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Proton decay testing low energy SUSY
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We show that gauge coupling unification in SUSY models can make a non-trivial interconnection
between collider and proton decay experiments. Under the assumption of precise gauge coupling
unification in the MSSM, the low energy SUSY spectrum and the unification scale are intertwined,
and the lower bound on the proton lifetime can be translated into upper bounds on SUSY masses.
We found that the current limit on τ(p → π0e+) already excludes gluinos and winos heavier than
∼ 120 and 40 TeV, respectively, if their mass ratio is M3/M2 ∼ 3. Next generation nucleon decay
experiments are expected to bring these upper bounds down to ∼ 10 and 3 TeV.

Proton decay would be the key evidence for grand uni-
fied theories (GUTs) [1]. Among possible decay channels,
a special role is played by the p → π0e+ mode for which
the dominant contribution may come from the D = 6 op-
erators depending almost exclusively on the X,Y boson
mass and the unified gauge coupling. This is in contrast
to the other channels induced by D = 5 operators, which
depend on many more parameters, though the rate is typ-
ically larger than the p→ π0e+ mode.

The main point we want to emphasise and make very
explicit in this Letter is that τp→π0e+ carries an important
information about the low scale supersymmetric (SUSY)
spectrum. To this end we assume here that the unifica-
tion of the gauge couplings is precise (or exact) within the
minimal SUSY Standard Model (MSSM) without thresh-
old corrections of GUT scale particles [2]. In fact, there
exists a class of models where these corrections are absent
or highly suppressed (see e.g. [3]). On the other hand,
GUT threshold corrections in conventional models are of-
ten too large compared to the typical mismatch of gauge
couplings at a high scale in the MSSM (see [4] for a recent
discussion). This means that the well-known “success of
gauge coupling unification in the MSSM”, if not a mere
accident, may favour the aforementioned class of models
as the correct theory of grand unification.

Under the assumption of precise gauge coupling unifi-
cation (GCU) in the MSSM, we show that the low energy
SUSY spectrum and the unification scale are intertwined,
and the lower bound on the proton lifetime τp→π0e+ can
be translated into upper bounds on SUSY masses.∗ This
leads to an interesting interconnection between the proton
decay experiments and the collider searches, particularly
in view of the future progress on both fronts, in cornering
supersymmetric spectrum from above and from below.

At the one-loop the gauge couplings at scale µ̃ in the

∗ Unlike other upper bounds on SUSY masses based on the argu-
ments of the Higgs boson mass [5] or the neutralino relic abun-
dance [6], these bounds dependent neither on the ratio of the Higgs
vacuum expectation values, tanβ ≡ vu/vd, nor the assumption of
R-parity conservation and the thermal history of the universe.

MSSM is given by

2π

αi(µ̃)
=

2π

αi(mZ)
− bi ln

( µ̃

mZ

)
+ si. (1)

where α1 ≡ 3
5αY , i = 1, 2, 3 represents the gauge group,

bi = ( 33
5 , 1,−3) are the one-loop β-function coefficients for

the MSSM and

si ≡
∑
η

bηi ln
(mη

mZ

)
(2)

are the threshold corrections of SUSY particles. For SUSY
particle η, the mass and its contribution to bi are given by
mη and bηi , respectively.

In the special case where all SUSY particles are mass
degenerate at Ms, the threshold correction can be writ-
ten as si = δi ln(Ms/mZ) with δi ≡ (bi − bSM

i ), where
bSM
i = ( 41

10 ,−
19
6 ,−7) are the one-loop β-function coeffi-

cients for the Standard Model (SM). In this case, exact
gauge unification α1(µ̃) = α2(µ̃) = α3(µ̃) ≡ α∗G is achieved

by the particular values of Ms and µ̃: M∗s , Mdeg∗
G , satis-

fying

2π

α∗G
− 2π

αi(mZ)
+ bi ln

(Mdeg∗
G

mZ

)
= δi ln

(M∗s
mZ

)
(3)

for all i. It should be kept in mind that the quantities M∗s ,

Mdeg∗
G and α∗G are not variables but constants defined as

the solution to the above three simultaneous equations.

Coming back to the general case, let us decompose the
vector si into three independent vectors as [7]

si = δi ln
( T

mZ

)
+ bi ln Ω + C . (4)

The solution to this set of equations is given by

ln
( T

mZ

)
= visi/D (5)

ln Ω = uisi/D (6)

C = εijkδjbisk/D (7)
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where summation is understood for the repeated indices
and εijk is the antisymmetric tensor and

v =

 b2 − b3
−b1 + b3
b1 − b2

 , u =

−δ2 + δ3
δ1 − δ3
−δ1 + δ2

 ,

D = b2δ1 − b3δ1 − b1δ2 + b3δ2 + b1δ3 − b2δ3 . (8)

Plugging the concrete values of bi, δi and bηi into these
expressions, one gets

T =
[
M−28

3 M32
2 (µ4mA)3XT

] 1
19

, (9)

Ω =
[
M−100

3 M60
2 (µ4mA)8XΩ

] 1
288

, (10)

C =
125

19
lnM3 −

113

19
lnM2 −

40

19
lnµ− 10

19
lnmA

+
∑
i=1...3

[ 79

114
lnmd̃Ri

− 10

19
lnml̃i

− 121

114
lnmq̃i

+
257

228
lnmũRi +

33

76
lnmẽRi

]
. (11)

with

XT ≡
∏

i=1...3

( m3
l̃i

m3
d̃Ri

)( m7
q̃i

m2
ẽRi
m5
ũRi

)
, (12)

XΩ ≡
∏

i=1...3

( m8
l̃i

m8
d̃Ri

)(m6
q̃i
mẽRi

m7
ũRi

)
. (13)

The SUSY mass parameters appearing in this Letter
should be understood as the magnitude of the correspond-
ing parameters because phase factors do not affect RG run-
ning. In most models, the sfermion contributions to T and
Ω are negligible (i.e. XT ∼ XΩ ∼ 1). In particular, these
contributions vanish if the masses are degenerate within
the SU(5) multiplets, 5̄i = (d̃cR, l̃)i, 10i = (q̃, ũcR, ẽ

c
R)i.

One can explicitly check that for a degenerate spectrum,
ln Ω = C = 0.

To see roles of T , Ω and C in gauge unification, we
substitute Eq. (4) into Eq. (1) and obtain

2π

αi(µ̃)
=

2π

α∗G
− bi ln

( µ̃

ΩMdeg∗
G

)
+ δi ln

( T

M∗s

)
+ C, (14)

where Eq. (3) has also been used. It is clear that the exact
unification for the general case is obtained when the right-
hand-side (RHS) becomes i-independent, that is at T =
M∗s [8] and the exact unification scale is given by

MG = ΩMdeg∗
G . (15)

The unified gauge coupling is related to that of the degen-
erate case as

α−1
G = α∗−1

G +
C

2π
. (16)

Away from the exact unification, we define a candi-
date unification scale MU and a semi-unified coupling

αU by α1(MU ) = α2(MU ) ≡ αU . This scale can
be computed from a low energy spectrum as MU =

ΩMdeg∗
G (T/M∗s )

δ1−δ2
b1−b2 , and at this scale the gauge cou-

plings are given by

2π

αi(MU )
=

2π

α∗G
+
(
δi − bi

δ1 − δ2
b1 − b2

)
ln
( T

M∗s

)
+ C . (17)

Using this formula, a measure of gauge coupling unifica-
tion, which we define as ε3 ≡ (α3(MU ) − αU )/αU , is cal-
culated as

ε3 =
α∗G
2π

Y ln
(
T/M∗s

)
+ · · · , (18)

where the dots represent higher order terms of
α∗
G

2π and

Y ≡ b1(δ2 − δ3) + b2(−δ1 + δ3) + b3(δ1 − δ2)

b1 − b2
. (19)

It is interesting that ε3 depends only on T at the leading
order [8].

Our argument so far is based on the one-loop renormal-
ization group equations (RGEs). It turns out that the re-
lations Eqs. (15), (16) and (18) still hold numerically with
a good accuracy at two-loop level if the constants are re-
placed by the two-loop corrected values: M∗s = 2.08 TeV,

Mdeg∗
U = 1.27 · 1016 GeV and α∗−1

G = 25.5. We show in
Fig. 1 the result of our numerical scan. All numerical
scans presented in this Letter use a two-loop RGE code
including the effect of the top Yukawa coupling, following
[9]. We use tanβ = 10 but a variation of tanβ results
in negligible effects. The SUSY breaking parameters are
uniformly scanned in the logarithmic scale within [mmin,
103 TeV]. We take mmin = 1.5 TeV for M3 and 200 GeV
for M2, µ and mA. The sfermion masses are assumed to
be universal (≡ mf̃ ) for simplicity and mmin = 1 TeV is

used. We also vary α3(mZ) = 0.1184(7), according to the
1-σ uncertainty.

The top plot in Fig. 1 tests the predicted relation
Eq. (18) (dashed line). We see that the exact unification
occurs only when the SUSY masses are arranged such that
T computed by Eq. (9) is within a certain range [1, 4] TeV
centred around ∼ 2 TeV. The width of T for exact unifica-
tion comes mainly from the uncertainty on M∗s due to the
variation of α3(mZ).† The middle plot shows the correla-
tion between Ω and the exact unification scale, MG. Here-
after, we require a precise gauge unification, |ε3| < 0.1%.
The dashed line corresponds to Eq. (15). The colour of
points represents a typical SUSY scale

√
M3M2. One can

see that heavy SUSY tends to have a small unification
scale. For the PeV scale SUSY with

√
M3M2 ∼ 103 TeV,

MG is reduced by a factor of 5 compared to the TeV
scale one. The bottom plot confirms the predicted re-
lation Eq. (16) (dashed line). The colour-code indicates a

† The constants M∗s , M
deg∗
G and α∗G should be understood as func-

tions of α3(mZ) in the scan.
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FIG. 1: A scan of SUSY particle masses projected onto
the (T , ε3) (top), the (Ω, MG/M

deg∗
G ) (middle) and (C/2π,

α−1
G −α

∗−1
G ) (bottom) planes. In the middle and bottom plots,

the precise gauge unification (|ε3| < 0.1%) is required, and
the colour-codes represent typical SUSY scales

√
M3M2 and

(M3M2mf̃ )
1
3 , respectively. The dashed lines represent the one-

loop relations Eq. (18), (15) and (16) for the top, middle and
bottom plots, respectively.

SUSY scale, (M3M2mf̃ )
1
3 . We see that high scale SUSY

tends to predict a smaller unified coupling, αG, but the
variation is small and only up to ∼ 10% between the TeV
and PeV scale SUSY mass points.

An interesting observation follows from the last two
plots of Fig. 1. High scale SUSY, where the unification
scale is lower, in general leads to a rapid proton decay,
p → e+π0. This is because the rate Γ(p → e+π0) scales
as αG/(MG)4, where the X,Y boson mass is identified as
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FIG. 2: Points with precise gauge unification projected onto
the min(M2, µ,mA) vs MG plane. The blue, green and or-
ange points correspond to the points where M2, µ and mA is
the smallest among them, respectively. The regions below a
black-dashed or a red-solid line are excluded by the quoted fu-
ture or current limits on the proton lifetime. The black-solid
line represents the upper bound found at the one-loop level in
Eq. (20).

the unification scale, since the precise gauge unification
implies all GUT particles charged under the SM gauge
group have the same mass, MG. Turning this around,
the lower limit on MG from the proton lifetime mea-
surement (if found, bearing in mind that the variation
of αG is small) can place upper bounds on the masses of
SUSY particles. Let us denote this lower limit by MPD:
MG > MPD. Then, eliminating M3 from Eq. (10) by using
Eq. (9), Eq. (15) gives us

M
4
5

2 (µ4mA)
1
25 < M∗s ·

(Mdeg∗
G

MPD

) 2016
475 ·X

1
25

EW , (20)

where

XEW ≡
∏

i=1...3

( ml̃i

md̃Ri

)( m7
q̃i

m3
ẽRi
m4
ũRi

)
. (21)

This implies that the smallest mass in the LHS is bounded
from above by the RHS of Eq. (20). When this bound
is saturated, M2 = µ = mA. The upper limit on the
individual parameters are obtained, for example, as

M2 < M∗s ·
( M∗5s
µ4mA

) 1
20 ·
(Mdeg∗

G

MPD

) 504
95 ·X

1
20

EW . (22)

In this expression the RHS is bounded from above by the
experimental lower limit on µ and mA.

The upper bound Eq. (20) is observed in our numerical
scan shown in Fig. 2, where the smallest of M2, µ and
mA is plotted in the x-axis. The blue, green and orange
points correspond to the cases where M2, µ and mA is
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FIG. 3: Points with precise gauge unification projected onto

the (M3, M2) plane. The colour-code shows (µ4mA)
1
5 . The

regions above the black-dashed and red-solid lines are excluded
by the quoted future or current limits on τp→π0e+ . The three
diagonal lines correspond to R ≡ M3/M2 = 1, 3 and 7 from
top to bottom. In this plot the upper boundaries of µ and mA

scans are extended up to 107 TeV.

the lightest among the three, respectively. A tendency is
observed that M2 is close to the upper limit if M2 is the
lightest. This is due to the higher power for M2 in Eq. (20)
than for µ and mA. At each point we calculate τp→π0e+

based on [10, 11]‡ using αG and MG obtained by the two-
loop RGE code. The horizontal black-dashed and red-
solid lines represent the boundaries where all points below
them have the lifetime shorter than the quoted values. In
particular, the region below the red line is excluded by the
current limit: τp→π0e+ > 1.7 · 1034 years [13].

The upper bound on the gluino mass can be found by
eliminating µ4mA in Eq. (10) by using Eq. (9) as

M3 < M∗s ·
M∗s
M2
·
(Mdeg∗

G

MPD

) 216
19 ·X

1
4

g̃ (23)

with

Xg̃ ≡
∏

i=1...3

(mũRimẽRi

m2
q̃i

)
. (24)

As previously, the RHS of Eq. (23) is bounded from above
by the experimental lower limit on the wino mass.

If the SUSY breaking mechanism is specified, the ratio
of gluino and wino masses is usually predicted. Assuming
the value of R ≡M3/M2, the following upper bounds can
be derived:

M3 < M∗s ·R
1
2 ·
(Mdeg∗

G

MPD

) 108
19 ·X

1
8

g̃ , (25)

(µ4mA)
1
5 < M∗s ·R2 ·

( MPD

Mdeg∗
G

) 144
90 ·X

1
10
µ , (26)

where

Xµ ≡
∏

i=1...3

( m2
l̃i

m2
d̃Ri

)( m4
q̃i

mẽRim
3
ũRi

)
. (27)

We show in Fig. 3 our scan in the (M3,M2) plane with

the colour-code indicating (µ4mA)
1
5 . As previously, the

black-dashed and red-solid lines represent the future and
current bounds on τp→π0e+ . It is evident that M3 and
M2 are highly sensitive to the proton lifetime and con-
strained by it from above. This is in direct contrast to
collider searches, constraining these parameters from be-
low. Unlike M3 and M2, µ and mA are almost insensitive
to the proton lifetime, which follows from the lower power
of MPD in Eq. (26). On the other hand, they are highly
sensitive to R. In particular, µ is typically a TeV for R = 1
whereas it is O(100) TeV for R = 7. The implication of
this to naturalness and phenomenology are studied in de-
tail in [2, 7, 14].

It is remarkable that the current proton lifetime limit al-
ready excludes the gluino and wino masses larger than 200
and 30 TeV for R ∼ 7 (e.g. AMSB) and 120 and 40 TeV for
R ∼ 3 (e.g. CMSSM, GMSB), respectively. Next gener-
ation nucleon decay experiments are expected to improve
the current τp→π0e+ limit by a factor of ten [10], which will
result in tightening the upper bounds on gluino and wino
masses further down to (M3,M2) . (10, 3) TeV for R ∼ 3
and (M3,M2) . (15, 2) TeV for R ∼ 7. These bounds are
close to the lower mass limits (M3,M2) & (10, 2.7) TeV
[15, 16], which are expected to be obtained at future
100 TeV hadron-hadron colliders.

We have investigated the link between the proton life-
time τp→π0e+ and the supersymmetric spectrum under the
assumption of vanishing GUT thresholds. It has been
shown that most of the allowed mass range of gluinos and
winos will be probed by future collider and proton life-
time experiments. It will also be interesting to extend
this study to models with non-vanishing GUT threshold
corrections (see e.g. [17]).
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