the presence of long-distance conformality. Our
results can be useful when constructing extensions of the
standard model featuring vector-like dynamics.
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APPENDIX A: DIFFERENT APPROACHES
TO COMPLETE ASYMPTOTIC FREEDOM

There are several seemingly different requirements to
ensure that complete asymptotic freedom exists. In fact,
they are all equivalent approaches for finding fixed flow
relations among the couplings. In Sec. II A, we impose
Eq. (2.4), which reads

ðβα; βλ1 ; βλ2Þ ¼ cðα; λ1; λ2Þ; ðA1Þ

where c is a scale-dependent quantity. If this requirement is
satisfied and the system is well approximated by the one-
loop beta functions, then this relation among the couplings
will remain constant; in other words, the flow is fixed.
Another approach [9] is to factor out the known high-

energy logarithmic scaling of the gauge coupling from all
the three marginal couplings, i.e.

α ¼ α̃

t
; λ1 ¼

λ̃1
t
; λ2 ¼

λ̃2
t
; ðA2Þ

where t ¼ log ðμ2=μ20Þ and look for solutions where the
parameters α̃, λ̃1 and λ̃2 become constant for large t, i.e.
fixed flows. This can be stated as

dα̃
d log t

¼ α̃þ βαðα̃Þ ¼ 0;

dλ̃i
d log t

¼ λ̃i þ βλiðλ̃i; α̃Þ ¼ 0 ði ¼ 1; 2Þ; ðA3Þ

where βαðα̃Þ and βλiðλ̃i; α̃Þ are the one-loop beta functions
Eq. (2.2) with couplings replaced by α̃, λ̃1 and λ̃2. The
system Eq. (A3) is equivalent to Eq. (A1); however, this
choice of parametrization conveniently fixes c ¼ −1.
A related approach (see e.g. [56,57]) is to study the

gauge coupling α together with the ratios λis ¼ λi=α for
i ¼ 1, 2. CAF can be formulated as asymptotic freedom for
the gauge coupling (B > 0) together with at least one fixed
point in the subsystem (βλ1s , βλ2s). The benefit of this
approach is that βλis=α are functions only of λ1s and λ2s.
However, we can write

α−1βλ1s ¼ α−2
�
βλi −

λi
α
βα

�
¼ 0; ðA4Þ

which for large t can be stated in terms of the parameters
Eq. (A2) as

α̃−2
�
βλiðλ̃i; α̃Þ −

λ̃i
α̃
βαðα̃Þ

�
¼ 0: ðA5Þ

Imposing α̃þ βαðα̃Þ ¼ 0 (B > 0), we see that this reduces
to the remaining equations of Eq. (A3). In the following
section, we use the same method to ultimately reduce
Eq. (A3) to a single quartic polynomial in λ2s.
Similarly, one can study the ratios of beta functions, as in

[11]. In this case, the fixed flow condition becomes
βλ1=βα ¼ λi=α, which is equivalent to Eq. (A4).
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APPENDIX B: QUARTIC POLYNOMIAL
AND CLASSIFICATION OF ITS ROOTS

Here we provide the details for the procedure outlined in
Sec. II A of reducing the fixed flow equation (2.4) to a
quartic equation in a single coupling, λ2. We will use the
discriminant method to classify the roots of the equation.
We want to find solutions to

ðβα; β1; β2Þ ¼ cðα; λ1; λ2Þ; ðB1Þ

in the case where c < 0 and the beta functions are given by
Eq. (2.2). First we note that βα is only a function of α itself.
We can, therefore, find the fixed flow solution for α ≠ 0

must satisfy c ¼ −Bα, where B ¼ 1
3
ð22Nc − 4Nf − NsÞ.

Clearly, the condition c < 0 is only satisfied when B > 0.
We can now substitute c ¼ −Bα into the remaining
components of Eq. (B1). For α ≠ 0 it is convenient to
introduce the rescaled couplings, λi ¼ λisα, for which we
can factor out the gauge coupling dependence of the last
two components of Eq. (B1). In other words, the two
equations, α−2ðβi − cλiÞ ¼ 0, can be written as

4ðNcNsþ 4Þλ21sþ 12λ22s

þ λ1s

�
8ðNcþNsÞλ2sþB−

6ðN2
c − 1Þ
Nc

�
þ 3ðN2

c þ 2Þ
4N2

c
¼ 0;

4ðNcþNsÞλ22sþ λ2s

�
24λ1sþB−

6ðN2
c − 1Þ
Nc

�

þ 3ðN2
c − 4Þ

4Nc
¼ 0: ðB2Þ

In the case, where B ¼ 0, the equations above no longer
describe solutions to Eq. (B1), instead they correspond to
the equations βi ¼ 0 for constant α ≠ 0. These solutions we
refer to as fixed points in the quartic couplings subsystem,
since in general the gauge coupling is not fixed.
Now, for B > 0, we can solve the second equation in

Eq. (B2) for λ1s and substitute into the first in order to obtain
a quartic polynomial in λ2s (after multiplying with λ22s)

aλ42s þ bλ32s þ cλ22s þ dλ2s þ e ¼ 0; ðB3Þ
where

9a ¼ NsðNsð2N2
c þ NcNs − 8Þ þ ðNc − 4ÞNcðNc þ 4ÞÞ − 8N2

c þ 108;

18Ncb ¼ ðNcðB − 6NcÞ þ 6ÞðNs þ NcÞðNcNs − 5Þ;
144N2

cc ¼ 144 − 2NcðB2Nc − 12BðN2
c − 1Þ þ 6Ncð7N2

c − 25ÞÞ
þ NcNsððB2 − 108ÞN2

c − 12BN3
c þ 12BNc þ 42N4

c þ 6ðN2
c − 4ÞNcNs þ 84Þ;

96N2
cd ¼ ðN2

c − 4ÞðNcðB − 6NcÞ þ 6ÞðNcNs þ 1Þ;
256N2

ce ¼ ðN2
c − 4Þ2ðNcNs þ 4Þ: ðB4Þ

In Sec. II A, we define the critical number of fermions, N�
f, for which B ¼ 0. Then defining Nx ¼ N�

f − Nf, we can express
B ¼ 4Nx=3. Following Ref. [58], the nature of the roots of a quartic equation of the form Eq. (B3) is described by the
following functions

Δ ¼ 256a3e3 − 192a2bde2 − 128a2c2e2 þ 144a2cd2e − 27a2d4 þ 144ab2ce2 − 6ab2d2e − 80abc2de

þ 18abcd3 þ 16ac4e − 4ac3d2 − 27b4e2 þ 18b3cde − 4b3d3 − 4b2c3eþ b2c2d2

P ¼ 8ac − 3b2

Q ¼ b3 þ 8da2 − 4abc

Δ0 ¼ c2 − 3bdþ 12ae

D ¼ 64a3e − 16a2c2 þ 16ab2c − 16a2bd − 3b4 ðB5Þ

Since we are interested in real roots, we have the
following relevant cases:

(i) If Δ < 0, then the equation has two distinct
real roots.

(ii) If Δ < 0, while P < 0 andD < 0, then all four roots
are real and distinct.

(iii) If Δ ¼ 0, then the equation has a multiple root and
several scenarios exist.

Only when D ¼ 0, P > 0, and Q ¼ 0 are none of
the roots real.

In Fig. 1, we show the regions in Nc and Ns for
Nx ∈ f0; 1; 2; 3; 4g. The upper region satisfies condition
(i), the lower region satisfies condition (ii), while the
borders satisfy the condition Δ ¼ 0. In the range
Nc ∈ ½3; 20�, Ns ∈ ½2; 20� and Nx ∈ ½0; 20�, there are no
integer solutions to the last condition.
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APPENDIX C: CONNECTION BETWEEN
FIXED FLOWS AND FIXED POINTS

In Sec. II, we found that the set of models that are CAF is
a subset of the models with interacting IR fixed points. This
result was based on a numerical study of the two-loop
gauge beta function together with the one-loop beta
functions for the quartic couplings. The same study with
three-loop gauge beta function is done in Appendix D.
However restricting to the two-loop gauge beta function,
we know that the running of the gauge coupling is
independent of the quartic couplings. Within this approxi-
mation and inspecting the gauge coupling in isolation, the
statement above appears easy to disprove. Writing the
gauge beta function as βα ¼ −Bα2 þ Cα3, the set of models
with AF is characterized by satisfying the condition, B > 0,
while the interacting IR fixed point is realized only when
both B > 0 and C > 0. In other words, requiring the model
to have an interacting IR fixed point is a stronger condition
than for the gauge coupling to be AF. This is the well-
known result from Caswell, Banks and Zaks [45,46].
Adding on top of this the beta functions for the quartic

couplings, we know from Appendix B that the CAF
condition reduces to B > 0 and at least a real solution to
Eq. (B2), while the existence of an interacting IR fixed
point requires at least a real solutions to Eq. (B2) with
B ¼ 0 (not a constraint on Nc, Ns and Nf) with at least one
IR attractive direction. The direction towards the Gaussian
fixed point will be IR attractive if B > 0 and C > 0.
Clearly, our numerical findings in Sec. II can be restated
as follows: the set of fNc; Nsg for which there are solutions
to Eq. (B2) with B > 0 (constraint on Nf) is a subset of the
set of fNc; Nsg for which there are solutions to Eq. (B2)
with B ¼ 0, and simultaneously the set fNc; Ns; Nfg
satisfying the CAF conditions is a subset of the
fNc; Ns; Nfg satisfying C > 0, such that the seemingly
additional constraint is always implied.
The first inclusion was shown pictorially in Fig. 1 for

specific choices ofNf close to N�
f. In the following, we will

discuss this relation further and investigate the last inclu-
sion in more depth.
Clearly, B > 0 is a common condition for both sets,

while the CAF condition takes the form Eq. (B2), the
existence of fixed points in λ1 and λ2 for α ≠ 0, are the
solutions to α−2βi ¼ 0, which can be written as

4ðNcNsþ 4Þλ21sþ 12λ22sþ λ1s

�
8ðNcþNsÞλ2s −

6ðN2
c − 1Þ
N

�

þ 3ðN2
cþ 2Þ
4N2

c
¼ 0;

4ðNcþNsÞλ22sþ λ2s

�
24λ1s−

6ðN2
c − 1Þ
Nc

�
þ 3ðN2

c − 4Þ
4Nc

¼ 0;

ðC1Þ

in rescaled couplings. Notice, that this equation is equiv-
alent to Eq. (B2) without the B-terms. However, this derives
from the fact that fixed points are solutions to βi ¼ 0, while
fixed flows are solutions to βi ¼ −Bαλi. In other words,
B ¼ 0 is not a constraint for the fixed point equation, but a
limit in which Eq. (B2) reduces to Eq. (C1).
It is not an easy task to show that the set of fNc; Nsgwith

real solutions to Eq. (C1) is bigger than for Eq. (B2) with
B > 0. However, we can make some simple observations.
Consider only solutions where both λ1 and λ2 are positive.
Then since both equations, evaluated at λis ¼ 0, are positive
for Nc > 2, it is clear that there have to be a solution to
βi ¼ 0 before there can be a solution to βi ¼ −Bαλi, since
the latter are negative. For the cases where one or both of
the two λis’s are negative, this reasoning does not hold. By
demanding a stable scalar potential, the case where both λ1
and λ2 are negative can be discarded. In this way, we are left
with the cases with one of the quartic couplings being
negative. Here we do not need to cross βi ¼ 0 for both beta
functions to satisfy βi ¼ −Bαλi and for general coefficients
of Eq. (B2), this can be realized. However, for the particular
Nc and Ns dependence of the coefficients for this model, it
is not the case. For 0 ≤ N�

f − Nf < 8=
ffiffiffi
3

p
, the coefficient C

is always positive. For N�
f − Nf ≥ 8=

ffiffiffi
3

p
, the sign of C

depends on the Nc and Ns. However, since C > 0 for large
values of Nc, even when Ns ∼ Nc, and C is a continuous
function in Nc, Ns and Nf, we can solve for Nf in C ¼ 0,
and check for real solutions to Eq. (B2). Using the same
method described in Appendix B, we find no real solutions
with C ¼ 0; we conclude, since we know that the region
with real solutions is connected, that C > 0 for all obtained
solutions. In Fig. 8, we illustrate this fact by plotting the
lower value of Nc (blue line), as a function of Nx, above
which there are solutions, together with the value ofNc (red
line) below which C < 0 for Ns ¼ 1. The two lines never
intersect, and this supports the statement, that C > 0 in the
whole region of solutions to Eq. (B2).
We will now present the morphology of the phase

diagram of the rescaled beta functions given by the left
sides of Eq. (C1). A study of the curves, where each one of
the two beta functions is zero, leads to the conclusion, that
in the region where the two distinct real roots exist, both
roots will be positive and the phase diagram looks
schematically like shown (dashed gray) in left panel
Fig. 9. In the dark gray region of Fig. 1, two roots are
similar to the previous case and still positive, while the two
additional roots in λ2s are positive, but larger, and paired
with negative values of λ1s. The corresponding phase
diagram is shown (dashed gray) in the right panel of
Fig. 9. The fixed points (gray dots) are solutions to Eq. (C1)
where the gauge dependence is factored out. The relation to
the actual couplings is λi ¼ λisα, and the position of these
points will therefore move unless the gauge coupling has a
nontrivial fixed point. For models with CAF, we already
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know that there exists interacting IR fixed points,
α� ¼ B=C.
In the UV, the gauge coupling is AF and the solutions in

λis are fixed flows which all go to zero. If we require the
quartic couplings also to be AF, they need to be fixed in this

geometrical rescaling along the fixed flows. Possible
candidates are the points where the flow is pointing towards
the origin, i.e. ðβλ1 ; βλ2Þ ¼ cðλ1; λ2Þ with c < 0, i.e. the last
two equations in Eq. (2.4). Factoring out the gauge
coupling, the condition becomes

α−2ðβ1; β2Þ ¼ csðλ1s; λ2sÞ ðC2Þ

where cs ¼ c=α. When cs ¼ −B, this equation equals
Eq. (B2). Solving the equation for cs < 0 gives the blue
solid lines in Fig. 9, whereas the solutions for cs > 0 are
shown as dashed red lines.
In order to leave the geometry in λ1s and λ2s unchanged,

the magnitude of the flow needs to match the change in
the gauge coupling, α, i.e. corresponding to a uniform
contraction:

ðβα; βλ1 ; βλ2Þ ¼ cðα; λ1; λ2Þ: ðC3Þ

This condition is the fixed flow equations Eq. (2.4) for the
gauge and quartic couplings introduced in Sec. II A. Here
we showed that c ¼ −Bα. This means that the solutions to
the CAF condition are specific points along the blue curves.
In Fig. 10, we plot the rescaled beta function, β2s ¼ α−2β2,
for λ2 along the line given by Eq. (C2) parametrized by λ1s.
In the same picture, we superimpose the condition cλ2 for
c < 0. From this plot, we see the relation between the fixed
flow solutions (blue dots) and the fixed points in the quartic
subsystem (gray dots). Furthermore, we see why they come
in pairs, and since we assume the shape to be characteristic
for the whole solution space, we understand why we always
have fixed points in the quartic subsystem when we have
fixed flow solutions.

FIG. 9. Morphology of the quartic phase diagram. Each gray dashed curve represent the zero-contour of one of the rescaled quartic
beta functions. The blue solid lines (red dashed lines) mark the curves where the flow is pointing towards (away from) the origin. The
grey dots are the fixed points in the quartic subsystem. Right: For the case of two solutions. Left: For the case of four solutions.
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FIG. 8. The blue line marks the lower value of Nc, as a function
of Nx, above which there are solutions to Eq. (B2). The red solid
line is the value of Nc for which the curve, C ¼ 0, intersects
Ns ¼ 1. Below this line there is a region with Ns ≥ 1 for which
C < 0. For Nx < 8=

ffiffiffi
3

p
the curve with C ¼ 0 does not intersect

Ns ¼ 1 (marked with gray dashed line). The dashed red line is
straight line Nc ¼ Nx below which the suppression of higher-
loop contributions to the IR fixed points are of order one.
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APPENDIX D: THREE-LOOP GAUGE CONTRIBUTION ANALYSIS

As discussed in Sec. II B, for a Weyl-consistent approach we would have to include the three-loop correction to the gauge
renormalization group equation in our IR analysis. This takes the form

βð3Þα ¼ ð−2Nsλ
2
1 − 2NcN2

sλ
2
1 − 4NcNsλ1λ2 − 4N2

sλ1λ2 − 2Nsλ
2
2 − 2NcN2

sλ
2
2Þα2

þ
�
NcNsλ1 −

2Nsλ1
Nc

þ 2N2
sλ1 þ 2Nsλ2 −

2N2
sλ2

Nc
þ NcN2

sλ2

�
α3

þ
�
1709N2

cNf

27
−
2857N3

c

27
−
187Nf

18
−

Nf

2N2
c
þ 11N2

f

9Nc
−
102NcN2

f

27
−
1651Ns

77

þ 29Ns

8N2
c
þ 1315N2

cNs

56
þ 73NfNs

36Nc
−
335NcNfNs

108
þ 49N2

s

77Nc
−
143NcN2

s

216

�
α4: ðD1Þ

We notice that the gauge coupling is no longer
decoupled from the quartic coupling system, which
makes a similar approach to the one performed in
Sec. II A unavailable. We can however say some
general things about the structure of the beta function,
which now takes the form βα ¼ −B0α2 þ C0α3 þDα4,
where B0 and C0, unlike the case of the two-loop beta
function, depend on the quartic couplings. Close to
the Gaussian fixed point, following the reasoning of
Sec. II A, the quartic couplings scale as λi ∝ α ≪ 1,
and the new terms in B0 and C0 become of order α4, such
that B0 and C0 in this limit become B and C from the two-
loop case.

Similarly, we know from Appendix C that λ�i ¼ λ�isα
�, so

as long as λ�is ∼Oð1Þ and α� ≪ 1, we obtain the same result
that the dependence of the quartic couplings is moved to the
D coefficient.
Here we will first argue that λ�is ∼Oð1Þ or smaller, and

then use this result to show that the three-loop contribution
to α� is sub leading in certain limits. Afterwards we will use
a numerical approach to determine the IR fixed points and
produce a table similar to Table III.
Studying the rescaled one-loop beta functions (left-hand

side of Eq. (C1) in the large Nc and Ns, but fixed
Ns=Nc ¼ k, limit, we find the rescaled couplings to be
roughly of the order (leading term)

FP1 ¼
�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3k

p

4k
1

Nc
;
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 3k

p

4ðkþ 1Þ
	

FP2 ¼
�
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 3k
p

4k
1

Nc
;
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 3k

p

4ðkþ 1Þ
	

FP3 ¼ FP4 ¼
�
−

ffiffiffi
3

p ðkþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk2 − kþ 10Þ

p
þ 9k

4ðk3 − k2 þ kÞ
1

Nc
;
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

6 − 3k
p

4ðkþ 1Þ
	
; ðD2Þ

FIG. 10. This shows the corresponding beta function of the flows along the lines shown in Fig. 9, parametrized by λ1s. The dashed line
is where the cs ¼ 2B. The grey dots are the fixed points in the quartic subsystem, and the blue dots are solutions to the fixed flow. Right:
For the case of two solutions. Left: For the case of four solutions.
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where the format is FPi ¼ fλ1s; λ2sg, and FP1, FP2 are the
two fixed points we have in regions with two solutions,
while FP3, FP4 are the additional ones in the four solution
region. The value of k is constrained from the slopes
of the borders of the grey regions on Fig. 1, which
means k ∈ ½0; 0.84�. Notice, they all are of the order
fOð1=NcÞ;Oð1Þg.
The fixed point at two-loop order is given by

α�2¼
B
C
¼ 8NxNc

150N3
cþN2

cð3Ns−52NxÞ−66Nc−9Nsþ12Nx
;

ðD3Þ

which in the same limit as taken above is

α�2 ¼
8

3ðkþ 50Þ
Nx

N2
c
þO

�
N2

x

N3
c

�
ðD4Þ

With these results at hand, we can determine the
dominating terms in Eq. (D1). There areN3 terms (counting

Nc, Ns andNf as N) coming from both B0, C0 andD, where
the contributions fromB0 (C0) depend quadratically (linearly)
on λ2s. However, when α� ∝ Nx=N2

c, these terms are sup-
pressed by a factor ofNx=Nc and will thus only contribute to
the sub leading terms of Eq. (D4). The degree of suppression
can roughly be estimated by comparing the blue solid line
with the dashed red line in Fig. 8. Assuming instead
λ1s ¼ λ2s ¼ 1, we can easily calculate the size of the
corrections. These are shown in Fig. 11 for Nx ¼ 1=4 and
Nx ¼ 10, respectively.
Following the numerical approach to determine the

existence of IR fixed points, by solving ðβα; β1; β2Þ ¼ 0,
we the results in Table V.
As expected, when comparing Tables III and V we see

that the upper boundary of the window in Nf remains
unchanged when including the three-loop contribution to
the gauge beta function. The lower boundary, however, is
lowered. Furthermore, we find the existence of another
lower limit of Nf which lies above the CAF solutions. For
any value of Nf above this limit the system exhibits IR
fixed points. These are not shown in the table.

FIG. 11. Estimate of the relative size of the three-loop contribution. The dots mark integer values ofNc,Ns andNf such thatNx ¼ 1=4
in the left panel and Nx ¼ 10 on the right. The excluded regions does not satisfy the CAF conditions. The dashed contours are values of
Nf , while colored regions show the relative size of the three-loop contribution as log10jα�3 − α�2j=α�2, with α�2 given by Eq. (D3), while α�3
is the three-loop result assuming for simplicity that λ1 ¼ λ2 ¼ α.

TABLE V. Window in Nf that allow for perturbative IR fixed points for Ns ¼ f2; 9g, Nc ¼ f4; 12g, when including the three-loop
contributions of the gauge coupling beta function. There are no solutions for Nc ¼ 3 for Ns > 1.

Nc ¼ 4 Nc ¼ 5 Nc ¼ 6 Nc ¼ 7 Nc ¼ 8 Nc ¼ 9 Nc ¼ 10 Nc ¼ 11 Nc ¼ 12

Ns ¼ 2 10–21 10–26 11–32 13–37 15–43 17–48 19–54 21–59 23–65
Ns ¼ 3 10–26 11–32 13–37 15–43 17–48 19–54 21–59 22–65
Ns ¼ 4 11–31 13–37 14–42 16–48 18–53 20–59 22–64
Ns ¼ 5 12–37 14–42 16–48 18–53 20–59 22–64
Ns ¼ 6 14–42 16–47 17–53 19–58 21–64
Ns ¼ 7 15–47 17–53 19–58 21–64
Ns ¼ 8 19–58 21–63
Ns ¼ 9 20–63
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APPENDIX E: DIAGONALIZATION OF S

We start by left-multiplying S by an appropriate SUðNcÞ
matrix. To find it, note that an arbitrary unitary matrix
satisfies the following two properties:

(i) Each row A satisfies
P

BjUABj2 ¼ 1. This imposes a
constraint on one degree of freedom for each row.

(ii) Each pair of columns (A,B) with A ≠ B satisfiesP
CU

�
CAUCB ¼ 0. Each of these imposes a con-

straint on two degrees of freedom (one complex
number).

Proceeding row-by-row, the first row has 2Nc − 1 degrees
of freedom (only the first constraint) and the nth row now
has 2Nc − 2nþ 1 degrees of freedom (first constraint and
n − 1 second constraints). Now, this matrix multiples the
Nc × Ns complex matrix. We can conclude that

(i) If 2Nc − 2nþ 1 ≥ 2Ns, we have enough freedom to
set all entries of the nth row of S to 0. Solving for n,
we can conclude that we can set Nc − Ns rows to 0.

(ii) For row numbers greater than Nc − Ns, we will have
2Ns − 2Nc þ 2n − 1 degrees of freedom remaining.
Starting from n ¼ Nc − Ns þ 1, we will be left with
1,3,5,… degrees of freedom, which translates to one
real number and 0,1,2,… complex numbers.

Having cast S into a triangular form, we can right-multiply
it by an SUðNsÞ matrix and repeat the argument to arrive
with matrix that is diagonal in one Ns × Ns block.
Decomposing D in terms of a vacuum expectation value

part (Σ) and a diagonal perturbation (H), the field S can
finally be written in the form

S ¼ eiπ
I
cðxÞtIc=fcðΣþHðxÞÞe−iπJs ðxÞtJs=fs : ðE1Þ

From the Σ term, we can find the combination of generators
which do not leave the vacuum invariant, which will define
our symmetry-breaking pattern. These generators will cor-
respond to the Goldstone bosons. Note that the Goldstone
fields corresponding to the color symmetry, πc, can be set to
zero by an appropriate choice of gauge (unitary gauge), in
which some of the vector bosons become massive. The
Goldstone fields corresponding to flavor symmetry on the
other hand become real, massless degrees of freedom.

APPENDIX F: SYMMETRY
BREAKING PATTERNS

In Sec. III A, we found from the tree-level analysis two
possible vacuum configurations of the scalar fields.
For λ2 < 0, the tree-level potential is minimized when

there is only one nonzero vacuum expectations value of the
scalar matrix, S, i.e.

hSAai ¼ ρδA1δa1: ðF1Þ

For λ2 > 0, the potential is minimized when there is Ns
nonzero elements, i.e.

hSAai ¼ ρδAa: ðF2Þ

In the following, we will derive the corresponding
symmetry-breaking patterns. To do so, we return to
Eq. (E1) and note first that canonical normalization of π
fields requires fc ¼ fs ¼ ffiffiffi

ρ
p

in both symmetry-breaking
cases. We are looking for combinations of πIc and πJs , which
leave the vacuum state invariant, in other words satisfy the
relation

πIcðxÞtIcΣ − πJsΣtJs ¼ 0: ðF3Þ

We will now consider both cases separately, starting with
the ΣAa ¼ ρδAa case. Assuming Nc > Ns, we can divide
the total of N2

s þ N2
c − 1 generators (including NcþNs−1

diagonal ones) of SUðNcÞ ×UðNsÞ into four different
categories:
(1) All color generators, with nonzero entries when

both indices are in range Ns þ 1;…; Nc (total:
ðNc − NsÞ2 − 1 out of whichNc − Ns − 1 are diago-
nal). These clearly satisfy (F3) with πJs ¼ 0. These
generators form an SUðNc − NsÞ algebra.

(2) All color generators with nonzero entries when both
indices are in 1;…; Ns range and all flavor gen-
erators except identity (total 2N2

s − 2 out of which
2Ns − 2 are diagonal). In this case, we can choose
the generators such that tIc ¼ tIs ¼ tI , and noting that
all tI commute with Σ (because it is a diagonal
matrix), we can write (F3) as

ðπIc − πIsÞtI ¼ 0; ðF4Þ

which implies that πIc ¼ πIs by linear independence
of SU(N) generators. This implies that there are
N2

s − 1 unbroken generators when πIc ¼ πJs , which
form an algebra of SUðNsÞ and N2

s − 1 broken
generators.

(3) Remaining diagonal generators (total: 2). These are
the identity matrix ofUðNsÞ and one matrix from the
Cartan subalgebra of SUðNcÞ, which we will call t0.
We require Trt0tIc ¼ 0 for all a ≠ 0 and in particular
for all the diagonal Cartan subalgebra generators.
But we have already considered above all the
generators which form an SUðNsÞ Cartan subalge-
bra on the first Ns entries and are zero on the
remaining ones and all the generators that form a
Cartan subalgebra on the last Nc − Ns entries and
are zero in the first Ns entries. The only way the
trace condition can be satisfied is if t0 is separately
proportional to the identity matrix on the first Ns
entries and on the last Nc − Ns entries, with pro-
portionality constants chosen in such a way that it is
traceless (as required by the algebra of SUðNcÞ). But
the fact that the matrix is proportional to the identity
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on the first Ns entries implies that t0Σ ∝ Σ and we
can choose the coefficient π0c together with the
coefficient of the identity matrix in flavor space in
such a way that the symmetry is unbroken. As a
consequence, we have one unbroken generator,
which corresponds to the Uð1Þ symmetry, while
the other generator is broken.

(4) The next type of generator we will consider are off-
diagonal generators with nonzero entries where one
index is in (1…Ns) range and the other is in
(Ns þ 1;…Nc) range (2ðNc − NsÞNs total). These
will necessarily break the vacuum, because the
second term of Eq. (F3) would need to transform
a row of zeroes into one containing a ρ.

We have thus classified all the generators of SUðNcÞ ×
UðNsÞ and conclude that the symmetry-breaking pattern
corresponding to vacuum 1 is

SUðNcÞ ×UðNsÞ
→ SUðNc − NsÞ × SUðNsÞ ×Uð1Þ: ðF5Þ

The other symmetry-breaking pattern has the vacuum
configuration which is zero everywhere except for the (1,1)
entry. We again discuss the broken and unbroken gener-
ators by splitting N2

c þ N2
s − 1 generators into three differ-

ent groups.
(1) All generators of SUðNcÞ andUðNsÞ with vanishing

first row and column (ðNc − 1Þ2 þ ðNs − 1Þ2 − 1
generators, including Nc þ Ns − 3 diagonal ones)
These generators annihilate the vacuum by them-
selves and are therefore all unbroken. The corre-
sponding symmetry subgroup is SUðNc − 1Þ×
UðNs − 1Þ.

(2) All off-diagonal generators with nonvanishing entries
in the first row and column (2ðNc þ Ns − 2Þ gener-
ators) The generators of SUðNcÞ will change the row
in which ρ appears, while the generators of SUðNsÞ
will change the column in which the ρ appears, so
there is no combination, which will leave the vacuum
invariant—all these generators are broken.

(3) Remaining diagonal generators (2 generators) The
remaining generators are one SUðNcÞ generator and
one SUðNsÞ generator, which are diagonal with

nonzero first entry. This implies that the action of
each of these generators on the vacuum will be
proportional to the vacuum state, and we can tune
the corresponding fields so that the symmetry
generator corresponding to this linear combination
vanishes, as before. We are therefore left with one
broken generator and one unbroken generator, which
corresponds to anouther Uð1Þ symmetry.

In conclusion, the symmetry-breaking pattern in this case is

SUðNcÞ × UðNsÞ
→ SUðNc − 1Þ ×UðNs − 1Þ ×Uð1Þ: ðF6Þ

APPENDIX G: RENORMALIZATION GROUP
IMPROVED EFFECTIVE POTENTIAL

The formalism for studying spontaneous symmetry
breakdown using the RG improved effective potential
was introduced in Sec. III B. Here we will analyze the
derived conditions for the case with (Nc ¼ 6, Ns ¼ 3,
Nf ¼ 31).
We first focus on the case where κ ¼ 1, which corre-

sponds to the case of Eq. (3.16) and plot the results in
Fig. 12. We calculate the Hessian matrix using Eq. (3.20).
The first two eigenvalues are degenerate and lead to the
following constraint:

λ2 ≥
1

16
ð−17g4 − 16λ1Þ; ðG1Þ

where we have already ignored the higher-order terms
λni ðn ≥ 2Þ and gmðm ≥ 4Þ in the above expression. The
above vacuum stable line is shown in red in Fig. 12. The
third mass eigenvalue will lead to (again ignoring higher-
order terms)

λ2 ≥
1

16
ð−119g4 − 48λ1Þ ðG2Þ

which is shown in green in Fig. 12. In addition, the RG
improved boundary line will be given by Eq. (3.19) with
respect to k ¼ 1, leading to

35g2 − 240λ1 − 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−611g4 þ 13440g2λ1 − 140g2 þ 38592λ21 − 768λ1 þ 4

q
¼ 0; ðG3Þ

which is the blue line in Fig. 12.
We combine the above two vacuum stability lineswith the

RG improved boundary line for the broken phase in Fig. 12.
It is very clear thatwhenRG flows run into the shaded region
(shown in blue), the symmetry is broken and we have

the symmetry-breaking pattern: SUðNcÞ × UðNsÞ →
SUðNc − NsÞ × SUðNsÞ ×Uð1Þ.
We likewise plot in Fig. 13 the results for κ ¼ 0. In this case,

the two degenerate mass eigenvalues and one nondegenerate
mass eigenvalue provide the following two constraints
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λ2 ≥
1

144
ð−805g4−144λ1Þ;

λ2 ≤
1

96



35g2−96λ1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
305g4þ4992λ21−384λ1

q �
; ðG4Þ

which correspond to the purple and orange lines, respectively,
in Fig. 13. Furthermore, by using Eq. (3.19) with respect to
κ ¼ 0, the RG improved boundary line for the broken phase
(κ ¼ 0) is

λ2 ≤
1

96



35g2 − 96λ1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
305g4 − 140g2 þ 4992λ21 þ 4

q �

ðG5Þ

and is shown in black in Fig. 13. The two vacuum stability
lines and the RG improved boundary line for the broken phase
(for κ ¼ 0 case) are together illustrated in Fig. 13.
In Fig. 14, we combine the above two cases, with the

two shaded regions representing the broken phases
SUðNcÞ ×UðNsÞ → SUðNc − NsÞ × SUðNsÞ × Uð1Þ and
SUðNcÞ×UðNsÞ→SUðNc−1Þ×UðNs−1Þ×Uð1Þ, respec-
tively. Note that Fig. 14 is consistent with the tree level
diagram (Fig. 7) in the previous section. From the previous
section, it is clear that the RG improved boundary lines
(G3) and (G5) for the broken phases actually shift the tree
level boundary lines slightly, as described in (3.11) and
(3.12), at the origin of the coupling space ðλ1; λ2Þ.
Magnification near the origin of Fig. 7 yields the detailed
structure shown in Fig. 14. When scalar couplings are large
the coarse grained picture in Fig. 7 emerges.
Combining the boundary lines for the broken phases and

the vacuum stability lines with the RG flows yields Fig. 15.
We have chosen the particular slice at g ¼ 0.044 which is
the coupling value of the Banks-Zaks fixed points. Note
that the scalar quartic couplings have been rescaled to be
compatible with the stream plot; the couplings on the axes
are the rescaled couplings (with much larger values than the
physical couplings).
The Banks Zaks fixed point shown in blue is fully

repulsive in this slice and plays the role of an interacting
UV fixed point (in this two-dimensional slice). It is very
clear that there are RG flows running from this interacting
UV fixed point (blue) towards the CP3 region (where
λ ∼OðgnÞðn ≥ 4Þ, shown in shaded blue). It is also clear
that, in the two-dimensional slice, there are also RG flows
running from interacting UV fixed point towards the
Gildener Weinberg region (where λ ∼Oðg2Þ) of the broken

FIG. 14. In this figure, we choose a particular slice at g ¼ 0.1
perpendicular to the gauge coupling direction. The blue and
black lines correspond to the symmetry-breaking boundary
lines while the orange, purple, red and green lines come
from four vacumm stability conditions, respectively. The two
shaded regions represent the broken phases SUðNcÞ × UðNsÞ →
SUðNc − NsÞ × SUðNsÞ ×Uð1Þ and SUðNcÞ × UðNsÞ →
SUðNc − 1Þ × UðNs − 1Þ × Uð1Þ, respectively.

FIG. 13. In this figure, we choose a particular slice at g ¼ 0.1
perpendicular to the gauge coupling direction. The black line
corresponds to the symmetry-breaking boundary line while the
orange and purple lines come from two vacuum stability
conditions. The blue shaded region represent the broken phase
SUðNcÞ × UðNsÞ → SUðNc − 1Þ × UðNs − 1Þ × Uð1Þ.

FIG. 12. In this figure, we choose a particular slice at g ¼ 0.1
perpendicular to the gauge coupling direction. The blue line
corresponds to the symmetry-breaking boundary line while
the green and red lines come from two vacuum stability
conditions. The blue shaded region represent the broken phase
SUðNcÞ × UðNsÞ → SUðNc − NsÞ × SUðNsÞ ×Uð1Þ.
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phase. Since there is no particular boundary between these
two regions, we obtain phases with complete asymptotic
safety in the UV (with perturbative couplings) and sym-
metry breaking in the IR regardless of whether scalar
couplings scale with lower powers of the gauge coupling
(Gildener-Weinberg) or higher (CP3). Furthermore, there
are two attractive directions of the fixed point (one coming
from the UV Gaussian fixed point and run into the plane
(through back of the plane) the other one running into the
plane through the front). Hence, there are some flows that
do not come directly from the blue fixed point in this two-
dimensional slice but run from the UV Gaussian fixed
point, passing the IR fixed point and run towards the CP3
region. A similar conclusion holds for the Gildener
Weinberg region. Thus there exist phases that are com-
pletely asymptotically free in the UV, symmetry breaking in
the IR, and walking behavior in the middle regardless of
whether scalar couplings scale with lower powers of the
gauge coupling (Gildener-Weinberg) or higher (CP3). The
symmetry breaking patterns are summarized in Table VI.

APPENDIX H: ONE-LOOP
EFFECTIVE POTENTIAL

In Sec. III B, we used RG improvement to analyze the
effective potential. This approach has several advantages:

(i) Loop-level contributions are already encoded in the
RG functions. No explicit calculations of loop
contributions to the effective potential are required.

(ii) No initial assumption about λ ∼ g4 is required. All
orders of g are summed and already encoded.

(iii) Both gauge loop and scalar loop contributions are
included.

(iv) It is much easier to generalize this approach to
different symmetry groups and representations.

In this appendix, we sketch an explicit way to analyze the
effective potential. To simplify the calculation, we study the
SUð3cÞ ×Uð3sÞ case and assume the tree level contribution
OðλÞ is comparable to the one-loop gauge contribution g4

(i.e. λ ∼ g4), implying the next-order scalar contributions
can be ignored (λ2 ∼ g8). Explicit calculations are carried
out in the Coleman-Weinberg scheme, which satisfies the
Coleman-Weinberg renormalization conditions (discussed
below) [38,40].
The one-loop effective potential is given by

V1loop
eff ¼ V0 þ Vg þ Vct ðH1Þ

where V0, Vg, Vct represent the tree level term, the gauge
loop contribution and the counter-terms, respectively. The
one-loop gauge contribution can be further written as [59]

Vg ¼
3

64π2
Tr½M4ðSÞ logM2ðSÞ�; ðH2Þ

where S is the scalar field under fundamental representation
of SUð3cÞ × Uð3sÞ and

M2
IJ ¼ g2tIjit

J
ikS

f†
j Sfk ¼ g2tIjit

J
ikχ jk

χ jk ¼ diagðρ21; ρ22; ρ23Þ ðI; J ¼ 1; � � � 8Þ: ðH3Þ

The diagonalization of S is discussed in great detail below
Eq. (3.2). Using this, the one-loop effective potential can be
explicitly written as

FIG. 15. In this figure, we choose a particular slice g ¼ 0.044
which is the coupling value of the Banks-Zaks fixed points. The
two shaded regions represent the broken phases SUðNcÞ×
UðNsÞ→SUðNsÞ×SUðNc−NsÞ×Uð1Þ and SUðNcÞ×UðNsÞ→
SUðNc−1Þ×UðNs−1Þ×Uð1Þ, respectively.

TABLE VI. Two categories (tree-level and loop-level analysis) and four scenarios (according to whether λ2 > 0 or λ2 < 0) are
summarized in the table.

Scenarios Boundary lines Symmetry breaking pattern

(tree) λ2 > 0 Eq. (3.11) SUðNcÞ × UðNsÞ → SUðNsÞ × SUðNc − NsÞ ×Uð1Þ
(tree) λ2 < 0 Eq. (3.12) SUðNcÞ × UðNsÞ → SUðNc − 1Þ × UðNs − 1Þ × Uð1Þ
(loop) λ2 > 0 Eq. (G3) SUðNcÞ × UðNsÞ → SUðNsÞ × SUðNc − NsÞ ×Uð1Þ
(loop) λ2 < 0 Eq. (G5) SUðNcÞ × UðNsÞ → SUðNc − 1Þ × UðNs − 1Þ × Uð1Þ
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V ¼ ða1þ λ1Þ
�XL

i¼1

ρ2i

�
2

þða2þ λ2Þ
XL
i¼1

ρ4i

þ 3g4

64π2

�
2
XL
i¼1

Xi−1
j¼1

ðρ2i þ ρ2jÞ2 logðρ2i þ ρ2jÞ

þM2
− logðM−ÞþM2þ logðMþÞ

�
; ðL¼ 3Þ ðH4Þ

where ρ2i þ ρ2jði; j ¼ 1; 2; 3Þ are the six polynomial eigen-
values of the mass matrix M2

ab while Mþ;M− are the two
nonpolynomial eigenvalues, written explicitly as

M� ¼ 2

3



ρ21 þ ρ22 þ ρ23

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ41 − ρ22ρ

2
1 − ρ23ρ

2
1 þ ρ42 þ ρ43 − ρ22ρ

2
3

q �
; ðH5Þ

and a1, a2 are the counter-terms which are determined
through the Coleman-Weinberg renormazliation conditions.
The Coleman-Weinberg conditions are

1

4NcðNc − 1Þ
XNc

i−1

Xi−1
j¼1

∂4V
∂ρ2i ∂ρ2j

����
ρi¼κiMR

¼ λ1 ðNc ≥ NsÞ

1

4!Nc

XNc

i¼1

∂4V
∂ρ4i

����
ρi¼κiMR

¼ λ1 þ λ2; ðH6Þ

whereMR is the renormalization scale and κi represents the
relative ratio between different scales. Using Eq. (H6), we
can determine a1, a2. Inserting the result into Eq. (H4), we
further obtain the full expression for the effective potential
V1loop
eff . This expression is extremely long and not particu-

larly illuminating, so we do not present it.
The next step is to study the one-loop level VEV

conditions that determine the boundary sheets (or lines)
between the unbroken and broken phases. The vacuum
configurations and symmetry-breaking patterns are deter-
mined from the κi and as discussed in Sec. III B, there is no
alternative vacuum configuration found except for κi ¼ 1
ði ¼ 1; 2; 3Þ or κi ¼ δi1 ði ¼ 1; 2; 3Þ.
In the following, we illustrate the case κi ¼ 1

ði ¼ 1; 2; 3Þ as an example. The VEV condition is

lim
κ3→1

∂V1loop
eff

∂ρi
����

ρ3¼κ3MR
ρ1¼ρ2¼MR

¼ 0 ði ¼ 1; 2; 3Þ; ðH7Þ

where the limit is implemented to get rid of the singularity,
providing the following constraint

2

81
M3

�
−
199g4

π2
þ 486λ1 þ 162λ2

�
¼ 0; ðH8Þ

which corresponds to the blue line in Fig. 16. All three
constraints are equivalent because of the permutation
symmetry among ρ1, ρ2, ρ3. The couplings satisfying the
above constraint Eq. (H8) are evaluated at the broken scale
in the Coleman-Weinberg scheme, whereas the couplings
satisfying the constraint Eq. (G3) are evaluated at the
broken scale in the Minimal-Subtraction scheme. We shall
see that the coupling values evaluated in these two schemes
are quite different.
In order to make sure the solutions are at a local

minimum, the mass eigenvalues of the Hessian mass matrix

Mij ¼ lim
κ3→1

∂2V1loop
eff

∂ρi∂ρj
����

ρ3¼κ3MR
ρ1¼ρ2¼MR

ðH9Þ

must be non-negative. This yields

2

27

�
−
145g4

π2
þ 486λ1 þ 162λ2

�
≥ 0;

−
845g4

108π2
þ 12λ1 þ 12λ2 ≥ 0; ðH10Þ

which correspond to the red and green lines in Fig. 16,
respectively.
It is clear that when the RG flows run into the shaded

region shown in Fig. 16, the symmetry is broken and we
have the symmetry-breaking pattern SUðNcÞ × UðNsÞ →
SUðNc − NsÞ × SUðNsÞ ×Uð1Þ. Comparing Fig. 16 with
Fig. 12, the shape and the structure of the shaded regions
are very similar and consistent, while the coupling solutions
are very different in the different schemes. In the Coleman-
Weinberg scheme, both quartic couplings could be positive
and at the same time symmetry breaking is driven by the
loop contributions. In the minimal subtraction scheme, one
of the two quartic couplings is always negative.

FIG. 16. In this figure, we choose a particular slice g ¼ 0.1. The
shaded region represents the broken phases SUðNcÞ × UðNsÞ →
SUðNc − NsÞ × SUðNsÞ ×Uð1Þ.
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