

The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

On behalf of the CMS ECAL group

O. Holme¹, P. Adzic², D. Di Calafiori¹, G. Dissertori¹, L. Djambazov¹, D. Jovanovic², W. Lustermann¹, S. Zelepoukine^{1,3}

Compact Muon Solenoid (CMS) Electromagnetic Calorimeter (ECAL) Detector Control System (DCS)

CMS ECAL consists of 3 partitions:

- Barrel (EB) scintillation crystals
- Endcap (EE) scintillation crystals
- Preshower (ES) silicon sensors

Each partition has two

- Minus side

halves:

Plus side

Operational activities

During LHC data taking and During long LHC shutdown: short technical stops:

- 24/7 on-call support
- Only minor software and hardware upgrades
- R&D for upgrades

- Reduced support load
- Only short periods of detector powering
- Opportunity for major system upgrades

Precision temperature monitoring (PTM) upgrade

Embedded Local Monitor Board (ELMB) based monitoring Measures EB & EE temperatures with high precision

- System has been running successfully for several years
- Weaknesses identified in powering system

New powering architecture designed and installed

- Independent powering for Plus and Minus side
- Individual switching of power lines after distribution

Minimizes impact of single failures Problems can be isolated from the rest of the system

Software consolidation and merging

Legacy elements of the code removed Duplicated code and implementations removed Code base reduced in size by over 50%

Migration to Dell M610 Blades

- DCS can run on fewer, more powerful servers
- Independent sub-applications must run side-by-side
- Compatibility issues were identified and removed

Sub-applications merged onto 3 hosts Server 3 Server 2 Identify and Server 1 resolve App2 App1 incompatibilities Server 15 App15 App3 App4

Removing all incompatibilities enabled any merging scheme to be adopted Optimal merging schema chosen to minimize I/O complexity

Server 2

App2

Software maintenance load is reduced Reduced from 15 to 3 hosts with application merging

EB & EE humidity monitoring upgrade

New front-end designed and built by CMS Belgrade Group

- 4 units to excite and monitor all EB & EE humidity probes
- Modbus protocol to interface with supervision software

Humidity probes

Readout unit calibration performed at CERN

- Commercially calibrated reference probe
- Humidity generator to set humidity levels
- Automated control and data acquisition
 - Arduino open-source hardware platform
 - WinCC Open Architecture (OA) control software
- 4th order polynomials convert raw data to humidities

Readable detector humidity range extended to 10-70% Fully calibrated units have been installed in CMS

ES bias voltage monitoring

16 new distribution boards deployed in 2012 80 ELMBs to monitor current in distributed channels ELMB reads voltage from passive resistor networks

Unexpected relationship between bias current & ELMB readings

Circuit should be linear, but nonlinearities are seen More laboratory studies required to characterize each channel

Deploying upgrades

Step-by-step deployment following laboratory testing Validation period in production environment Essential to avoid disruption to other CMS ECAL test activities

Upgrade	Status
EB & EE humidity monitoring upgrade	Calibrated & deployed
ES monitoring upgrade	Calibration in progress
Consolidated and merged software	Deployed, validation in progress