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Abstract

We investigate U(1)n supersymmetric Born–Infeld Lagrangians with a second non–linearly

realized supersymmetry. The resulting non–linear structure is more complex than the square

root present in the standard Born–Infeld action, and nonetheless the quadratic constraints

determining these models can be solved exactly in all cases containing three vector multiplets.

The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry

structures are associated to projective cubic varieties.

∗On leave of absence from Department of Physics and Astronomy, U.C.L.A., Los Angeles CA USA

∗∗On leave of absence from Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa ITALY

1

http://arxiv.org/abs/1412.3337v2


1 Introduction

Supersymmetric off–shell generalizations of the N = 1 Born–Infeld (BI) Lagrangian [1–3]

have been proposed in the literature for the case of n Maxwell fields. They all share the

property of reducing to the standard BI for n = 1. The latter, however, admits a second

non–linearly realized supersymmetry [4], and can be interpreted as a low–energy effective

action for the partial N = 2 → N = 1 breaking of rigid supersymmetry. Ref. [5] recently

presented a multi–field generalization of the BI action that, unlike the previous proposals

in [6–9], also admits a second non–linearly realized supersymmetry [10, 11]. This property

makes the construction unique. The goal of the present investigation is to perform a detailed

analysis of the n = 3 case.

The action in [5] is built starting from n N = 1 chiral multiplets and n N = 1 vector

multiplets, which are building blocks of N = 2 vector multiplets. Our starting point extends

the setting that Antoniadis, Partouche and Taylor connected in [12] to the partial breaking

of global N = 2 supersymmetry. For n = 1 the construction reduces to the standard N = 1

BI action. However, for n > 1 the generalization is non trivial, rests on the holomorphic

cubic prepotential of N = 2 rigid special geometry and also affords a natural interpretation

in terms of projective cubic (n− 2)–varieties.

This article is organized as follows. In Section 2 we review the non–linear N = 2 con-

straints that define the N = 2 multi–field BI actions. In all n = 2 [5] and, as we shall see, also

in the n = 3 cases, these constraints can be solved explicitly, in spite of the fact that they are

coupled systems of n quadratic equations. In Section 3 we summarize the classification of

projective cubic curves [13], whose singularity structure (see Table 1) underlies the possible

independent sets of N = 2 constraints (see eqs. (2.7) and (2.8)). These are connected to

the orbits of the three–fold symmetric projective representation P (Sym3(Rn)) of SL(n,R),

since the BI constraints are also invariant under an overall rescaling. In particular, for n = 3

the orbits are classified, up to a rescaling, by the two invariants P4 (of degree four) and Q6

(of degree six) [14] of P (Sym3(Rn)) when they do not vanish. This classification proceeds

in two steps: first the classification over the complex numbers (Section 3.1), and then its

refinement over the real numbers (Section 3.2). Most cases are associated to degenerations

of cubic curves where the SL(3, R) invariants P4 and Q6, the discriminant I12 = P 3
4 − 6Q 2

6 ,

or some of their derivatives vanish. Section 4 is devoted to the contribution of the cubic
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polynomial to the kinetic matrix, which is generally of the form

dAB = dABC qC , (1.1)

with real and positive qc, and in particular to its positivity properties. When this Hessian

matrix is positive definite, as stressed in [5], a simplification occurs: there is no need to

introduce the additional CAB matrix, and therefore the resulting models are more akin to

the standard n = 1 BI action. The positivity constraints on the Hessian matrix for the

different models are summarized in Table 2. The paper ends in Section 5, which collects our

conclusions. Explicit solutions of the BI constraints corresponding to the degenerate families

of cubic curves with (P4, Q6) 6= (0, 0) are collected in Appendix A, where we illustrate four

cases, corresponding to I12 6= 0, I12 = 0, ∂I12 = 0, and ∂ 2I12 = 0.

2 U(1)n N = 2 Born–Infeld actions

We consider generalized BI Lagrangians that arise from the superspace nilpotency constraints

(see ref. [5] for more details)

dABC

[
WB WC + XB

(
mC − D̄2 X̄C

)]
= 0 , (2.1)

dABC XB XC = 0 , (2.2)

dABC XB WC = 0 , (2.3)

and are also invariant under a second, non–linearly realized supersymmetry. This property

makes this multi–field generalization very different from the one proposed in [8], which is

not invariant under a second supersymmetry and therefore is not connected to the problem

of partial breaking 1

The bosonic part of the generalized BI actions is determined by the θ 2–component of the

constraints (2.1),

dABC

[
GB

+ ·GC
+ + FB

(
mC − F̄C

)]
= 0 , (2.4)

where the GA
+ are the self–dual curvatures of the Maxwell field strengths, and

ℜ
(
GA

+ ·GB
+

)
= GA ·GB , ℑ

(
GA

+ ·GB
+

)
= GA · G̃B . (2.5)

1In proving the invariance of the action [5], one needs the cubic Fierz identity

dABC W A
α W B

β W C
γ = 0 ,

where W A
α = D̄ 2DαV

A is the chiral field strength of the N = 1 vector multiplet V A [15].
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Here FA are the auxiliary–field components of the chiral multiplets XA, whose first compo-

nents will be denoted by xA.

The real parts of eqs. (2.4) are n quadratic equations that are generally coupled. Letting

HA =
mA

2
− ℜFA , RAB = GA ·GB +

mA mB

4
− ℑFB ℑFC , (2.6)

they take the form

dABC

(
HB HC − RBC

)
= 0 . (2.7)

On the other hand, the imaginary parts of eqs. (2.4) are n linear equations for ℑFA:

dABC

(
GB · G̃C + ℑFB mC

)
= 0 . (2.8)

The bosonic portions of the resulting Lagrangians can be expressed in terms of the FA

and of the real magnetic changes mA, which enter the quadratic system (2.1). They also

involve the additional complex charges eA = e1A + i e2A, as

LBose = e2A

(
mA

2
− HA

)
+ CAB

(
HAHB − RAB

)
+ ǫ1A ℑFA . (2.9)

As explained in [5], the real symmetric matrix CAB is needed whenever the matrix dAB

in eq. (1.1) is not positive definite. Moreover, by a change of symplectic basis one could also

eliminate the real parts e1A of the electric charges, which multiply total derivatives. These

Lagrangians combine, in general, a quadratic Maxwell–like term with additional higher–order

contributions. For n = 1, or whenever the matrix dAB of eq. (1.1) is positive definite, one is

not compelled to introduce the CAB and the Lagrangian takes the simpler form

LBose = e2A

(
mA

2
− HA

)
+ ǫ1A ℑFA , (2.10)

where the second contribution is a total derivative. In all cases, however, the difficult step

in the construction of the Lagrangians is the solution of the quadratic constraints, and in

particular of the non–linear ones given in eq. (2.7).

In principle, for n = 3 the system should lead to an eight–order equation, which cannot

be solved algebraically in general. However, as we shall see, only in the case with I12 6= 0 is

one led to a quartic equation, while in all other cases with I12 = 0 the system (2.7) leads to

cubic or biquadratic equations, or even to simple radicals.
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Let us stress that the U(1)n actions of eq. (2.9) are very different from others proposed

earlier in the literature. In fact, we claim that they are the only ones that are invariant

under a second non–linear supersymmetry, even if only N = 1 supersymmetry is manifest.

A second supersymmetry of the form

δW A
α =

(
mA − b D̄2X̄ A

)
ηα − 4 i b ∂αᾱX

A η̄ᾱ , (2.11)

δX A = − 2 W αA ηα (2.12)

was in fact preserved all the way in our construction, where we started from a linear model

with non–renormalizable couplings, an n–field generalization of the one proposed in [12]. Let

us mention here that the goldstino superfield is [5]

Wg α =
(
e2A mA

)
−

1

2 e2B WB
α , (2.13)

which indicates that the N = 2 supersymmetry breaking scale is

E =
(
e2A mA

) 1

4 . (2.14)

3 Invariant polynomials and orbits of the 10 of SL(3, R)

The cubic polynomials that define the special geometry are of the form

U =
1

3!
dABC xA xB xC , (3.1)

with dABC real. For n = 3 we shall let x1 = x, x2 = y and x3 = z, and our analysis will rest on

the classification of homogeneous cubic polynomials over R(x, y, x) presented in [13, 14, 16].

We shall encounter 15 distinct types of polynomials over R, which were classified according

to the different degenerations of the cubic curves defined by U = 0. The classification rests

on the discriminant of the cubic, I12, a polynomial of degree 12, and on the two invariants

P4 and Q6 [14],

P4 = da1 a2 a3 db1 b2 b3 dc1 c2 c3 dd1 d2 d3ǫ
b1 a1 d1ǫc2 d2 a2ǫb3 c3 a3ǫd3 c1 b2 , (3.2)

Q6 = da1 a2 a3 db1 b2 b3 dc1 c2 c3 dd1 d2 d3 df1 f2 f3 dh1 h2 h3
ǫh3 a1 b1ǫf3 c1 a2ǫd3 b2 c2ǫc3 f2 d2ǫa3 h2 f1ǫb3 d1 h1 ,

of degrees 4 and 6, built out of the 10 of SL(3, R), which determine I12 according to

I12 = P 3

4 − 6Q2

6 , (3.3)
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in a given normalization convention.

For a generic non–singular cubic I12 6= 0, while for singular ones I12 = 0. The singular

cases can be further classified in terms of three types of degenerations, depending on whether

the curve U = 0 has singular points (A), is the product of a conic and a line, U = L × Q

(B), or is a product of three lines, U = L× L× L. As in other contexts, it is convenient to

begin by considering the classification over the complex numbers before turning to its finer

counterpart over the reals.

3.1 Classification over the complex

Over the complex there are eight degenerate cases [17]. Two of them are of type (A), that

is singular points which are either a node or a cusp. Two are of type (B), and one can

distinguish them further according to whether the line intersects the conic or is tangent to

it. Finally, four are of type (C), and one can distinguish them further according to whether

the lines intersect pairwise (triangle), or all intersect at the same point, or two are concurrent

and intersect the third, or finally all three are concurrent.

Figure 1: Different types of degenerations for complex curves, I12 = 0.

All these cases fall in two groups, distinguished by the pair of values of P4 and Q6 (see

Table 1) . When these do not vanish, ∂I12 and ∂ 2I12 may or may not vanish. Moreover,

when P4 and Q6 both vanish, different derivatives of these invariant polynomials may or may

not vanish.

There is one case with P4 and Q6 not simultaneously zero in each of the (A), (B) and (C)

cases of degenerations. In (A) it is the node (∂I12 6= 0), in (B) it is the line intersecting the

conic in two points (∂I12 = 0), while in (C) it is the triangle (∂I12 = ∂ 2I12 = 0). There are

6



R C Polynomial P4 Q6 ∂I12 ∂P4 ∂Q6 ∂2I12 ∂2P4 ∂2Q6

A1 A1
c −x3 − x2z + y2z 8

27

16

243
6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

A2 A1
c −x3 + x2z + y2z 8

27
− 16

243
6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

A3 A2
c −x3 + y2z 0 0 0 6= 0 6= 0 6= 0 6= 0 6= 0

B1 B1
c (x+ y + z)(x2 + y2 + z2) 8

3
−16

9
0 6= 0 6= 0 6= 0 6= 0 6= 0

B2 B1
c x(x2 + y2 − z2) 8

27

16

243
0 6= 0 6= 0 6= 0 6= 0 6= 0

B3 B1
c z(x2 + y2 − z2) 8

27
− 16

243
0 6= 0 6= 0 6= 0 6= 0 6= 0

B4 B2
c (x+ z)(x2 + y2 − z2) 0 0 0 6= 0 0 0 6= 0 6= 0

C1 C1
c 6xyz 24 48 0 6= 0 6= 0 0 6= 0 6= 0

C2 C1
c x(y2 + z2) 8

27
− 16

243
0 6= 0 6= 0 0 6= 0 6= 0

C3 C2
c xy(x+ y) 0 0 0 0 0 0 6= 0 6= 0

C4 C2
c x(x2 + y2) 0 0 0 0 0 0 6= 0 6= 0

C5 C3
c xy2 0 0 0 0 0 0 6= 0 0

C6 C4
c x3 0 0 0 0 0 0 0 0

Table 1: Classification of cubic curves with I12 = 0

five cases with (P4, Q6) = (0, 0), one in (A), one in (B) and three in (C). In (A) there is the

cusp, with ∂P4 and ∂Q6 both different from zero, while in (B) there is the line tangent to

the conic (∂P4 6= 0, ∂Q6 = 0). Finally, in (C) there are three cases: L × L× L intersecting

at a single point, (∂ P4, ∂ Q6) = (0, 0), two concurrent lines (again (∂ P4, ∂ Q6) = (0, 0), but

(∂ 2 P4 6= 0, ∂ 2Q6 = 0)), and three concurrent lines (also (∂ 2 P4, ∂
2Q6) = (0, 0)). Note that

all nonzero values of P4 and Q6 in Table 1 correspond to the same value, 6, of the ratio

P 3
4 /Q

2
6, since I12 = 0. For I12 6= 0 there is a one–parameter family of projective invariants

(see eq. (3.5)).

For each of these models there is a representative normal form, which allows a systematic

exploration of different realizations of special geometry with three vector multiplets. The

Fayet–Iliopoulos terms of the N = 2 theory are in this case SU(2) triplets of Sp(6, R) charge

vectors [5].
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3.2 Classification over the reals

For physical reasons what matters in applying these considerations to the N = 2 La-

grangians and their corresponding non–linear BI limit is the classification over the re-

als. The classification over the reals reflects the Sp(2n,R) symplectic structure of rigid

special geometry [18–20], with GL(n,R) maximally embedded in Sp(2n,R). Note that

PGL(n,R) ≃ SL(n,R). Now the different cases increase from 9 to 15, and in the following

we are going to enumerate them.

To begin with, there are now two families with I12 6= 0, since the sign matters. We

shall refer to them as “time–like” ( σ < − 1

2
) and “space–like” ( σ > − 1

2
) orbits. They all

correspond to the representative polynomial given by the second canonical form [21]:

U(x, y, z) = x 3 + y 3 + z 3 + 6 σ x y z ,

(
σ 6= − 1

2

)
, (3.4)

For these cases one has the following values of discriminant and invariants:

I12 = − 216 (1 + 8 σ3)3 , P4 = 24 σ(−1 + σ3) Q6 = 6 (−1 + 20 σ3 + 8 σ6) . (3.5)

The remaining 13 cases refine the 8 cases of (A)–type, (B)–type and (C)–type degener-

ations, and the conditions on the invariant remain the same. Over the reals, however, the

splitting goes as follows: there are 3 cases in (A), 4 cases in (B) and 6 cases in (C) (see Table

1).

In family (A) there are two options corresponding to a hyperbolic or an elliptic node, in

family (B) the conic can be a circle or a hyperbola, and in case (C) a pair of lines can be real

or made up of complex conjugates. The new real cases corresponding to (P4, Q6) 6= (0, 0)

are distinguished by the sign of Q6. There is one case for each of the (A), (B) and (C)

families where this occurs, so that over the reals we have pairs of cases of type (P4, Q6) and

(P4,−Q6). Note that for σ = −1

2
the models with I12 6= 0 degenerate into the case C2.

4 Properties of the kinetic matrix

In solving for the BI Lagrangians that correspond to the preceding classification, it is impor-

tant to consider also the positivity properties of the dAB Hessian matrix of eq. (1.1), where

qC = ℑXC.
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As was the case for the n = 2 constructions described in [5], in most of the examples the

matrix dAB is not positive definite. An additional ingredient, the CAB matrix, is thus needed

to have proper kinetic terms, which are determined in general by

ℑUAB = CAB + dABC ℑXC . (4.1)

However, there are some non–trivial cases where multiplet mixing occurs in which the matrix

is positive definite, so that one can work with CAB = 0. This can be ascertained resorting to

Sylvester’s criterion [22], and thus analyzing the signs of all diagonal minors of the Hessian

matrices. In this fashion one can see that positivity holds in models with I12 6= 0 for certain

ranges of values for the σ parameter and also in the model B1 in Table 1 (see Table 2).

The models with (P4, Q6) 6= (0, 0) are generically more entangled. The triangle has

∂ 2I12 = 0, the line not tangent to the conic has ∂I12 = 0, while the node has ∂I12 6= 0.

For illustrative purposes, in the Appendix we give the solutions of the non–linear con-

straints (2.7) and (2.8) for one example with (P4, Q6) 6= (0, 0) of each family belonging to the

classes (A), (B) and (C), as well as for the non–degenerate cases with I12 6= 0. In class (A)

the solution involves up to cubic radicals, in class (B) it arises from a biquadratic equation

and in class (C) it simply involves ratios of simple radicals. Finally, the I12 6= 0 cases result

in a fourth–order equation. The degree of the equation that finally determines the solution

is thus higher if the cubic is less degenerate, but in all cases the non–linear constraints have

an algebraic solution.

5 Conclusions and outlook

In this investigation, which extends the results of ref. [5], we have constructed examples of

U(1)3 supersymmetric BI actions that are invariant under a second non–linearly realized

supersymmetry. The complications met in solving the BI constraints (see eqs. (2.6)–(2.8))

reflect the properties of the dABC coefficients, which are related to particular choices of a

projective cubic curve. Generically, the Hessian matrix ∂A ∂B U of the cubic polynomial

is not positive definite, which makes the introduction of a quadratic term depending on

another matrix CAB necessary. Still, the non–linear BI action can be computed in this case

as discussed in [5]. For n > 3 projective cubic n − 2 varieties come into play, and a full

classification of the resulting options is required.
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Polynomial Determinant Minor2 Minor1

x3 + y3 + z3 + 6 σ x y z x y z (1 + 2 σ3) xy − z2 σ2 x

− (x3 + y3 + z3) σ2

−x3 − x2z + y2z 3xy2 − x2z + y2z −z
9
(3x+ z) −x− z

3

−x3 + x2z + y2z xy2

9
− 1

27
(x2 + y2) z z

9
(−3x+ z) −x+ z

3

−x3 + y2z xy2

9
−xz

3
−x

(x+ y + z) (x2 + y2 + z2) 1

27
(x+ y + z) [x2 + y2 2

9
(x2 + 4xy + y2) x+ y+z

3

+8yz + z2 + 8x(y + z)] +1

9
[4(x+ y)z + z2]

x (x2 + y2 − z2) − x
27
(3x2 − y2 + z2) 1

9
(3x2 − y2) x

z (x2 + y2 − z2) − z
27
(x2 + y2 + 3z2) z2

9

z
3

(x+ z) (x2 + y2 − z2) − 4

27
(x+ z)3 1

9
[(x+ z)(3x+ z)− y2] x+ z

3

6 x y z 2 x y z −z2 0

x (y2 + z2) − x
27
(y2 + z2) −y2

9
0

x y (x+ y) 0 1

9
(−x2 − xy − y2) y

3

x (x2 + y2) 0 1

9
(3x2 − y2) x

x y2 0 −y2

9
0

x3 0 0 x

Table 2: Minors of the Hessian matrices
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Many related problems can be discussed in the context of non–linear theories of electro–

magnetic fields. In particular, the corrections to the Coulomb force, which in standard

BI can be computed exactly, or simply the bounds on the electric fields, which arise from

reality requirements, deserve a further investigation. However, we have gathered evidence

that when the dAB matrix is positive definite the allowed electric fields are bounded in

the absence of magnetic fields, in analogy with what happens for the standard Born–Infeld

action. On the other hand, we have gathered evidence that some electric fields become

unbounded when this condition does not hold. Moreover, we expect that the U(1)n actions

enjoy a self–duality property as in the n = 1 case, but unlike in [8] we do not expect that

the U(1)n duality extend to U(n) as proposed in [7–9]. It would be clearly of interest to

couple these BI systems to N = 2 supergravity [23], and also to clarify their relation to other

brane systems [24]. “Brane supersymmetry breaking” [25], where all supersymmetries are

non–linearly realized, was similarly connected to supergravity in [26]. The N = 4 extensions

of this class of models [24,27–29] can also be a fruitful area of investigation, with potentially

important lessons for the ill–understood non–abelian generalization of the BI construction.

Our experience with a similar problem, the coupling of the Volkov–Akulov [30] multiplet to

supergravity, which was constructed in a similar language in [31], makes us expect that it

should be possible to couple these types of multiplets, which possess an N = 2 non–linearly

realized supersymmetry, to N = 2 supergravity [32], and to explore the consequences of

these interactions.
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A Explicit solutions of the constraints

In this Appendix we consider the generalized BI Lagrangians for the non–degenerate family

of eqs. (3.4) and (3.5), and for the less degenerate examples belonging to the three families

(A), (B) and (C) in Table 1. The case of interest corresponding to the (A) family is A1 in

the first row (I12 = 0), and similarly for the (B) family it is B1 in the fourth row (∂I12 = 0),

while for the (C) family it is C1 in the eight row (∂ 2I12 = 0). Note that in all the ensuing

analysis the weak–field limit provides unique root determinations with positive arguments.

In that limit, in fact, the infinitesimal solutions δ HA, where

HA =
mA

2
+ δ HA , (A.1)

are captured by the model–independent expressions

δ HA = (dm
AB)

− 1 dBPQ GP ·GQ , (A.2)

where

dm
AB = dABC mC , (A.3)

and dm
AB is always invertible in the three–field case (see Table 2). An expression that is

identical up to a sign gives the solution of eq. (2.8) as

ℑFA = − (dm
AB)

− 1 dBPQ GP · G̃Q , (A.4)

since in the infinitesimal everything is linear.

Let us begin by considering the I12 6= 0 case, where the representative polynomial and the

corresponding invariants are given in eqs. (3.4) and (3.5). Notice that I12 ≥ 0 for σ ≤ − 1

2
,

while it is negative in the remaining interval. The solutions are triality–symmetric and are

determined by the zeroes of a fourth–order polynomial for H i. To begin with,

ℑF i =
Gi · G̃imj mk + Ai σ + Bi σ2 + C i σ3

[(mi)3 + (mj)3 + (mk)3] σ2 − mi mj mk (1 + 2σ3)
, (A.5)

where (i, j, k) = 1, 2, 3, (i 6= j 6= k), and moreover

Ai = 2Gj · G̃k mj mk − Gj · G̃j (mk)2 − Gk · G̃k (mj)2 ,

Bi = Gj · G̃j mi mj + Gk · G̃k mi mk − Gi · G̃i (mi)2

− 2Gi · G̃j (mj)2 − 2Gi · G̃k (mk)2 ,

C i = 2mi
(
−Gj · G̃k mi + Gi · G̃k mj + Gi · G̃j mk

)
. (A.6)
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On the other hand

H1 =

√√√√
A11A22

A22 + 2U σ
(
A33 σ +

√
A22 A33 U2 − 2A2

22 U σ + A2
33 σ

2

) , (A.7)

where U is a solution of the fourth–order equation

U4
(
A2

11 − 4A22A33 σ
2
)

+ 4U3 σ2
(
A11 A33 + 2A2

22 σ
)

− 2A11A22 U
2
(
1 + 8 σ3

)

+ 4U σ2
(
A22 A33 + 2A2

11 σ
)

+ A2

22 − 4A11A33 σ
2 = 0 (A.8)

that is consistent with the weak–field limit. Here

Ai i = Ri i + 2 σRj k , (A.9)

with (i, j, k) = 1, 2, 3, (i 6= j 6= k), and there are no implicit sums. The other components

of H i can be obtained by a cyclic permutation of indices starting from the explicit form of

eq. (A.7). Two of these cases are simple: for σ = 0, when the polynomial is diagonal, and

for σ = −1

2
, when I12 = 0.

The other three examples are drawn from the degenerate cases in Table 1. The second

example concerns A1, and in this case the polynomial is

U(x, y, z) = − x3 − z
(
x2 − y2

)
. (A.10)

The corresponding solution rests on a bi–cubic. To begin with, the explicit form of ℑF i

reads

ℑF 1 =
m2

M

(
2G2 · G̃3m1 − 3G1 · G̃1m2 − 2G1 · G̃3m2

)

+
m1m3

M

(
G1 · G̃1 −G2 · G̃2

)
,

ℑF 2 =
m1

M

(
2G2 · G̃3m1 − 2G1 · G̃3m2 − 3G2 · G̃2m2

)

+
m2m3

M

(
G1 · G̃1 − G2 · G̃2

)
, (A.11)

ℑF 3 =
m1

M

(
2G1 · G̃3m3 + 3G2 · G̃2m3 − 6G2 · G̃3m2

)

+
m3

M

(
G2 · G̃2m3 − G1 · G̃1m3 − 2G2 · G̃3m2

)
,

where

M = 3m1 (m2)2 − (m1)2m3 + (m2)2m3 . (A.12)
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Moreover

H2 =
2R23H1

3R11 + 2R13 − 3 (H1)2
, H3 =

3R11 + 2R13 − 3 (H1)2

2H1
, (A.13)

and

H1 =
1

3

√

C + 2ℜ
[
e

2πi

3

(
B −

√
A
) 1

3

]
, (A.14)

where

A = −D3 + B2 , B = − (2R13 + 3R22)3 + 18C
(
R23

)2
,

C = 9R11 + 4R13 − 3R22 , D =
(
2R13 + 3R22

)2
+ 12

(
R23

)2
. (A.15)

The third example concerns B1, and the associated polynomial reads

U = (x + y + z)
(
x2 + y2 + z2

)
. (A.16)

In this case the solutions for H i are determined essentially by a bi–quadratic equation. To

begin with,

ℑF i =
1∑

n m
n [
∑

n(m
n)2 + 8 (mi mj + mi mk + mj mk)]

{
−Gi · G̃i

[
(mi)2

+ 9mi mj + 6 (mj)2 + 9mi mk + 20mj mk + 6 (mk)2
]
+Gj · G̃j

[
3(mi)2

+ mi mj + 3mi mk − 4(mk)2
]
+Gk · G̃k

[
3 (mi)2 +mi mk + 3mi mj − 4(mj)2

]

− 2Gi · G̃j
[
3mi mj + (mj)2 + 2mi mk + 6mj mk + 3 (mk)2

]

− 2Gi · G̃k
[
3mi mk + (mk)2 + 2mimj + 6mj mk + 3 (mj)2

]

+ 2Gj · G̃k
[
2 (mi)2 + 3mi mj + 3mimk + 4mj mk

]}
.

Moreover, the explicit solution for H i takes the form

H i =
1

6
√
3

√√√√αi − βi

√
8(AiAj + AiAk + AjAk)− 5(A2

i + A2
j + A2

k)

A2
i + A2

j + A2
k −AiAj −AiAk − AjAk

,

αi = −7(A3

j + A3

k) + 38A3

i + 3
[
9 (A2

j + A2

k)− 8Aj Ak

]
Ai

+9 (Aj + Ak)
(
AjAk − 4A2

i

)
,

βi = A2

j + A2

k + 10A2

i + 8AkAj − 10 (Aj + Ak)Ai , (A.17)

where

Ai = 3Ri i + Rj j + Rk k + 2
(
Ri j + Ri k

)
, (A.18)
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and i, j, k run over 1, 2, 3 and i 6= j 6= k.

Finally, the last non–trivial example concerns C1 in Table 1, for which

U = 6 x y z . (A.19)

The explicit form of ℑF i is in this case

ℑF i =
Gj · G̃k mi − Gi · G̃k mj − Gi · G̃j mk

mj mk
, (A.20)

and moreover

H i =

√
Ri j

√
Ri k

2
√
Rj k

, (A.21)

where the Ri j are defined in eq. (2.6). The explicit form of H i thus reads

H i =

√
−4ℑF iℑF j +mi mj + 4Gi ·Gj

√
−4ℑF i ℑF k +mi mk + 4Gi ·Gk

2
√
−4ℑF j ℑF k +mj mk + 4Gj ·Gk

, (A.22)

where (i, j, k) = 1, 2, 3 and i 6= j 6= k.

In all other cases of Table 1 the constraints can be solved in a similar way.

We have verified that the radial electric fields allowed for point sources are bounded in

case 3, where a positive definite dAB matrix exists, and are unbounded in cases 2 and 4. The

family of models with I12 6= 0 clearly presents transition points between these two regimes,

which depend on σ and on the m–charges: close to σ = 0 the allowed ranges are bounded,

while for large positive or negative values of σ they are unbounded.
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