002239944 001__ 2239944
002239944 005__ 20240905091959.0
002239944 0248_ $$aoai:cds.cern.ch:2239944$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002239944 0247_ $$2DOI$$9bibmatch$$a10.1088/1475-7516/2018/04/016
002239944 037__ $$9arXiv$$aarXiv:1612.08270$$castro-ph.CO
002239944 035__ $$9arXiv$$aoai:arXiv.org:1612.08270
002239944 035__ $$9Inspire$$aoai:inspirehep.net:1506359$$d2024-09-04T17:59:24Z$$h2024-09-05T02:30:42Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002239944 035__ $$9Inspire$$a1506359
002239944 041__ $$aeng
002239944 100__ $$aFinelli, Fabio$$uBologna Observ.$$uINFN, Bologna$$vINAF/IASF Bologna,via Gobetti 101,I-40129 Bologna,Italy$$vINFN,Sezione di Bologna,Via Irnerio 46,I-40127 Bologna,Italy
002239944 245__ $$9arXiv$$aExploring Cosmic Origins with CORE: Inflation
002239944 246__ $$9arXiv$$aExploring Cosmic Origins with CORE: Inflation
002239944 269__ $$c2016-12-25
002239944 260__ $$c2018-04-05
002239944 300__ $$a100 p
002239944 500__ $$9arXiv$$aLatex 107 pages, revised with updated author list and minor modifications
002239944 520__ $$9IOP$$aWe forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μK⋅ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10−3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10−3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
002239944 520__ $$9arXiv$$aWe forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of $1.7 \mu$K$\cdot \,$arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the $10^{-3}$ level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the $10^{-3}$ level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the $f_{NL}^{\rm local} < 1$ level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
002239944 540__ $$aarXiv nonexclusive-distrib. 1.0$$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002239944 65017 $$2arXiv$$aastro-ph.CO
002239944 65017 $$2SzGeCERN$$aAstrophysics and Astronomy
002239944 690C_ $$aCERN
002239944 693__ $$eCORE
002239944 695__ $$2INSPIRE$$9bibclassify$$ainflation: slow-roll approximation
002239944 695__ $$2INSPIRE$$9bibclassify$$ainflation: model
002239944 695__ $$2INSPIRE$$9bibclassify$$acosmic background radiation: anisotropy
002239944 695__ $$2INSPIRE$$9bibclassify$$ascale: grand unified theory
002239944 695__ $$2INSPIRE$$9bibclassify$$anon-Gaussianity: primordial
002239944 695__ $$2INSPIRE$$9bibclassify$$aisocurvature: perturbation
002239944 695__ $$2INSPIRE$$9bibclassify$$apower spectrum: primordial
002239944 695__ $$2INSPIRE$$9bibclassify$$afrequency: high
002239944 695__ $$2INSPIRE$$9bibclassify$$asensitivity
002239944 695__ $$2INSPIRE$$9bibclassify$$anoise
002239944 695__ $$2INSPIRE$$9bibclassify$$aangular resolution
002239944 695__ $$2INSPIRE$$9bibclassify$$astring tension
002239944 695__ $$2INSPIRE$$9bibclassify$$acosmic string
002239944 695__ $$2INSPIRE$$9bibclassify$$apolarization
002239944 695__ $$2INSPIRE$$9bibclassify$$atemperature
002239944 695__ $$2INSPIRE$$9bibclassify$$asatellite
002239944 695__ $$2INSPIRE$$9bibclassify$$areheating
002239944 695__ $$2INSPIRE$$9bibclassify$$alandscape
002239944 695__ $$2INSPIRE$$9bibclassify$$abig bang
002239944 700__ $$aBucher, Martin$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aAchúcarro, Ana$$uLeiden U.$$uBasque U., Bilbao$$vInstituut-Lorentz for Theoretical Physics,Universiteit Leiden,2333 CA,Leiden,The Netherlands$$vDepartment of Theoretical Physics,University of the Basque Country UPV/EHU,48040 Bilbao,Spain
002239944 700__ $$aBallardini, Mario$$uBologna U.$$uBologna Observ.$$uINFN, Bologna$$vDipartimento di Fisica e Astronomia,Università di Bologna,Viale Berti Pichat,6/2,I-40127 Bologna,Italy$$vINAF/IASF Bologna,via Gobetti 101,I-40129 Bologna,Italy$$vINFN,Sezione di Bologna,Via Irnerio 46,I-40127 Bologna,Italy
002239944 700__ $$aBartolo, Nicola$$uPadua U.$$uINFN, Padua$$uPadua Observ.$$vDipartimento di Fisica e Astronomia ``Galileo Galilei'',Università degli Studi di Padova,Via Marzolo 8,I-35131,Padova,Italy$$vINFN,Sezione di Padova,Via Marzolo 8,I-35131 Padova,Italy$$vINAF-Osservatorio Astronomico di Padova,Vicolo dell'Osservatorio 5,I-35122 Padova,Italy
002239944 700__ $$aBaumann, Daniel$$uCambridge U., DAMTP$$uAmsterdam U.$$vDAMTP,Centre for Mathematical Sciences,University of Cambrige,Wilberforce Road,Cambridge,CB3 0WA,UK$$vInstitute of Physics,University of Amsterdam,Science Park,Amsterdam,1090 GL,The Netherlands
002239944 700__ $$aClesse, Sébastien$$uAachen, Tech. Hochsch.$$vInstitute for Theoretical Particle Physics and Cosmology (TTK),RWTH Aachen University,D-52056 Aachen,Germany
002239944 700__ $$aErrard, Josquin$$uILP, Paris$$uParis U., VI-VII$$vInstitut Lagrange,LPNHE,Place Jussieu 4,75005 Paris,France
002239944 700__ $$aHandley, Will$$uCambridge U.$$uCambridge U., KICC$$vAstrophysics Group,Cavendish Laboratory,Cambridge,CB3 0HE,UK$$vKavli Institute for Cosmology,Cambridge,CB3 0HA,UK
002239944 700__ $$aHindmarsh, Mark$$uSussex U.$$uHelsinki Inst. of Phys.$$uHelsinki U.$$vDepartment of Physics and Astronomy,University of Sussex,Falmer,Brighton,BN1 9QH,UK$$vDepartment of Physics,Gustaf Hallstromin katu 2a,University of Helsinki,Helsinki,Finland$$vHelsinki Institute of Physics,Gustaf Hallstromin katu 2,University of Helsinki,Helsinki,Finland
002239944 700__ $$aKiiveri, Kimmo$$uHelsinki Inst. of Phys.$$uHelsinki U.$$vDepartment of Physics,Gustaf Hallstromin katu 2a,University of Helsinki,Helsinki,Finland$$vHelsinki Institute of Physics,Gustaf Hallstromin katu 2,University of Helsinki,Helsinki,Finland
002239944 700__ $$aKunz, Martin$$uGeneva U., CAP$$uGeneva U., Dept. Theor. Phys.$$vDépartement de Physique Théorique and Center for Astroparticle Physics,Université de Genève,24 quai Ansermet,CH-1211 Genève 4,Switzerland
002239944 700__ $$aLasenby, Anthony$$uCambridge U.$$uCambridge U., KICC$$vAstrophysics Group,Cavendish Laboratory,Cambridge,CB3 0HE,UK$$vKavli Institute for Cosmology,Cambridge,CB3 0HA,UK
002239944 700__ $$aLiguori, Michele$$uPadua U.$$uINFN, Padua$$uPadua Observ.$$vDipartimento di Fisica e Astronomia ``Galileo Galilei'',Università degli Studi di Padova,Via Marzolo 8,I-35131,Padova,Italy$$vINFN,Sezione di Padova,Via Marzolo 8,I-35131 Padova,Italy$$vINAF-Osservatorio Astronomico di Padova,Vicolo dell'Osservatorio 5,I-35122 Padova,Italy
002239944 700__ $$aPaoletti, Daniela$$uBologna Observ.$$uINFN, Bologna$$vINAF/IASF Bologna,via Gobetti 101,I-40129 Bologna,Italy$$vINFN,Sezione di Bologna,Via Irnerio 46,I-40127 Bologna,Italy
002239944 700__ $$aRingeval, Christophe$$uLouvain U., CP3$$vCentre for Cosmology,Particle Physics and Phenomenology,Institute of Mathematics and Physics,Louvain University,2 chemin du Cyclotron,1348 Louvain-la-Neuve,Belgium
002239944 700__ $$aVäliviita, Jussi$$uHelsinki Inst. of Phys.$$uHelsinki U.$$vDepartment of Physics,Gustaf Hallstromin katu 2a,University of Helsinki,Helsinki,Finland$$vHelsinki Institute of Physics,Gustaf Hallstromin katu 2,University of Helsinki,Helsinki,Finland
002239944 700__ $$aVan Tent, Bartjan$$uOrsay, LPT$$vLaboratoire de Physique Théorique (UMR 8627),CNRS,Université Paris-Sud,Université Paris Saclay,Bâtiment 210,91405 Orsay Cedex,France
002239944 700__ $$aVennin, Vincent$$uPortsmouth U., ICG$$vInstitute of Cosmology and Gravitation,University of Portsmouth,Dennis Sciama Building,Burnaby Road,Portsmouth PO1 3FX,United Kingdom
002239944 700__ $$aArroja, Frederico$$uTaiwan, Natl. Taiwan U.$$vLeung Center for Cosmology and Particle Astrophysics,National Taiwan University,No. 1,Sec. 4,Roosevelt Road,Taipei,10617 Taipei,Taiwan (R.O.C
002239944 700__ $$aAshdown, Marc$$uCambridge U., KICC$$vKavli Institute for Cosmology,Cambridge,CB3 0HA,UK
002239944 700__ $$aBanday, A.J.$$uIRAP, Toulouse$$vUniversitéde Toulouse,UPS-OMP,IRAP,F-31028 Toulouse cedex 4,France$$vCNRS,IRAP,9 Av. colonel Roche,BP 44346,F-31028 Toulouse cedex 4,France
002239944 700__ $$aBanerji, Ranajoy$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aBaselmans, Jochem$$uSRON, Utrecht$$uKIN, Delft$$vSRON (Netherlands Institute for Space Research),Sorbonnelaan 2,3584 CA Utrecht,The Netherlands$$vTerahertz Sensing Group,Delft University of Technology,Mekelweg 1,2628 CD Delft,The Netherlands
002239944 700__ $$aBartlett, James G.$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$ade Bernardis, Paolo$$uRome U.$$uINFN, Rome$$vPhysics Department "G. Marconi",University of Rome Sapienza and INFN,piazzale Aldo Moro 2,00185,Rome,Italy
002239944 700__ $$aBersanelli, Marco$$uMilan U.$$vDipartimento di Fisica,Università degli Studi di Milano,Via Celoria 16,20133 Milano,Italy
002239944 700__ $$aBonaldi, Anna$$uManchester U.$$vJodrell Bank Centre for Astrophysics,Alan Turing Building,School of Physics and Astronomy,The University of Manchester,Oxford Road,Manchester,M13 9PL,U.K
002239944 700__ $$aBorril, Julian$$uLBL, Berkeley$$uUC, Berkeley$$vComputational Cosmology Center,Lawrence Berkeley National Laboratory,Berkeley,CA 94720 USA
002239944 700__ $$aBouchet, François R.$$uParis, Inst. Astrophys.$$vInstitut d'Astrophysique de Paris,(UMR7095: CNRS & UPMC Sorbonne Universités),F-75014,Paris,France
002239944 700__ $$aBoulanger, François$$uOrsay, IAS$$vIAS (Institut d'Astrophysique Spatiale),Université Paris Sud,Bâtiment 121 91405 Orsay,France
002239944 700__ $$aBrinckmann, Thejs$$uAachen, Tech. Hochsch.$$vInstitute for Theoretical Particle Physics and Cosmology (TTK),RWTH Aachen University,D-52056 Aachen,Germany
002239944 700__ $$aCai, Zhen-Yi$$uHefei, CUST$$vCAS Key Laboratory for Research in Galaxies and Cosmology,Department of Astronomy,University of Science and Technology of China,Hefei,Anhui 230026,China
002239944 700__ $$aCalvo, Martino$$uCEA INAC, Grenoble$$vUniv. Grenoble Alpes,CEA INAC-SBT,38000 Grenoble,France
002239944 700__ $$aChallinor, Anthony$$uCambridge U., DAMTP$$uCambridge U., KICC$$uCambridge U., Inst. of Astron.$$vDAMTP,Centre for Mathematical Sciences,University of Cambrige,Wilberforce Road,Cambridge,CB3 0WA,UK$$vKavli Institute for Cosmology,Cambridge,CB3 0HA,UK$$vInstitute of Astronomy,Madingley Road,Cambridge CB3 0HA,UK
002239944 700__ $$aChluba, Jens$$uManchester U.$$vJodrell Bank Centre for Astrophysics,Alan Turing Building,School of Physics and Astronomy,The University of Manchester,Oxford Road,Manchester,M13 9PL,U.K
002239944 700__ $$aD'Amico, Guido$$uCERN$$vTheoretical Physics Department,CERN,Geneva,Switzerland
002239944 700__ $$aDelabrouille, Jacques$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aDiego, Jose Maria$$uCantabria Inst. of Phys.$$vIFCA,Instituto de Física de Cantabria (UC-CSIC),Av. de Los Castros s/n,39005 Santander,Spain
002239944 700__ $$aDe Zotti,Gianfranco$$uPadua Observ.$$vINAF-Osservatorio Astronomico di Padova,Vicolo dell'Osservatorio 5,I-35122 Padova,Italy
002239944 700__ $$aDesjacques, Vincent$$uTechnion$$uGeneva U., CAP$$uGeneva U., Dept. Theor. Phys.$$vPhysics Department,Technion,Haifa 3200003,Israel$$vDépartement de Physique Théorique and Center for Astroparticle Physics,Université de Genève,24 quai Ansermet,CH-1211 Genève 4,Switzerland
002239944 700__ $$aDi Valentino, Eleonora$$uILP, Paris$$uParis, Inst. Astrophys.$$vSorbonne Universités,Institut Lagrange de Paris (ILP),F-75014,Paris,France$$vInstitut d'Astrophysique de Paris,(UMR7095: CNRS & UPMC Sorbonne Universités),F-75014,Paris,France
002239944 700__ $$aFeeney, Stephen$$uImperial Coll., London$$vAstrophysics Group,Imperial College London,Blackett Laboratory,Prince Consort Road,London,SW7 2AZ,UK
002239944 700__ $$aFergusson, James R.$$uCambridge U., DAMTP$$vDAMTP,Centre for Mathematical Sciences,University of Cambrige,Wilberforce Road,Cambridge,CB3 0WA,UK
002239944 700__ $$aFerraro, Simone$$uUC, Berkeley, Miller Inst.$$vMiller Institute for Basic Research in Science,University of California,Berkeley,CA,94720,USA
002239944 700__ $$aForastieri, Francesco$$uFerrara U.$$uINFN, Ferrara$$vDipartimento di Fisica e Scienza della Terra,Università di Ferrara e INFN,Sezione di Ferrara,Via Saragat 1,44122 Ferrara,Italy
002239944 700__ $$aGalli, Silvia$$uParis, Inst. Astrophys.$$vInstitut d'Astrophysique de Paris,(UMR7095: CNRS & UPMC Sorbonne Universités),F-75014,Paris,France
002239944 700__ $$aGarcía-Bellido, Juan$$uMadrid, IFT$$vInstituto de Física Teórica UAM/CSIC,Universidad Autonoma de Madrid,28049 Madrid,Spain
002239944 700__ $$aGénova-Santos, Ricardo T.$$uIAC, La Laguna$$uLaguna U., Tenerife$$vInstituto de Astrofísica de Canarias,C/Vía Láctea s/n,La Laguna,Tenerife,Spain$$vDepartamento de Astrofísica,Universidad de La Laguna (ULL),La Laguna,Tenerife,38206 Spain
002239944 700__ $$aGerbino, Martina$$uStockholm U., OKC$$vThe Oskar Klein Centre for Cosmoparticle Physics,Department of Physics,Stockholm University,AlbaNova,SE-106 91 Stockholm,Sweden
002239944 700__ $$aGonzález-Nuevo, Joaquin$$uOviedo U.$$vDepartamento de Física,Universidad de Oviedo,C. Calvo Sotelo s/n,33007 Oviedo,Spain
002239944 700__ $$aGrandis, Sebastian$$uMunich U.$$uMunich, Tech. U., Universe$$vFaculty of Physics,Ludwig-Maximilians Universität,81679 Munich,Germany$$vExcellence Cluster Universe,Boltzmannstr. 2,D-85748 Garching,Germany
002239944 700__ $$aGreenslade, Josh$$uILP, Paris$$vSorbonne Universités,Institut Lagrange de Paris (ILP),F-75014,Paris,France
002239944 700__ $$aHagstotz, Steffen$$uMunich U.$$uMunich, Tech. U., Universe$$vFaculty of Physics,Ludwig-Maximilians Universität,81679 Munich,Germany$$vExcellence Cluster Universe,Boltzmannstr. 2,D-85748 Garching,Germany
002239944 700__ $$aHanany, Shaul$$uMinnesota U.$$vSchool of Physics and Astronomy,University of Minnesota,116 Church Street SE,Minneapolis,Minnesota 55455,United States
002239944 700__ $$aHazra, Dhiraj K.$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aHernández-Monteagudo, Carlos$$uCEFCA, Teruel$$vCentro de Estudios de Física del Cosmos de Aragón (CEFCA),Plaza San Juan,1,planta 2,E-44001,Teruel,Spain
002239944 700__ $$aHivon, Eric$$uParis, Inst. Astrophys.$$vInstitut d'Astrophysique de Paris,(UMR7095: CNRS & UPMC Sorbonne Universités),F-75014,Paris,France
002239944 700__ $$aHu, Bin$$uBeijing Normal U.$$uBarcelona U., ECM$$uICC, Barcelona U.$$vDepartment of Astronomy,Beijing Normal University,Beijing 100875,China$$vInstitut de Ciències del Cosmos (ICCUB),Universitat de Barcelona (IEEC-UB),Martíi Franquès 1,E08028 Barcelona,Spain
002239944 700__ $$aKovetz, Ely D.$$uJohns Hopkins U.$$vDepartment of Physics ad Astronomy,Johns Hopkins University,3400 N. Charles St.,Baltimore,MD 21218,USA
002239944 700__ $$aKurki-Suonio, Hannu$$uHelsinki Inst. of Phys.$$uHelsinki U.$$vDepartment of Physics,Gustaf Hallstromin katu 2a,University of Helsinki,Helsinki,Finland$$vHelsinki Institute of Physics,Gustaf Hallstromin katu 2,University of Helsinki,Helsinki,Finland
002239944 700__ $$aLattanzi, Massimiliano$$uFerrara U.$$uINFN, Ferrara$$vDipartimento di Fisica e Scienza della Terra,Università di Ferrara e INFN,Sezione di Ferrara,Via Saragat 1,44122 Ferrara,Italy
002239944 700__ $$aLesgourgues, Julien$$uAachen, Tech. Hochsch.$$vInstitute for Theoretical Particle Physics and Cosmology (TTK),RWTH Aachen University,D-52056 Aachen,Germany
002239944 700__ $$aLizarraga, Joanes$$uBasque U., Bilbao$$vDepartment of Theoretical Physics,University of the Basque Country UPV/EHU,48040 Bilbao,Spain
002239944 700__ $$aLópez-Caniego, Marcos$$uESA, Madrid$$vEuropean Space Agency,ESAC,Planck Science Office,Camino bajo del Castillo,s/n,Urbanización Villafranca del Castillo,Villanueva de la Cañada,Madrid,Spain
002239944 700__ $$aLuzzi, Gemma$$uRome U.$$uINFN, Rome$$vPhysics Department "G. Marconi",University of Rome Sapienza and INFN,piazzale Aldo Moro 2,00185,Rome,Italy
002239944 700__ $$aMaffei, Bruno$$uOrsay, IAS$$vIAS (Institut d'Astrophysique Spatiale),Université Paris Sud,Bâtiment 121 91405 Orsay,France
002239944 700__ $$aMartins, Carlos J.A.P.$$uPorto U., Astron. Dept.$$vCentro de Astrofísica da Universidade do Porto and IA-Porto,Rua das Estrelas,4150-762 Porto,Portugal
002239944 700__ $$aMartínez-González, Enrique$$uCantabria Inst. of Phys.$$vIFCA,Instituto de Física de Cantabria (UC-CSIC),Av. de Los Castros s/n,39005 Santander,Spain
002239944 700__ $$aMcCarthy, Darragh$$uNUIM, Maynooth$$vDepartment of Experimental Physics,Maynooth University,Maynooth,Co. Kildare,W23 F2H6,Ireland
002239944 700__ $$aMatarrese, Sabino$$uPadua U.$$uINFN, Padua$$uPadua Observ.$$uGran Sasso$$vDipartimento di Fisica e Astronomia ``Galileo Galilei'',Università degli Studi di Padova,Via Marzolo 8,I-35131,Padova,Italy$$vINFN,Sezione di Padova,Via Marzolo 8,I-35131 Padova,Italy$$vINAF-Osservatorio Astronomico di Padova,Vicolo dell'Osservatorio 5,I-35122 Padova,Italy$$vGran Sasso Science Institute,INFN,Via F. Crispi 7,I-67100 L'Aquila,Italy
002239944 700__ $$aMelchiorri, Alessandro$$uRome U.$$uINFN, Rome$$vPhysics Department "G. Marconi",University of Rome Sapienza and INFN,piazzale Aldo Moro 2,00185,Rome,Italy
002239944 700__ $$aMelin, Jean-Baptiste$$uIRFU, SPP, Saclay$$vCEA Saclay,DRF/Irfu/SPP,91191 Gif-sur-Yvette Cedex,France
002239944 700__ $$aMonfardini, Alessandro$$uNeel Lab, Grenoble$$vInstitut Néel CNRS/UGA UPR2940 25,rue des Martyrs BP 166,38042 Grenoble Cedex 9,France
002239944 700__ $$aNatoli, Paolo$$uFerrara U.$$uINFN, Ferrara$$vMiller Institute for Basic Research in Science,University of California,Berkeley,CA,94720,USA
002239944 700__ $$aNegrello, Mattia$$uCardiff U.$$vSchool of Physics and Astronomy,Cardiff University,The Parade,Cardiff CF24 3AA,UK
002239944 700__ $$aNotari, Alessio$$uICC, Barcelona U.
002239944 700__ $$aOppizzi, Filippo$$uPadua U.$$uINFN, Padua$$vDipartimento di Fisica e Astronomia ``Galileo Galilei'',Università degli Studi di Padova,Via Marzolo 8,I-35131,Padova,Italy
002239944 700__ $$aPaiella, A.$$uRome U.$$uINFN, Rome
002239944 700__ $$aPajer, Enrico$$uUtrecht U.$$vInstitute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Princetonplein 5,3584 CC Utrecht,The Netherlands
002239944 700__ $$aPatanchon, Guillaume$$uAPC, Paris$$uUPMC, Paris (main)
002239944 700__ $$aPatil, Subodh P.$$uBohr Inst.$$vNiels Bohr Institute,Niels Bohr Institute,Blegdamsvej 17,Copenhagen,DK-2100,Denmark
002239944 700__ $$aPiat, Michael$$uAPC, Paris$$uUPMC, Paris (main)$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aPisano, Giampaolo$$uCardiff U.$$vSchool of Physics and Astronomy,Cardiff University,The Parade,Cardiff CF24 3AA,UK
002239944 700__ $$aPolastri, L.$$uFerrara U.$$uINFN, Ferrara
002239944 700__ $$aPolenta, Gianluca$$uASI, Rome$$uRome Observ.
002239944 700__ $$aPoulin, Vivian$$uAachen, Tech. Hochsch.$$uAnnecy, LAPTH$$vInstitute for Theoretical Particle Physics and Cosmology (TTK),RWTH Aachen University,D-52056 Aachen,Germany$$vLAPTh,Université Savoie Mont Blanc & CNRS,BP 110,F-74941 Annecy-le-Vieux Cedex,France
002239944 700__ $$aQuartin, M.$$uRio de Janeiro Federal U.$$vInstituto de Fısica, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
002239944 700__ $$aRavenni, Andrea$$uPadua U.$$vDipartimento di Fisica e Astronomia ``Galileo Galilei'',Università degli Studi di Padova,Via Marzolo 8,I-35131,Padova,Italy
002239944 700__ $$aRemazeilles, Mathieu$$uManchester U.$$vJodrell Bank Centre for Astrophysics,Alan Turing Building,School of Physics and Astronomy,The University of Manchester,Oxford Road,Manchester,M13 9PL,U.K
002239944 700__ $$aRenzi, Alessandro$$uINFN, Trieste$$uSISSA, Trieste$$vSISSA,Astrophysics Sector,via Bonomea 265,34136,Trieste,Italy$$vINFN/National Institute for Nuclear Physics,Via Valerio 2,I-34127 Trieste,Italy
002239944 700__ $$aRoest, Diederik$$uGroningen U.$$vVan Swinderen Institute for Particle Physics and Gravity,University of Groningen,Nijenborgh 4,9747 AG Groningen,The Netherlands
002239944 700__ $$aSalvati, Laura$$uRome U.$$uINFN, Rome$$vPhysics Department "G. Marconi",University of Rome Sapienza and INFN,piazzale Aldo Moro 2,00185,Rome,Italy
002239944 700__ $$aTartari, Andrea$$uAPC, Paris$$vAPC,Astroparticule et Cosmologie,Université Paris Diderot,CNRS/IN2P3,CEA/lrfu,Observatoire de Paris Sorbonne Paris Cité,10,rue Alice Domon et Léonie Duquet,75205 Paris Cedex 13,France
002239944 700__ $$aTasinato, Gianmassimo$$uSwansea U.$$vDepartment of Physics,Swansea University,Swansea,SA2 8PP,UK
002239944 700__ $$aTorrado, Jesús$$uSussex U.$$vDepartment of Physics and Astronomy,University of Sussex,Falmer,Brighton,BN1 9QH,UK
002239944 700__ $$aTrappe, Neil$$uNUIM, Maynooth$$vDepartment of Experimental Physics,Maynooth University,Maynooth,Co. Kildare,W23 F2H6,Ireland
002239944 700__ $$aTucci, Marco$$uGeneva U., CAP$$uGeneva U., Dept. Theor. Phys.$$vDépartement de Physique Théorique and Center for Astroparticle Physics,Université de Genève,24 quai Ansermet,CH-1211 Genève 4,Switzerland
002239944 700__ $$aUrrestilla, Jon$$uBasque U., Bilbao$$vDepartment of Theoretical Physics,University of the Basque Country UPV/EHU,48040 Bilbao,Spain
002239944 700__ $$aVielva, Patricio$$uCantabria Inst. of Phys.$$vIFCA,Instituto de Física de Cantabria (UC-CSIC),Av. de Los Castros s/n,39005 Santander,Spain
002239944 700__ $$avan de Weygaert, Rien$$uGroningen U.$$vKapteyn Astronomical Institute,University of Groningen,P.O. Box 800,9700AV Groningen,The Netherlands
002239944 710__ $$gCORE
002239944 773__ $$c016$$n04$$pJCAP$$v04$$y2018
002239944 8564_ $$81265643$$s7996813$$uhttp://cds.cern.ch/record/2239944/files/arXiv:1612.08270.pdf
002239944 8564_ $$81265638$$s63878$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_corem5_hi_2D.png$$y00018 Forecasts on the Hubble flow parameters presented in \Sec{sec:primordialparameters} (blue), when the low multipoles $\ell < 10$ are removed (red), and when delensing is not performed (grey), for CORE-M5 and SI (top panel) and MHI (bottom panel) as the fiducial model.
002239944 8564_ $$81265639$$s96399$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_posterior_featureless_zoom_2.png$$y00029 Left: Reconstruction of a simulated featureless scalar power spectrum for a CORE-M5 experiment (in red), compared to existing constraints provided by \Planck\ (in blue). Right: Zoomed-in version of the left figure to show the order of magnitude increase in constraining power that would be provided by CORE.
002239944 8564_ $$81265640$$s10856$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_HI_LiteCORE120_COREM5_optCORE.png$$y00015 Compared forecasts on the Hubble flow parameters (1D and 2D marginalized posterior distributions after CMBxCMB delensing) when the fiducial model is SI.
002239944 8564_ $$81265641$$s34237$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_cs_CORE2.png$$y00050 CORE-M5 forecasts of typical parameters of the effective field theory of inflation for general single-field models as obtained from the equilateral and orthogonal $\fnl$ predictions ($68\%$, $95\%$ and $99.7\%$ confidence regions are shown). Vanishing central values for $f_{\rm NL}^{\rm equil}$ and $f_{\rm NL}^{\rm ortho}$ have been assumed. There are two ``microscopic'' non-Gaussianity parameters of interest. $c_{\rm s}$ is the sound speed of the inflaton field, with $(1-c^{-2}_{\rm s})$ being the amplitude of the inflaton self-interaction $\dot{\pi} (\nabla \pi)^2$, while $\tilde{c}_3$ is related to the amplitude of the inflaton self-interaction $(\dot{\pi})^3$.
002239944 8564_ $$81265642$$s7729$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_JV_adi_params_core_1d.png$$y00038 Parameters that exist also in the standard adiabatic model---comparison of their determination when assuming pure adiabatic model (dashed lines) or when assuming a generally correlated mixture of the adiabatic and CDI mode (solid lines). The fiducial data here are pure adiabatic with $r=0$.
002239944 8564_ $$81265644$$s13185$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_PanelRunRunPlanckV4_CN_120mm.png$$y00008 \footnotesize Forecast 68\% and 95\% CL 2D marginalized regions for $(n_{\mathrm s}, \mathrm{d} n_{\mathrm s} / \mathrm{d} \ln k)$ (left panel), $(n_{\mathrm s}, \mathrm{d}^2 n_{\mathrm s} / \mathrm{d} \ln k^2)$ (middle panel) and $(\mathrm{d} n_{\mathrm s}/\mathrm{d} \ln k, \mathrm{d}^2 n_{\mathrm s} / \mathrm{d} \ln k^2)$ (right panel) for CORE-M5 (blue) and LiteBIRD (red). These forecasts assume as the fiducial values the \Planck\ 2015 best fits including the running of the running \cite{Ade:2015lrj}. The green contours showing the 68\% and 95\% CL for Planck 2015 TT,TE,EE + lowP are displayed for comparison.
002239944 8564_ $$81265645$$s67504$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_posterior_featureless_2.png$$y00028 Left: Reconstruction of a simulated featureless scalar power spectrum for a CORE-M5 experiment (in red), compared to existing constraints provided by \Planck\ (in blue). Right: Zoomed-in version of the left figure to show the order of magnitude increase in constraining power that would be provided by CORE.
002239944 8564_ $$81265646$$s7579$$uhttp://cds.cern.ch/record/2239944/files/section_one_figures_Fig0a.png$$y00000 The improvement in $TT$ (left panel) and $EE$ (right) power spectra as a function of the multipole number $\ell$ for Planck (red line) and CORE (blue line) up to $\ell \approx 3000$ compared to the cosmic variance limit with $f_{sky}=1$ (dashed black line).
002239944 8564_ $$81265647$$s8169$$uhttp://cds.cern.ch/record/2239944/files/section_one_figures_Fig0b.png$$y00001 The improvement in $TT$ (left panel) and $EE$ (right) power spectra as a function of the multipole number $\ell$ for Planck (red line) and CORE (blue line) up to $\ell \approx 3000$ compared to the cosmic variance limit with $f_{sky}=1$ (dashed black line).
002239944 8564_ $$81265648$$s9624$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_PanelNeff_CN3_120mm.png$$y00011 \footnotesize Forecast 68\% and 95\% CL 2D marginalized regions for the $(n_{\mathrm s}, r)$ (left panel), $(n_{\mathrm s}, N_{\mathrm{eff}})$ (middle panel) and $(N_{\mathrm{eff}},r)$ (right panel) for CORE-M5 (blue) and LiteBIRD (red) obtained by allowing the tensor-to-scalar ratio and the running to vary. These forecasts assume $r=0.0042$ and $N_{\mathrm{eff}}=3.046$ as fiducial values. The 68\% and 95\% CL marginalized contours for Planck 2015 TT,TE,EE + lowP (green) are shown for comparison \cite{Ade:2015lrj}. Note that the Planck 2015 contours are based on real data whose best fit is different from the fiducial cosmology used in this paper.
002239944 8564_ $$81265649$$s69929$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_posterior_wiggly_2.png$$y00031 As in Fig.~\protect\ref{fig:PPSR}, but now reconstructing a simulated power spectrum with features (black lines). Left: Cut-off as would be generated by a brief period of fast-roll expansion prior to slow roll inflation. The additional constraining power provided by CORE would allow detection of low $\ell$ features such as cutoffs and wiggles. Right: Reconstruction of higher-$\ell$ linearly-sinusoidal wiggles generated by a reduction in the speed of sound of the inflaton, as described in Section 2.3.3. In this last case, the reconstruction only picks up the feature when the prior on the nodes' positions is restricted to the region where the feature is active; the smaller-scale wiggles prove to be harder to reconstruct.
002239944 8564_ $$81265650$$s101057$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_optcorehi_D.png$$y00025 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265651$$s17282$$uhttp://cds.cern.ch/record/2239944/files/section_nine_figures_All_FullyDelensed_v2.png$$y00055 Likelihood contours of the $r$-$(G\mu)^2$ posterior for models with both tensors and defects (cosmic strings), marginalized over all other parameters, for LiteBIRD, CORE, and COrE+. The CORE and COrE+ contours are given for the fully delensed case, representing the best possible constraints attainable, while LiteBIRD contours are given for the standard case. In all cases light shading represents 1$\sigma$ and dark shading 2$\sigma$. For comparison, the current \Planck\ marginalized 95\% confidence limits on these models are $(G\mu/10^{-7})^2 < 3.4$ ($\fd < 0.011$) and $r < 0.11$.
002239944 8564_ $$81265652$$s98679$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_corem5_mhi_D.png$$y00024 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265653$$s19430$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_DKL_2.png$$y00030 The amount of information that CORE experiments would provide on the scalar primordial power spectrum. The Kullback-Leibler divergence shows that all configurations of the experiment provide a similar level of information. As expected, the prior-to-posterior compression drops off at low $\ell$ due to cosmic variance, and high-$\ell$ at the limits of the experiment. All CORE configurations thus provide an order of magnitude more information than \Planck\ 2015. It is worth remarking that we use \Planck\ 2015 real data here. The improvement of the CORE experiments with respect to \Planck\ 2015 real data is largely related to improved determination of $A_s$, also connected to the cosmic variance limited measurement of $\tau$.
002239944 8564_ $$81265654$$s18047$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_EE_Orthogonal_2.png$$y00049 Caption not extracted
002239944 8564_ $$81265655$$s3080$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_KK_litebird_core_ACFC_primordial_fractions_CDI_r_1d_test.png$$y00041 The primordial tensor-to-scalar ratio $r_{0.05}$, the horizon exit tensor-to-scalar ratio $\tilde r_{0.05}$, isocurvature and correlation power at large scales, and isocurvature spectral index, when the fiducial data have a 0.1\% anti-correlated (AC) or fully correlated (FC) CDI contribution and $r=0$. The fitted model is the generally correlated model with three isocurvature parameters and $\tilde{r}_{0.05}$ (CDI, solid lines) or the pure adiabatic $\Lambda$CDM model with $r_{0.05}$ (pure ADI, dashed lines).
002239944 8564_ $$81265656$$s57278$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_local_all.png$$y00051 width=0.5\textwidth
002239944 8564_ $$81265657$$s133654$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_plc_2.png$$y00020 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for \Planck\ 2015 + BKP joint cross-correlation~\cite{Ade:2015tva} (left panel, results taken from \Ref{Martin:2016oyk}) and for CORE-M5 if SI is the fiducial model, as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$.
002239944 8564_ $$81265658$$s28588$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_posterior_cs_2.png$$y00032 As in Fig.~\protect\ref{fig:PPSR}, but now reconstructing a simulated power spectrum with features (black lines). Left: Cut-off as would be generated by a brief period of fast-roll expansion prior to slow roll inflation. The additional constraining power provided by CORE would allow detection of low $\ell$ features such as cutoffs and wiggles. Right: Reconstruction of higher-$\ell$ linearly-sinusoidal wiggles generated by a reduction in the speed of sound of the inflaton, as described in Section 2.3.3. In this last case, the reconstruction only picks up the feature when the prior on the nodes' positions is restricted to the region where the feature is active; the smaller-scale wiggles prove to be harder to reconstruct.
002239944 8564_ $$81265659$$s19611$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_TE_Local_2.png$$y00044 width=0.45\textwidth
002239944 8564_ $$81265660$$s12185$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_CoreM5OmegaKMPlanck_P3_120mm.png$$y00013 \footnotesize Forecast 68\% and 95\% CL marginalized regions for $(\Omega_{\mathrm k}, H_0)$ (left panel), $(\Omega_{\mathrm k}, \Omega_{\mathrm m})$ (middle panel) and $(H_0, \Omega_{\mathrm m})$ (right panel) for LiteBIRD (grey) and CORE-M5 (blue) obtained by allowing $\Omega_{\mathrm k}$ to vary. These forecasts assume $\Omega_{\mathrm{k}}=0$ as fiducial value. The 68\% and 95\% CL marginalized contours for Planck 2015 TT,TE,EE + lowP + lensing (green) are shown for comparison \cite{Ade:2015xua}. Note that the Planck 2015 contours are based on real data whose best fit is different from the fiducial cosmology used.
002239944 8564_ $$81265661$$s9914$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_MHI_LiteCORE120_COREM5_optCORE.png$$y00017 Compared forecasts on the Hubble flow parameters (1D and 2D marginalized posterior distributions after CMBxCMB delensing) when the fiducial model is MHI.
002239944 8564_ $$81265662$$s98828$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_sr2_logsr1_litecore.png$$y00027 Constraints in the $\epsilon_1$-$\epsilon_2$ plane (1$\sigma $ and 2$\sigma$ contours) for \Planck\ 2015 plus the BKP joint cross-correlation, CORE-M5 and optCOrE+ (with SI and MHI as fiducial models). The predictions of the model SI have been displayed assuming $\bar{w}_\mathrm{reh}=0$, where the color encodes the reheating temperature $T_\mathrm{reh}$. The models indicated as HI (Higgs Inflation) and SI (Starobinsky Inflation) share the same inflationary potential, but are endowed with different reheating temperatures (around $10^{12}\, \mathrm{GeV}$ for HI and $10^8\,\mathrm{GeV}$ for SI), which a CORE-type mission could distinguish at 2$\sigma .$
002239944 8564_ $$81265663$$s5547$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_nt_r001V2_120mm.png$$y00012 \footnotesize Forecasts for the $(n_{\mathrm t}, r)$ marginalized regions at the 68\% and 95\% CL for CORE-M5 (blue) and LiteBIRD (red) considering $r=0.01, n_{\mathrm t}=-r/8=-0.00125$ (left panel) and $r=0.05, n_{\mathrm t}=-r/8=-0.00625$ (right panel). The tensor pivot scale is $k_{*, {\mathrm t}} = 0.0099$ Mpc$^{-1}$.
002239944 8564_ $$81265664$$s12022$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_JV_primordial_powers_CDI_core_final_2d_b.png$$y00037 Constraints on primordial curvature, isocurvature and correlation power at large scales and small scales, denoted by the superscripts (1) and (2), respectively, when the fiducial data are adiabatic and have $r=0$, and the fitted model has generally correlated primordial adiabatic and CDI modes. (a) Simulated \Planck\ and LiteBIRD data lead to significantly weaker constraints than CORE-M5, but LiteCORE-80 only slightly weaker. (b) A zoomed version, now with LiteCORE-120, and showing CORE-M5 and COrE+ with the lensing potential PP. For the isocurvature and correlation powers LiteCORE-120, CORE-M5 and COrE+ are virtually indistinguishable and reach the cosmic variance limit (the Ideal case). PP improves the constraints on the curvature power.
002239944 8564_ $$81265665$$s10091$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_KK_litebird_core_ACFC_primordial_fractions_CDI_omegabh2_1d.png$$y00042 Determination of the standard parameters when the fiducial data have a 0.1\% anti-correlated (AC) or fully correlated (FC) CDI contribution and zero $r$. The solid lines (CDI) represent the fit of the generally correlated three isocurvature parameter model plus $\tilde{r}_{0.05}$ to these one isocurvature parameter models. The input fiducial data are recovered extremely well in this case. However, despite of the smallness of the isocurvature contribution, fitting a ``wrong'' model, i.e., the pure adiabatic model (pure ADI, dashed lines), to these data leads to a large bias (error) in the determination of the standard parameters.
002239944 8564_ $$81265666$$s113424$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_posterior_monodromy_2.png$$y00033 Left: As in Fig.~\protect\ref{fig:PPSR}, but now reconstructing a simulated power spectrum with low frequency sinusoidal logarithmic oscillations (black line), with $A_{\log}=0.03, \omega_{\log}=3$ and $\psi_{\log}=0$. Right: constraints on superimposed sinusoidal logarithmic oscillations with an higher frequency, comparable to those providing a best-fit to \Planck\ 2015 data \cite{Ade:2015lrj}. Whereas a blind reconstruction technique is unsuitable for high frequency oscillations, CORE-M5 performs better than LiteBIRD or \Planck\ in combination with Euclid spectroscopic galaxy clustering for this type of parameterized features. Contours indicate 68\% confidence intervals.
002239944 8564_ $$81265667$$s60566$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_corem5_mhi_2D.png$$y00019 Forecasts on the Hubble flow parameters presented in \Sec{sec:primordialparameters} (blue), when the low multipoles $\ell < 10$ are removed (red), and when delensing is not performed (grey), for CORE-M5 and SI (top panel) and MHI (bottom panel) as the fiducial model.
002239944 8564_ $$81265668$$s34720$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_KK_ACFC_CORE_litebird_2d.png$$y00040 Primordial powers when the fiducial data are produced from a curvaton model and have a 0.1\% anti-correlated (AC) or 0.1\% fully correlated (FC) CDI contribution, but no tensor contribution. The fitted model is the generally correlated model with three isocurvature parameters and $\tilde{r}_{0.05}$ (CDI, shaded colors) or the pure adiabatic model with $r_{0.05}$ (pure ADI, dashed contours). LiteBIRD uses TT,TE,EE,BB, whereas CORE-M5 uses TT,TE,EE,BB,PP and delensing information. (The fiducial values used are $10^{10}{\cal P}^{(1)}_{\cal RR} = 23.90$, $10^{10}{\cal P}^{(2)}_{\cal RR} = 20.64$, $10^{10}{\cal P}^{(1)}_{\cal II} = 0.0239$, $10^{10}{\cal P}^{(2)}_{\cal II} = 0.0206$, $10^{10}{\cal P}^{(1)}_{\cal RI} = \pm0.7560$, $10^{10}{\cal P}^{(2)}_{\cal RI} = \pm0.6528$.) For the dramatically biased posterior of ${\cal P}_{\cal RR}$ in the first panel in the case when we fit the wrong (pure ADI, dashed lines) model, see the main text and footnote \ref{foot:JVSW}.
002239944 8564_ $$81265669$$s100663$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_litecore120mhi_D.png$$y00023 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265670$$s10550$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_PanelRun_CN3_120mm.png$$y00010 \footnotesize Forecast 68\% and 95\% CL 2D marginalized regions for $(n_{\mathrm s}, r)$ (left panel), $(n_{\mathrm s}, {\mathrm d} n_{\mathrm s} / d \ln k)$ (middle panel) and $(r, {\mathrm d} n_{\mathrm s}/d \ln k)$ (right panel) for CORE-M5 (blue) and LiteBIRD (red) obtained by allowing the tensor-to-scalar ratio and the running to vary. These forecasts assume $r=0.0042$ and $d n_{\mathrm{s}}/ d \ln k = -0.0007$ as the fiducial values. The green contours show the 68\% and 95\% CL for Planck 2015 data combined with the BKP joint cross-correlation \cite{Ade:2015lrj} are shown for comparison. Note that the Planck 2015 contours are based on real data whose best fit is different from the fiducial cosmology used in this paper.
002239944 8564_ $$81265671$$s20921$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_COrEp_tensors_featureless_2.png$$y00035 Simultaneous reconstructions of the tensor (lower, green) and scalar (upper, red) power spectra for CORE-M5 forecast if \(r=0.001\).
002239944 8564_ $$81265672$$s12002$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_KK_litebird_core_tensor_tensorless_CDI_2d_fixed.png$$y00043 Primordial powers when the fiducial data are adiabatic with $r_{0.05}=10^{-3}$. The fitted model is the generally correlated CDI model with three isocurvature parameters and a free $\tilde{r}_{0.05}$ or a fixed $r=0$. CORE-M5 utilizes delensing and its results with a free $\tilde{r}_{0.05}$ or with $r=0$ are indistinguishable.
002239944 8564_ $$81265673$$s55985$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_HI_LiteCORE80_LiteCORE120_LiteCORE150.png$$y00014 Compared forecasts on the Hubble flow parameters (1D and 2D marginalized posterior distributions after CMBxCMB delensing) when the fiducial model is SI.
002239944 8564_ $$81265674$$s96931$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_optcoremhi_D.png$$y00026 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265675$$s4071$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_OccNumDep_Nocc2.png$$y00054 Dependence of the signal-to-noise ratio on the value of the occupation number $N$. Signal-to-noise ratio for different $N$ is here normalized to the values obtained for $N=0.5$ as displayed in Fig.~\ref{fig:U-squeezedModelForecast}.
002239944 8564_ $$81265676$$s47086$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_MHI_LiteCORE80_LiteCORE120_LiteCORE150.png$$y00016 Compared forecasts on the Hubble flow parameters (1D and 2D marginalized posterior distributions after CMBxCMB delensing) when the fiducial model is MHI.
002239944 8564_ $$81265677$$s18117$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_EE_Local_2.png$$y00045 width=0.45\textwidth
002239944 8564_ $$81265678$$s6293$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_CoreV4VsLiteBird_run_CN2_120mm.png$$y00007 \footnotesize Forecast 68\% and 95\% CL 2D marginalized regions for $(n_{\mathrm s}, d n_{\mathrm s} / d \ln k)$ for CORE-M5 (blue) and LiteBIRD (red). These forecasts assume $d n_{\mathrm s} / d \ln k=0$ as the fiducial value. The green contours showing the 68\% and 95\% CL for Planck 2015 TT + lowP \cite{Ade:2015lrj} are displayed for comparison. Note that the Planck 2015 marginalized regions are based on real data whose best fit is different from the fiducial cosmology used in this paper.
002239944 8564_ $$81265679$$s13079$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_JV_primordial_powers_CDI_core_final_2d_a.png$$y00036 Constraints on primordial curvature, isocurvature and correlation power at large scales and small scales, denoted by the superscripts (1) and (2), respectively, when the fiducial data are adiabatic and have $r=0$, and the fitted model has generally correlated primordial adiabatic and CDI modes. (a) Simulated \Planck\ and LiteBIRD data lead to significantly weaker constraints than CORE-M5, but LiteCORE-80 only slightly weaker. (b) A zoomed version, now with LiteCORE-120, and showing CORE-M5 and COrE+ with the lensing potential PP. For the isocurvature and correlation powers LiteCORE-120, CORE-M5 and COrE+ are virtually indistinguishable and reach the cosmic variance limit (the Ideal case). PP improves the constraints on the curvature power.
002239944 8564_ $$81265680$$s15727$$uhttp://cds.cern.ch/record/2239944/files/section_two_figures_Running.png$$y00005 Summary of key parameters in inflationary cosmology, together with their likely physical origins and current observational constraints. At present, only upper limits exist for all parameters except $A_{\rm s}$ and~$n_{\rm s}$~\cite{Ade:2015lrj}.\footnotesize The plot \cite{Cabass:2016giw} shows the running $\mathrm{d}n_\mathrm{s}/\mathrm{d}\ln k$ as function of $\epsilon_1$ for different values of the NLO slow-roll parameters. Notice that the uncertainty in $\ns$ is smaller than the thickness of the lines in the plot. In red we show $\mathrm{d}n_\mathrm{s}/\mathrm{d}\ln k$ for $\mathrm{NLO} = 0$, while the blue line is its asymptotic value $(1-\ns)^{2}\approx 0.0013$. The black line shows the predictions of the Starobinsky model \cite{Starobinsky:1980te} (with $N$ going from $20$ to $70$), with the yellow dot being its prediction for $N = 56$ (chosen to reproduce the observed value of $\ns$). The gray bands show the values of $\mathrm{d} n_\mathrm{s}/\mathrm{d}\ln k$ excluded (at $\limit{95}$) by \emph{Planck} $TT$, $TE$, $EE$ + lowP data, while the gray dashed vertical line shows the current bound on $\epsilon_1 = r/(16c_\mathrm{s})$ assuming $c_\mathrm{s} = 1$.
002239944 8564_ $$81265681$$s6623$$uhttp://cds.cern.ch/record/2239944/files/section_one_figures_Fig1c.png$$y00004 The effective number of modes defined in Eq. (\ref{numModes}) for $TT$ (left panel), $TE$ (middle panel), $EE$ (right panel) as a function of the multipole number $\ell $ for Planck (red line) and CORE (blue line) up to $\ell \approx 3000.$
002239944 8564_ $$81265682$$s6630$$uhttp://cds.cern.ch/record/2239944/files/section_one_figures_Fig1b.png$$y00003 The effective number of modes defined in Eq. (\ref{numModes}) for $TT$ (left panel), $TE$ (middle panel), $EE$ (right panel) as a function of the multipole number $\ell $ for Planck (red line) and CORE (blue line) up to $\ell \approx 3000.$
002239944 8564_ $$81265683$$s6794$$uhttp://cds.cern.ch/record/2239944/files/section_one_figures_Fig1a.png$$y00002 The effective number of modes defined in Eq. (\ref{numModes}) for $TT$ (left panel), $TE$ (middle panel), $EE$ (right panel) as a function of the multipole number $\ell $ for Planck (red line) and CORE (blue line) up to $\ell \approx 3000.$
002239944 8564_ $$81265684$$s53497$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_equilateral_all.png$$y00052 width=0.5\textwidth1-sigma contours in the $f_{\rm NL}$--$n_{\rm NG}$ plane, for local (left panel) and equilateral (right panel) scale-dependent bispectra. Pivot scale $k_P = 0.055 \, {\rm Mpc}^{-1}$.
002239944 8564_ $$81265685$$s101628$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_corem5_hi_D.png$$y00021 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for \Planck\ 2015 + BKP joint cross-correlation~\cite{Ade:2015tva} (left panel, results taken from \Ref{Martin:2016oyk}) and for CORE-M5 if SI is the fiducial model, as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$.Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265686$$s187715$$uhttp://cds.cern.ch/record/2239944/files/section_four_figures_CoreV4VsLiteBirdNefoldV00042R_120mm.png$$y00009 \footnotesize 68\% and 95\% CL 2D marginalized forecast regions for $(n_{\mathrm s}, r)$ for CORE-M5 (blue) and LiteBIRD (red). Three reference cosmologies are considered: a value for the tensor-to-scalar ratio consistent with the $R^2$ model ($r \approx 0.0042$), $r=0.001,$ and a third case in which the level of primordial gravitational waves is undetectably small (i.e., $r=0$). The green contours showing the 68\% and 95\% CL for Planck 2015 TT + lowP data combined with the BKP joint cross-correlation \cite{Ade:2015lrj} are also displayed for comparison. We show the predictions for natural inflation \cite{Freese:1990rb,Adams:1992bn} (purple band), the hilltop quartic model \cite{Boubekeur:2005zm} (orange discrete band), and power law chaotic \cite{Linde:1983gd} (light green discrete band) models, accounting for representative uncertainties in the post-inflationary era with $47 < N_* < 57$. These inflationary models consistent with the current data can be ruled out by CORE-M5. Note the logarithmic scale on the $y$-axis and that the pivot scale considered here is $k_* = 0.05$ Mpc$^{-1}$.
002239944 8564_ $$81265687$$s18858$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_EE_Equilateral_2.png$$y00047 width=0.45\textwidthExpected local (first row), equilateral (second row), orthogonal (third row) $f_{\rm NL}$ error bars, obtained by combining temperature and polarization, on the left side, and using only polarization data, on the right side, for the different CORE configurations. The forecasts are compared to current constraints from {\it Planck}.
002239944 8564_ $$81265688$$s21852$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_TE_Orthogonal_2.png$$y00048 Caption not extracted
002239944 8564_ $$81265689$$s105363$$uhttp://cds.cern.ch/record/2239944/files/section_five_figures_litecore120hi_D.png$$y00022 Information gain on reheating measured by the Kullback-Leibler divergence $D_\mathrm{KL}$ (in bits) on the reheating parameter $\ln R_{\mathrm{reh}}$ for LiteCORE-120 (top panels), CORE-M5 (middle panels) and optCOrE+ (bottom panels), for SI (left panels) and MHI (right panels) as fiducial models as a function of the Bayesian evidence normalized to the best model. Each circle represents one model and the $x$-axis is divided into Jeffreys categories. The circle color traces the mean value of the reheating parameter $\ln R_{\mathrm{reh}}$. The yellow band represents the 1$\sigma$ deviation around the mean value for $D_\mathrm{KL}$. With CORE-type missions, only a few models would remain favored (compared to $52$ currently with Planck) and one would gain between $2$ and $3$ bits of information about reheating on average (compared to $0.8$ with Planck).
002239944 8564_ $$81265690$$s9361$$uhttp://cds.cern.ch/record/2239944/files/section_seven_figures_JV_ns_alpha_special_cases_core_final_2d.png$$y00039 One-parameter isocurvature extensions to the adiabatic $\Lambda$CDM model. Left: an ``Axion'' model (uncorrelated adiabatic and isocurvature modes, with $n_{\cal II} = 1$, $\cos\Delta=0$). Middle: ``Curvaton I'' (fully correlated adiabatic and isocurvature modes, with $n_{\cal II} = n_{\cal RR}$, $\cos\Delta=+1$). Right: ``Curvaton II'', (fully anti-correlated adiabatic and isocurvature modes, with $n_{\cal II} = n_{\cal RR}$, $\cos\Delta=-1$). The simulated \Planck\ and LiteBIRD datasets contain only TT,TE,EE, but the simulated CORE-M5 is presented both with and without the lensing potential PP (but not with the BB nor delensing information). The real \Planck\ data contain also a noisy B-mode at low-$\ell$, consistent with zero. CORE-M5 has capability for an unprecedented constraining power in the curvaton models.
002239944 8564_ $$81265691$$s21833$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_USqzdModFor.png$$y00053 Signal-to-noise ratio of $C_\ell ^{\mu T}$ from a modified initial state as a function of $\ell_{max}$ for a fixed occupation number $N=0.5$. In our forecast we considered a `conservative' and an `optimistic' case. In the optimistic case we computed the signal-to-noise ratio by coadding the $4$ lowest noise combinations of frequencies in the range $[80,200]$ GHz that can be obtained from the LiteCORE, COrE$+$ and CORE configurations. For COrE$+$ we use $\Delta T = 9.1$ $\mu$K arcmin, ${\rm FWHM} = 10.5$ arcmin at $80$ GHz and $\Delta T = 6.5$ $\mu$K arcmin, ${\rm FWHM} = 9.3$ arcmin at $90$ GHz. All other channels and experimental configurations are shown in the Tables of Section~\ref{sec:three}. In the conservative case we instead take only the best couple of frequencies for each configuration. This choice is justified by the fact that the issues of component separation and relative calibration of channels are not accounted for in this type of analysis. Therefore it is not obvious that all the channels which are assumed clean for standard temperature analysis will also be available for $T$-$\mu$ measurements. We see that the signal saturates in the first few multipoles. For each configuration of the satellite are shown models with both $\theta_k =$ const (left) and $\theta_k \approx k\eta_0$ (right). LiteCORE-80 and LiteCORE-120 perform essentially in the same way, due to the saturation of the signal after the first few multipoles, and are described by a single line. $S/N$ for $\it Planck$ is a factor $\approx 100$ lower than for CORE.
002239944 8564_ $$81265692$$s39572$$uhttp://cds.cern.ch/record/2239944/files/section_two_figures_Features.png$$y00006 Example of a feature in the CMB power spectrum relative to the corresponding $c_{\rm s} = 1$ featureless one $C_{\ell,0}$ due to a transient reduction in the speed of sound $c_{\rm s}$ in single-field slow-roll inflation. CORE's approximated $68\%$ error bars are represented in increasingly darker shades of green for the configurations in Tables~\ref{tab:CORE-bands} and \ref{tab:specifications} in Sec.~\ref{sec:three}. LiteBIRD's sensitivity corresponds to the orange-shaded region. The dashed line is the standard deviation due to cosmic variance. CORE's increased sensitivity in the polarization power spectrum is cosmic variance limited up to $\ell\approx 1500.$ This power spectrum feature is accompanied by a correlated feature in the bispectrum, given in~(\ref{DeltaBispectrum}).
002239944 8564_ $$81265693$$s16700$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_ballardini_wiggles_2.png$$y00034 Left: As in Fig.~\protect\ref{fig:PPSR}, but now reconstructing a simulated power spectrum with low frequency sinusoidal logarithmic oscillations (black line), with $A_{\log}=0.03, \omega_{\log}=3$ and $\psi_{\log}=0$. Right: constraints on superimposed sinusoidal logarithmic oscillations with an higher frequency, comparable to those providing a best-fit to \Planck\ 2015 data \cite{Ade:2015lrj}. Whereas a blind reconstruction technique is unsuitable for high frequency oscillations, CORE-M5 performs better than LiteBIRD or \Planck\ in combination with Euclid spectroscopic galaxy clustering for this type of parameterized features. Contours indicate 68\% confidence intervals.
002239944 8564_ $$81265694$$s20914$$uhttp://cds.cern.ch/record/2239944/files/section_eight_figures_compare_experiments_TE_Equilateral_2.png$$y00046 width=0.45\textwidth
002239944 8564_ $$81302620$$s3669$$uhttp://cds.cern.ch/record/2239944/files/section_six_figures_finalCOrE_tensors_featureless.png$$y00035 Simultaneous reconstructions of the tensor (lower, green) and scalar (upper, red) power spectra for CORE-M5 forecast if \(r=0.01\).
002239944 960__ $$a13
002239944 980__ $$aARTICLE