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ABSTRACT: Quiver quantum mechanics is invariant under Seiberg duality. A mathematical
consequence is that the cohomology of the Higgs branch moduli space is invariant under
mutations of the quiver. The Coulomb branch formula, on the other hand, conjecturally
expresses the Poincaré/Dolbeault polynomial of the Higgs branch moduli space in terms
of certain quantities known as single-centered indices. In this work we determine the
transformations of these single-centered indices under mutations. Moreover, we generalize
these mutations to quivers whose nodes carry single-centered indices different from unity.
Although the Higgs branch description of these generalized quivers is currently unknown,
the Coulomb branch formula is conjectured to be invariant under generalized mutations.
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1 Introduction and summary

Originally introduced in order to describe D-branes at orbifold singularities [1], quiver
quantum mechanics has become a powerful tool for determining the spectrum of BPS
states both in four-dimensional gauge theories with A/ = 2 global supersymmetries [2-11]
and in four-dimensional type II string vacua with the same amount of local supersymme-
try [3, 12-15]. Physically, quiver quantum mechanics encodes the low energy dynamics of
open strings stretched between D-brane constituents, and BPS bound states are identified
as cohomology classes on the Higgs branch. Mathematically, the latter is interpreted as
the moduli space of semi-stable quiver representations [16].

For quivers without oriented loops, such that the superpotential vanishes, the Higgs
branch cohomology can be computed systematically [17]. Equivalently, it can be computed
on the Coulomb branch, by studying the quantum mechanics of a set of point-like charged
particles associated with the nodes of the quiver, and interacting by Coulomb and Lorentz-
type forces according to the number of arrows between any two nodes [13]. The classical
moduli space of such multi-centered solutions is a finite dimensional compact symplectic
space [18], and the corresponding supersymmetric quantum mechanics [19-21] can be solved
using localization techniques [19, 22, 23] (see [24] for a recent review). Agreement between
the two approaches for any choice of stability condition (equivalently, Fayet-Iliopoulos or
FI parameters) was demonstrated recently in [23, 25].

For quivers with loops, the situation is much more involved: on the Higgs branch side,
there is currently no systematic way to compute the cohomology of a quiver with generic
superpotential, except for Abelian quivers which can be treated by ad hoc methods [26-29].
On the Coulomb branch side, the BPS phase space is in general no longer compact, due to



the occurence of scaling solutions [14, 30] where three or more constituents approach each
other at arbitrary small distance. While the symplectic volume of this phase space is still
finite [18, 19], the number of associated Coulomb branch states fails to match the number
of states on the Higgs branch, by an exponential amount [14]. Based on the observation
on simple cases that the discrepancy originates solely from the middle cohomology (more
precisely, the Lefschetz singlet part thereof) and is insensitive to wall-crossing [26], it was
proposed in [29] that the isomorphism between the Coulomb and Higgs branch could be
restored by postulating the existence of new Coulomb branch constituents, behaving as
point-like particles carrying composite charge v and internal degrees of freedom with index
Qg(7), insensitive to the choice of stability condition. Conjecturally, the Poincaré-Laurent
polynomial of the quiver moduli space (defined in (1.2) below) is expressed in terms of
these invariants, known as single-centered indices (or indices associated with pure Higgs,
or intrinsic Higgs states) through the Coulomb branch formula (see (1.3)). Defining and
computing the single-centered indices Qg(7y) directly remains an open problem.

While there is no general prescription for computing the Poincaré-Laurent polyno-
mial of a quiver with generic superpotential, it is known to be invariant under specific
transformations of the quiver known as mutations [31-33]. Quiver mutation was first in-
troduced in the context of ADE quivers [34], and is one of the basic principles of the theory
of cluster algebras [35]. In terms of the quiver quantum mechanics descriptions of BPS
bound states, mutations are a manifestation of Seiberg duality [36-42], and arise when
the splitting between BPS and anti-BPS states is varied [9, 15, 43, 44]. This happens in
particular when the moduli are varied around a point where one of the constituents of the
bound state becomes massless, and is responsible for the monodromy transformation of the
BPS spectrum [15, 44]. A natural question is to determine the action of mutations on the
single-centered invariants {2g(7y) appearing in the Coulomb branch formula.

From the point of view of the Coulomb branch formula, however, quiver moduli spaces
are but a very special case where the basis vectors associated to the nodes of the quiver
carry unit index, Qg(v;) = 1 and Qg(¢;) = 0 if £ > 1 (mathematically, the nodes represent
spherical objects in the derived category of representations). Formally, one could very
well keep the same quiver topology but associate different indices Qg(7;) to the basis
vectors and multiples thereof, and use the Coulomb branch formula to produce a set of
symmetric Laurent polynomials satisfying the standard wall-crossing properties. We refer
to such quivers with non-standard single-centered indices as generalized quivers, and to the
corresponding Laurent polynomials as generalized quiver invariants. Ref. [19] showed that,
in the case of quivers without closed loops, such generalized quivers appear in wall-crossing
formulas for Donaldson-Thomas invariants [32, 45]. Whether or not the generalized quiver
invariants correspond to the Poincaré/Dolbeault polynomial of a putative moduli space
is unclear to us at this stage, but we can ask whether invariance under mutations can
be extended to this set of polynomials. A suggestive fact is that mutations can also be
defined for cluster algebras with skew-symmetrizable — as opposed to skew-symmetric —
exchange matrix, which are naturally represented by quivers with multiplicity [46-48].

Another reason to expect such a generalization is the physical ‘Fermi flip’ picture of
mutation developed in the context of split attrator flows in supergravity in [44]. Namely,



in the vicinity of certain walls in moduli space (conjugation walls in the language of [44],
or walls of the second kind in the language of [32]), the representation of a BPS state
of total charge v = v; + N+ as a halo of particles carrying charges ¢;y, with ¢; > 0
orbiting around a core of charge v; can become invalid, and needs to be replaced by a halo
of particles carrying charges —¢;y, with ¢; > 0 around a core of charge 7; + M;~, for
some positive integer M; [44]. This is possible when the particles of charge ¢+, behave as
fermions (i.e. carry positive! index), so that the Fermi vacuum can be replaced by the filled
Fermi sea. In this paper, we shall argue that this picture applies just as well for generalized
quivers with oriented loops, and naturally suggests that the Laurent polynomials produced
by the Coulomb branch formula are invariant under a generalized mutation transformation.
Before stating this transformation, we need to set up some notations.

1.1 Review of quiver invariants and the Coulomb branch formula

Consider a quiver with K nodes with dimension vectors (Ny,--- Nk ), stability (or Fayet-
Iliopoulos, or FI) parameters ((i,--- (k) satisfying Zfi 1 Ni¢; = 0, and ~;; arrows from
the i-th node to the j-th node. We denote such a quiver by Q(v;(), where v is a vector
v = Zfil N;7v; in a K-dimensional lattice I spanned by basis vectors ~y; associated to each
node. We shall denote by I'" the collection of lattice vectors of the form Y, n;v; with
n; > 0; clearly all physical quivers are described by some vector v € I'". We introduce
a bilinear symplectic product (the Dirac-Schwinger-Zwanziger, or DSZ product) on T' via
(vi,vj) = 7ij- To define the quiver moduli space, we introduce complex variables ¢y q ss/
for every pair ¢, k for which ~, > 0. Here « runs over 7y values, s is an index labelling the
fundamental representation of U(Ny) and s’ is an index representing the anti-fundamental
representation of U(Ny). The moduli space M(v;() of classical vacua is the space of
solutions to the D-term and F-term constraints,

D Gthassy T btkats — Y rvass Tok Grtast = G Tr (T VL, a,
k,s,t,s’ k,s,t,s’
Yer >0 Yre>0 (1.1)
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modded out by the natural action of the gauge group [[, U(N,). Here T%’s are the gener-
ators of the U(Ny) gauge group, and W is a generic gauge invariant superpotential holo-
morphic in the variables ¢y, o 5. For generic potential, M(v;() is a compact algebraic
variety, which is smooth if the vector  is primitive.

Let Q(7; C; y) be the Poincaré-Laurent polynomial of the quiver moduli space M (~; (),

2d

Qv Gy) = Y bp(M) (—y)P* (1.2)

p=0

where d is the complex dimension of M and the b,(M)’s are the topological Betti numbers
of M. The Coulomb branch formula for Q(v;(;y), which we denote by Qcoulomb(7; (;v),

'Due to the supermultiplet structure a state with positive index behaves as a fermion while forming a
bound state [13].



takes the form [19, 23, 29]
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where z1(m) is the M6bius function, |Aut({a1, - - - @, })| is a symmetry factor given by [ [, s!
if among the set {«;} there are s; identical vectors @, s identical vectors @z etc., and m|a
means that m is a common divisor of (ny,--- ,nk) if @« = >, ney,. The sums over n and
{aq, - ayp} in the second equation label all possible ways of expressing 7 as (unordered)
sums of elements «; of I'". The coefficients ¢; are determined in terms of the FI param-
eters ¢; by ¢; = >, AigCe whenever o; = Y, Ajpy,. From the restrictions ), a; = v and
> ¢ NeCe = 0/t follows that ), ¢; = 0. The functions gcoulomb({v1, -+, an}; {c1, - cn}s y),
known as Coulomb indices, can be computed from the sum over collinear solutions to
Denef’s equations for multi-centered black hole solutions [19]. The functions Qo (a;y) are
expressed in terms of the single-centered BPS invariants ()g through

Qeot (s y) = Qs(asy) + > H{B}{miksy) HQS(,Bi;ymi) - (14

{B;ert} {m;ez}
m; 21,30 m;Bi=a

The H({f;}; {mi};y) are determined recursively using the minimal modification hypothesis
described in [29], and Qg(«;y) are expected to be y-independent constants for quivers with
generic superpotential. A fully explicit recursive algorithm for computing the Coulomb
indices gcoulomp and H-factors was given in [23].

In [29] we also proposed a formula for the Dolbeault polynomial

Q(v; G yst Zh” —y)Pra e, (1.5)

where hP?7(M) are the Hodge numbers of M. The formula takes the same form

s (1.3), (1.4), with the only difference that (g is allowed to depend on ¢, and the ar-
guments y and y™ inside Qcoulomb; QCoulomb7 Q4ot and Qg are replaced by y;t and y™; ™
respectively.? The Coulomb indices gcoulomp and the functions H remain unchanged and
independent of ¢.

1.2 Generalized quivers and generalized mutations

We are now ready to state our main result. As mentioned above, the Coulomb branch
formula given in egs. (1.3), (1.4) leads to a set of symmetric Laurent polynomials satisfy-
ing the standard wall-crossing formula, for any choice of symmetric Laurent polynomials

2Eventually we drop the y-dependence of Qg for quivers with generic superpotential.



Qg(7y;y;t). For ordinary quivers with a generic superpotential, the single-centered invari-
ants satisfy
1 ifni = l,nj =0
Qs(nivi +njvy38) = 41 ifng=0,n; =1 (1.6)

0 otherwise

for any linear combination of two basis vectors n;y; + n;v;. We refer to quivers equipped
with more general choices of the single-centered invariants Qg(v;y;t), subject to the con-
dition that they vanish unless v € I'*, as ‘generalized quivers’.

For such a generalized quiver, we introduce a generalized mutation pj (where ¢ = 1
for a right mutation, and ¢ = —1 for a left mutation) with respect to the k-th node,
through the following transformation rules of the basis vectors v;, DSZ matrix v;;, stability
parameters (;, and dimension vector N;:

, —Vk ife=k
Vi =
~vi + M max(0,ev;) v ifi #k

) {—%j if i=k or j=k
Yij = . e

’ Yij + M max(0, vikvk;) sign(yey) i 6,5 #k )
o —Ch ifi=k

"G+ Mmax(0,evi) G for i # k,

N — =N+ M3, Njmax(0,ev;,) ifi=k
SN ifi £k
where M is an integer defined by
M=3"N"C0(tn),  Wlwmyst) = Qua(lu)y"t* . (1.8)
>1 n,s n,s
These transformation laws guarantee that
Y= ZNm = ZNZI%I (1.9)
i i

We conjecture that the Laurent polynomials produced by the Coulomb branch formula
3

are invariant under the generalized mutation transformation:
Q/Coulomb (7; gl; Y; t) if ~y u/fyk

, _ (1.10)
QCoulomb(_fy; C; Y; t) if Y || Vi s

QCoulomb (’7; C; Y; t) = {

under the conditions that

3The second equation in (1.10) may be surprising at first, but physically it reflects the fact that in
the transformed quiver states with charge vectors ¢+, are considered as anti-BPS states and are no longer
counted in the BPS index. On the other hand states with charge vector —¢vx, which are considered anti-BPS
in the original quiver and not counted, are taken to be BPS in the new quiver.



i) Qp.s(yk) are positive integers satisfying Q, s(¢yx) = Q—p —s(¢y%) and vanish for ¢
large enough, so that the integer M is well defined,

Qn,s(g’Yk) >0VvVe>0, Qn,s(g’}/k) =0 for £ > Oyfax (1.11)

ii) the stability parameter (; has sign —e¢,
€ <0, (1.12)

iii) the single-centered indices transform as*

Qg (o + Mmax(0, e, i) Vi 5 t)  for a |f v

Os(ay3t) = { (1.13)

Qg (—a) for a ||

In (1.10), it is understood that in computing the Lh.s. we have to express v as Y. N;v;
treating 7;’s as the basis vectors and apply the Coulomb branch formula (1.3), (1.4) while
in computing the r.h.s. we have to express v as ), N/v, treating ~,’s as the basis vectors
and then apply the Coulomb branch formula (1.3), (1.4). Since the left and right mutations
uf are inverses of each other, we shall restrict our attention to right mutations only and set

e=1 (1.14)

henceforth.

Several remarks about our generalized mutation conjecture are in order:

1. For ordinary quivers, Qg(¢yx) = d¢,1, hence M =1 and the above relations reduce to
mutations of ordinary quivers with superpotential (the action on the superpotential
can be found in [31]).

2. For quivers obtained from cluster algebras with skew-symmetrizable exchange matrix
(i.e. a integer matrix 9;; such that ~;; = 4;5/d; is antisymmetric for some positive
integers d;), the action on ;; coincides with the mutation rule specified in [46, 47]
for M = d;.

3. Mutation invariance in general imposes additional restrictions on the single-centered
invariants Qg(v;y;t), beyond the vanishing of Qg(~;y;t) for v ¢ T'" with respect to
the original quiver. Indeed, if we denote by I'* the set of vectors v = Y . njy/ € T’
where all n/ are non-negative, then the transformation rule (1.13) requires that
Qs(a; y;t) should vanish if the mutated vector o/ = o + Mmax(0, (o, V) 7 does
not lie in I, even if & € I'" (excluding the case a | 7). Similarly, Q4(c/)
should vanish if o/ € T'* but @ ¢ I'". Another consequence of the generalized
mutation symmetry is that Qg(y; + ¢v;) must vanish for all £ # 0. Indeed, for

Tt is easy to verify that the rational invariants QCoulomb and Qg satisfy the same mutation transformation
rules as Qcoulomb and s respectively.
®The same reasoning applies to the Dolbeault-Poincaré polynomial: Qcouomb(y) = 0ify ¢ T4 or v ¢ T,



negative ¢, the vector a = v; + {7 fails to lie in I'", while for positive ¢, the
mutated vector o/ = v; + Mmax(v;x,0) vk, + by = 7} — £, fails to lie in T"*. Tf
the Qg’s fail to satisfy these constraints, they still define a generalized quiver but
generalized mutation symmetry does not apply. Indeed it is unclear a priori if there
exists a set of single-centered invariants g(7;y;t) which is consistent with the
above constraints arising from arbitrary sequences of mutations. Finding a Higgs
branch-type realization of such generalized quivers invariant under mutations would
allow to give an affirmative answer to this question.

4. A useful way to state the property (1.10) is to construct the generating functions

FN:Gayst) = Qcowomnp | Y Nivi + Nevws Gyt | o™
N» ik

F (N3 q:95t) = D Quowtomn | 2 Novi+ Nk (st | ™, (1.15)
Ny i#k

where, on the left-hand side, N denotes the truncated dimension vector

—

N = (N1, Ng—2, N1, Niy1, Ngy2, -+ ) (1.16)
Mutation invariance for all values of IVy is then equivalent to the functional identity

g MNmax a0 FI(N ¢ g7y t) for N #0

o L (1.17)
F(0;¢ 5 q595t) for N =0

F(N;Ga;y:t) = {
We conjecture that under the assumption (1.11), both sides of this equation are in
fact polynomials in q.

5. While the conditions i)-iii) are necessary for mutation invariance of the Dolbeault
polynomials Qcoulomb(7; ; y;t), it is possible to relax condition i) if one is interested
only in the numerical invariants Qcouomb(7;(;y = 1;¢t = 1). In that case we conjec-
ture that it is sufficient that the generating function F (]\7 :C;q;1;1) be a polynomial
in ¢, invariant under ¢ — 1/q (up to an overall power g2=s#k M™ax(x.0)) " Thig allows
some of the Qg(fx; 1;1)’s to be negative. For example, for the generalized Kronecker
quiver (example 1 in section 4), one may take Qg(vk;1;1) = —1, Qs(2v;1;1) = 1,
and Qg(fyx; 1;1) = 0 for all other ¢. Then the generalized mutation u; has M =3
and preserves the numerical invariants Q(v;(;1;1). Example 2(g) of section 4 gives
another example of this phenomenon for a three-node quiver.

Although we do not have a general proof that the Coulomb branch formula is indeed
invariant under such generalized mutations, we shall check it in many examples of ordinary
and generalized quivers, with or without oriented loop. In some cases, mutation invariance
allows to determine the complete set of single-centered indices. Another useful property
of mutations is that in special cases they can reduce the total rank of the quiver, which
typically reduces considerably the computation time of the Coulomb branch formula.



1.3 Outline

The rest of the paper is organised as follows. In section 2 we describe the physical origin
of the generalized mutation transformation rules, the transformation properties of single-
centered indices under generalized mutation and the choice of FI parameters given in (1.12).
In section 3 we test the ordinary mutation symmetry of the Coulomb branch formula
through several examples. In section 4 we repeat this exercise for generalized mutations.

2 Motivation for the generalized mutation conjecture

As mentioned in the introduction, quiver quantum mechanics describes the dynamics of
open strings stretched between the various BPS constituents of a given bound state. In
particular, it depends on a choice of half-space H in the central charge plane, such that
all states whose central charge lie in H are deemed to be BPS, while those in the opposite
half-plane are anti-BPS. As the choice of H is varied, it may happen that one of the
constituents, with charge 7, crosses the boundary of H and falls on the anti-BPS side,
while its CPT-conjugate with charge —v;, enters the BPS side.® Equivalently, this may take
place for a fixed choice of H under a variation of the asymptotic moduli (staying away from
walls of marginal stability). Such a wall is sometimes known as a wall of second kind [32],
or as a conjugation wall [44]. Such walls are encountered in particular when varying the
moduli around a point where the central charge associated to one of the BPS constituents
vanishes, see figure 1 for an example which can serve as a guidance for the discussion below.
Clearly, as the state with charge —v; enters the BPS half-space, it cannot be viewed as
a bound state of the BPS constituents with charges v;, and must therefore be considered as
elementary. Consequently the vector —v; must be taken as a new basis vector, and the other
basis vectors must be changed as well so that the charges carried by the BPS states can be
expressed as positive linear combinations of the basis vectors. Invariance under mutation
is the statement that the same BPS states can be described either as bound states of the
original BPS constituents with charge ;, or of the new BPS constituents with charge ~..
For this equivalence to hold, it is not necessary that the indices associated with the
constituents satisfy the constraint (1.6) — indeed this constraint is generically not obeyed
for bound states in gauge theory [9, section 3.2] and in supergravity (such as in the D6-D0
system, studied in more detail in [22, appendix B]). Instead, we shall allow the indices
Qs(7;) of the BPS constituents to be arbitrary symmetric Laurent polynomials in two-
parameter y and ¢, with support on non-negative dimension vectors v € I't. We refer
to the polynomials Qcoulomb(7; ¢; y;t) produced by the Coulomb branch formula (1.3) as
generalized quiver invariants. We also assume that Qg(y; + ¢7;) vanishes for £ > 1, and
that the integers €, s(¢7%) defined through (1.8) are all positive and vanish for some large
enough £. The necessity of the first condition was discussed in the last but one paragraph
of section 1.2, whereas the necessity of the second condition will become clear below.
Figure 1 is an example of generalized quivers, associated to a rank 2 cluster algebra with

5We assume that the spectrum is such that no other BPS state crosses the boundary of #{ at the same
time.



Giv Ly
o me

PR S

Y

Figure 1. Spectrum of a generalized Kronecker quiver with vi2 = 1, Qgs(71) = 1,Qs(7y2) = 2
as the central charge Z(v2) = pe’ rotates clockwise around 0, keeping 0 < p < 1 and
Z(m)+L(Z —0)Z(y2) = '™/ fixed. The BPS half-space Im(Z) > 0 is kept fixed during the defor-
mation. Occupied charges are depicted by an arrow in the central charge plane, decorated with the
corresponding BPS index in square bracket. A conjugation wall is crossed in going from a) to b) and
¢) to d), while walls of marginal stability are crossed in going from b) to c¢) and d) to e). The spec-
trum in e) is identical to the spectrum in a), up to a monodromy 7, — v1 + 2792. In more detail: a)
0 < 6 < m/2: the spectrum consists of 4 occupied charges (1,71 + 72, 71 + 272, 72) and BPS indices
(1,2,1,2), respectively. b) —m/2 < 6 < 0: 75 is now anti-BPS. The spectrum of the mutated quiver
consists of 4 occupied charges (—v2, 71,71 + 72,71 +272) and indices (2,1,2,1). ¢) -7 < 0 < —7/2:
the phases of the two charges (y1 +272, —72) swap and they no longer form any BPS bound state. d)
—371/2 < 0 < —7: 75 re-enters the BPS half space and the spectrum of the twice-mutated quiver con-
tains two occupied charges (2, v1 +272) with index (2, 1) and no bound state. e) =27 < 6 < —37/2,
the phases of the two charges (72,1 +27v2) swap again and the spectrum of the twice-mutated quiver
consists of 4 occupied charges (1 + 2v2,71 + 372, 71 + 472, 72) with indices (1,2,1,2).

non-symmetrizable exchange matrix with Dynkin diagram Bs (see [49] for a similar example
with Dynkin diagram Gs). In the rest of this section we shall describe the motivation behind
the generalized mutation conjecture (1.7)—(1.13) for the generalized quiver invariants.

2.1 Semi-primitive Coulomb formula and Fermi flip

In order to motivate the action of mutations on the basis of BPS states, we shall focus
on dimension vectors v = 7, + N+ with support only on two nodes, the mutating node
k and any adjacent node j, hence effectively dealing with a Kronecker quiver with ~;
arrows and dimension vector (1, N).



Due to our assumption that Qg(vy; + ¢v;) = 0 for non-zero ¢, states carrying charge
vj + N 7, can only arise in the original quiver as bound states of a center of charge ~;
with other centers carrying charges £;vy; with ¢; > 0. Assuming (; < 0 < (j, these states
exist whenever «;; > 0, and arise physically as halos of particles of charge £+ orbiting
around a core of charge 7; [14]. Their indices are given by the semi-primitive Coulomb
branch formula [14, 22, 50],

Z = Z QCoulomb (’Yj + N’Yk; C; Y; t) qN
N

(2.1)

Z'Y]k

= Qs(v53 3t H H HH( 1+ ¢“t°y™( y)QJ—fyjk_1>Qn’S(€’Yk) .

(>1J=1 n s

This implies that only a finite number of charge vectors 7; + N+; have non-zero index,
namely those with 0 < N < M ~y;;, where

el\/[ax

M=) (). (2.2)

/=1 n,s

Physically Qcoulomb(7; + NVk;¢;y;t) can be interpreted as the number of states corre-
sponding to the excitations of the fermionic oscillators of charges £;y in (2.1) acting on
the fermionic vacuum with charge 7;. As pointed out in [44], the same multiplet of states
can be obtained from the filled Fermi sea of charge 'yj'- = vj + M~y by acting with
fermionic oscillators of charges ¢;7;, = —{;yk, provided they carry the same indices

Q, () = Qus(l), Q(Viyt) = Qs(y5395t) - (2.3)

The particles of charge (v; and ’y} and the corresponding indices can be associated to
the nodes of a new (generalized) quiver. In this alternative description, the bound states
with charge v; + Nk = 7; + (M~jx — N);, are described in terms of a halo of particles
of charges ¢y}, orbiting around a core of charge ’y;. To see the equivalence of the two
descriptions, one can start from the halo partition function

7' = Z QlCoulomb(’y; + (M’Y]k B N)’)/I{w CI; Y; t) qN
N

= qM’ij Z Q/Coulomb(’)/;' + N/’Yl/c; C,; Ys t) qu
N/

Yk

_ qM'ij Q/S(r)/;'; i t) H H HH (1 + qfftsyn(_y)QJfé'ij*1>Q%,s(f’yxlc) . (24)

>1J=1 n s

where we have used the fact that v}, = —v;x < 0 and (;, > 0. Taking out the factor of
gty (—y)? 1 from each term inside the product in (2.4), using (2.3) and making
a change of variable J — fv;;, — J + 1, this can be rewritten as

Z’ — qM'ij_'ij sz’s KQQn,s(Z'Yk) t'ij Z[ n,s ESQn,S(Z'Vk) '“/jk Zé,n,s enQn,s(e'We)

)

e
xQs(73 95 1) HHHH(lJqut y " (—y)? 1) el g 5)
(>1J=1n
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The exponent of ¢ in the first factor on the right hand side vanishes due to (2.2), while
the exponents of ¢t and y in the second and third factors vanish due to the Hodge duality
n

symmetry Qy, s({yx) = Q_p —s(¢yr). The same symmetry allows us to replace the t~%y~
term inside the product by t*y™. Thus we arrive at

Ly
£l Qs (bvr)

7' =Qs(viwit) [TTTTIII (1 + qetsy”(—y)w_hj’“_l> , (2.6)

(>1J=1 n s

reproducing (2.1) whenever v;, > 0. If instead ;. < 0 (keeping (x < 0 < () then the
first quiver does not carry any bound state of the center carrying charge v, with centers
carrying charges ;y, with ¢; > 0. Thus Qcoulomb(7; + N7i) vanishes for N > 0. The
mutated quiver describing centers of charges ’y} = 7; and {;y;, = —{y,, with indices
Qs(v5;y5t) and Qg(Livk; y; t) respectively, has V;k >0, ¢; < 0 < ¢, and therefore also no
bound states of charge v; + N+, for N > 0. The partition functions Z = Z’ = Qs(v;; ;1)
are therefore again the same on both sides.

This shows that, under the assumptions (; < 0 < ¢; and (1.11), the semi-primitive
Coulomb branch formula is invariant under the transformation
Ve = —Vk 7} =75 + M max(0,v;r) Tk for j # k,
Qs(v5) = Qs(75), Qs (yi; y; ) = Qs (s 3 t) Ve, (2.7)

This is a special case of the generalized mutation rules (1.7)—(1.13), providing the initial
motivation for the conjectured invariance under the generalized mutation transformation.
In the next subsections, we comment on aspects of the generalized mutation rules which
are not obvious consequences of the semi-primitive case.

2.2 Transformation rule of single-centered indices

Let us now comment on the transformation rule (1.13) of Qg(«). The first equation for
a = v; as well as the second equation follow from the analysis of the Kronecker quiver
given above,” but we shall now justify why this is needed for general . Consider two
generalized quivers which are identical in all respects except that for some specific charge
vector «, the first quiver has Qg(a) = 0 while the second quiver has some non-zero
Qs(a;y;t). Let us denote by Q(v) and Q(v) the Coulomb branch formulz for these two
quivers. Now consider the difference Q(a 4 £73,) — Q(a + £v;) for some positive integer £.
This difference must come from a bound state configuration of a center of charge o with a
set of centers carrying charges parallel to . The index associated with this configuration
is encoded in the partition function Z given in (2.1) with v; replaced by a. Now consider
the mutated version of both quivers with respect to the k-th node. The difference
Q' (a+ ) — Q' (o + £;,) must agree with Q(a + £y;) — Q(a + £7;). Our previous analysis
showing the equality of Z and Z’ guarantees that this is achieved if we assume that the
mutated quivers are identical except for one change: Qg (a + Mmax(0, (o, Vi) V3 y5 t) is
zero in the first mutated quiver but is equal to Qg(«;y;t) for the second mutated quiver.

"While this paper was in preparation, this observation was also made in ref. [9].
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The extra states in the second quiver then appear from the bound state of a center carrying
charge a + M ~y, max(0, (o, ) and other states with charges proportional to —v;. This
in turn justifies the transformation law of {2g given in the first equation of (1.13).

This transformation law is also consistent with the requirement that a monodromy,
exemplified in figure 1, leaves invariant the physical properties of the BPS spectrum. Since
the monodromy transformation is induced by successive application of two mutations, one
with a node carrying charge proportional to 45 and then with a node carrying charges pro-
portional to —7g, the transformation law (1.13) under a mutation implies that under a mon-
odromy we have Qg(a+ M (a, 1)v:) = Qg(a), where we denoted by Qg the single centered
indices after the monodromy transformation. On the other hand a monodromy maps a BPS
bound state with constituent charges « to one with charges & = a+M («, V) Vi, while other
physical quantities as the central charges and symplectic inner products remain invariant.
Moreover, the physical equivalence of the bound states before and after the monodromy
requires that the single centered indices transform as Qg(@) = Qg(c). This agrees with the
monodromy transformation law of ()g obtained by application of two successive mutations.

2.3 Dependence on the choice of FI parameters

Note that while (1.12) fixes the sign of (x, it leaves unfixed the signs and the magnitudes
of the other (;’s as long as they satisfy ) . N;(; = 0. Since for different choices of the
FI parameters we have different Qcoulomp and Qg yomn, (1.10) apparently gives different
consistency relations for different choices of FI parameters. We shall now outline a proof
that once the mutation invariance has been tested for one choice of FI parameters, its
validity for other choices of FI parameters subject to the restriction (1.12) is automatic.
We shall carry out the proof in steps.

First consider a vector v € I'"\I"* (i.e. such that v = >, n;v = >, n}y, with non-
negative n;’s, but with some negative n} ). In this case Q’(7) (and the rational invariant
Q'(7y)) vanishes in all chambers and hence Q(y) and Q(v) must also vanish in all chambers.
We shall now prove that it is enough to check that Q(y) vanishes in any one chamber, by
induction on the rank 7 = > n;.® Suppose that we have verified the vanishing of Q(v) for
all v € TT\I"* with rank < r( for some integer ro. Now consider a v € I'"\I"* with rank
r = 19 + 1, and suppose that Q(v) vanishes in some chamber c,. If we now go across a
wall of ¢, then the jump in Q(y) across the wall will be given by the sum of products of
Q(a;) for appropriate charge vectors «; satisfying Y, o = 7. Now in the original quiver
each of the «;’s have rank less than rg. Furthermore at least one of the «a;’s must be in
v € TT\I"*; to see this note that when we express v = Y, o; in the 4/ basis the coefficient
of 7}, is negative, and hence at least one of the a;’s expressed in the +/ basis has negative
coefficient of ;. Thus the corresponding Q(c;) vanishes by assumption, causing the net
jump in Q(v) to vanish. Thus the vanishing of Q(v) in one chamber implies its vanishing
in all chambers. Similarly, if v € I*\I'", the same argument shows that the vanishing of
Q' () in one chamber is sufficient to ensure the vanishing in all chambers.

8Note that the rank depends on whether we are using the original or the mutated quiver. Here rank will
refer to the rank in the original quiver.
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Now suppose that we have already established the vanishing of Q(v) for v € TT\I'"
and of Q'(v) for v € I'"\I'" in all the chambers subject to the restriction (1.12). We now
consider a general charge vector 7. Our goal will be to show that to test the equivalence of
Q(v) and Q'(7), it is enough to verify this in one chamber for each . We shall carry out
this proof by induction. Let us suppose that we have established the equality of Q(v) and
Q' () for all v (except for 7 || yx) of rank < r( in the ; basis in all chambers subject to the
restriction (1.12). We shall then prove that for a charge vector 7 of rank 7o+ 1, the equality
of Q(v) and Q’'() in any one chamber ¢, implies their equality in all chambers. For this
consider a wall of marginal stability that forms a boundary of c;.. Then as we approach this
wall we can find a pair of primitive charge vectors a; and as such that v = Miay + Maas
for positive integer M7 and My and furthermore the FI parameters associated with the
vectors a1 and «g change sign across the wall. Using the wall-crossing formula, the jump
in Q(y) across the wall can be expressed as a sum of products of Q(maj + nas) for integer
m,n in appropriate chambers relevant for those quivers. Similarly the jump in Q’() can
be expressed as a sum of products of Q'(maj + nay) for positive integer m, n in the same
chambers using the same wall-crossing formula. Now since maj+nas, being a constituent of
the charge vector 7, must have rank < r in the original quiver, the equality of Q(ma;+nas)
and Q'(maj +nasg) in any chamber holds by assumption. This shows that the net jumps in
Q(v) and Q'(v) across the wall agree and hence Q(v) = Q'(7) on the other side of the wall.

There are two possible caveats in this argument. First we have to assume that none of
the constituents carrying charge maj +nag has charge proportional to v since the equality
of Q(v) and Q'(v) does not hold for these charge vectors. This is guaranteed as long as we
do not cross the (; = 0 wall, 1.e. as long as we obey the constraint (1.12). Second, we have
implicitly assumed that for every possible set of constituents” in the first quiver there is
a corresponding set of constituents in the second quiver carrying the same index and vice
versa. This is not true in general since there may be constituents in the first quiver whose
image in the second quiver may contain one of more a;’s with negative coefficient of ~;,
and hence is not a part of the second quiver. These are the «;’s belonging to I'"\I"*. The
reverse is also possible. However since we have assumed that the vanishing of Q(«a;) =0
for all a; € TT\I* and the vanishing of Q'(a;) = 0 for all a; € I"*\I'* has already been
established, these possible non-matching contributions vanish identically and we get the
equality of Q(v) and Q'(vy) in all chambers. This establishes that, for any v € T, the
equality of Q(v) and @'(y) in all chambers follows from the equality in any given chamber.

We end by giving a physical motivation for the restriction on the FI parameters given
in (1.12). As explained earlier, in N’ = 2 supersymmetric theories where quiver invariants
capture the index of BPS states, the mutation ,u; takes place on walls where the central
charge Z(vi) leaves the half-plane distinguishing BPS states from anti-BPS states, while
Z(—y) enters the same half-plane. This clearly requires that in the complex plane the ray
of Z (i) lies to the extreme left of the ray of any other Z(+) inside the BPS half-plane. Now

9Here by constituent we do not mean only single-centered constituents but also bound systems whose
single-centered constituents remain at finite separation as we approach the wall. The index carried by such
a constituent of charge « is given by Q(«) in appropriate chamber.
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the FI parameter associated with 7, for a particular quiver of total charge v is given by

G = Im(Z(v&)/Z (7)) - (2.8)

The condition on Z(v;) mentioned above requires that (i is negative. However it does not
specify its magnitude, nor the magnitude or signs of the (;’s carried the other constituents,
as those depend both on the phases of Z(;) and on their magnitudes. Thus we see from
this physical consideration that if mutation is to be a symmetry, it must hold under the
condition (1.12) with no further constraint on the other ¢;’s.

3 Examples of ordinary quiver mutations

In this section we shall test mutation invariance of the Coulomb branch formula for ordinary
quivers. For this we take Qg(v) to satisfy (1.6) and use the transformation law (1.13) of
Qg(7) under mutation. We also use mutation invariance to compute single-centered indices
for various quivers where a direct analysis of the Higgs branch is forbidding. Since ordinary
mutation is known to be a symmetry of the quiver Poincaré polynomial, the analysis of
this section can be interpreted as a test of the Coulomb branch formula (1.3), (1.4) and
the transformation rule (1.13) for single-centered indices.

Example 1. Consider a 3-node quiver with charge vectors v1, 72 and 73 associated with
the nodes satisfying

Y2 = a, Y23 = ba 731 = G, Cl <0, ¢2,¢>0, a b,c>0. (31)

Then mutation with respect to the node 1 generates a new quiver with basis vectors

V=7, =72 =73+, (3.2)
DSZ matrix

%2 = —a, 753 =b— ac, 7:/31 = ¢ (3-3)
FI parameters

é‘i - _Clu Cé = €2) C:/} - 43 + Cgl ) (34)

and dimension vector
v=Niv + Nova+ Nivs,  Ni=cNs—Ni, Ny=N;, N3=Ns. (3.5)

The original and mutated quiver are depicted in figure 2.

Mutation invariance (1.10) requires
Q(N1, N2, N3) = Q'(Ny, N3, N3) , (3.6)

where the 1.h.s. is the shorthand notation for Qcoulomb (E?:l N;ivi; C v t) while the r.h.s.

is the shorthand notation for Q. iomb (Z?:1 NGy t), computed with 7/ as the basis
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Figure 2. The original quiver (left) and the mutated quiver (right) of examples 1 and 2. .

vectors and hence ’y{j as the DSZ products. We shall also use Qg(N1, N2, N3) to denote
Qs(3°2_ | Niyi) and Qg(N7, N3, N3) to denote Q’S(Zle Nl~i;t). Eq. (1.13) then gives

Qs(Nl, NQ, Ng) :Q'S(cNg—Nl—max(O, NgC—Nga), NQ, Ng) :Q’S(min(Ngc, NQCL)—NI, NQ, N3) .
(3.7)
Let us choose

a=3, b=4, c=5, (1=-b5.71, C2:2.56N1/N2+.01/N2, <3:315N1/N3—01/N3
(3.8)
Then we get

712 = _37 7%3 = _117 PYél = _5a
(1 =571, (,=256N;/Ny+.01/Ny, ¢ =315N;/N3—2855—.01/N3. (3.9)

Some of the relations following from (3.7) are
Os(N,1,1) = Q43— N, 1,1), = Qg(N,1,1) =0=Q4(N,1,1) for N >3. (3.10)

We shall now check the invariance of the Coulomb branch formula under mutation.
Eq. (3.6) gives

Q(N,1,1) =Q'(5—N,1,1) for 0<N <5, Q(N,1,1)=0=Q'(N,1,1) for N >6.
(3.11)
Now explicit evaluation gives

Q(L1,1) = 1/y* +2/y” + 3+ 2y +y* + Qs(1,1,1), (3.12)
Q'(4,1,1) = 1/y" +2/y” +3+ 29" + 4" + Q5(2,1,1) — (y +y B, 1, 1) + Q5(4,1,1).

Using (3.10) we see that Q(1,1,1) and Q'(4,1, 1) agree. Next we compute

Q2,11 = -y +2y ' +2y+9°) — (v +y)Qs(1,1,1) + Qg(2,1,1) (3.13)
Q'(3,1,1) = Q§(1,1,1) — (y 3+ 2y + 2y + %) — (y ' +9)Q6(2,1,1) + Q5(3,1,1).

Again using (3.10) we see that Q(2,1,1) and Q'(3,1, 1) agree. Similarly we have

Q(3,1,1) = 1+ Qg(1,1,1) + Qs(3,1,1) — (y + vy Hs(2,1,1),
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Q(2,1,1) = 14+05(2,1,1) — (y +y~ H2%(1,1,1). (3.14)

These two agree as a consequence of (3.10). We also have

O
—
=
=
[t
I

Qs(2,1,1) + Qs(4,1,1) — (y +y )Qs(3,1,1)
Q’(l,l,l) = Q’S(l,l,l), (3.15)

Q(5,1,1) = Qs(3,1,1) + Qs(5,1,1) — (y + vy~ HQs(4,1,1),

Q'(0,1,1) =0, (3.16)
QO0,1,1) = (¥ +y  +y+y), (3.17)
Q(G,1L,1) = (¥ +y +y+y7) + 53,1, 1) — (y +y A4, 1,1) +Q4(5,1,1).

Again these equations are in agreement due to (3.10). We have not tested the vanishing
of Q(N,1,1) and Q'(N,1,1) for N > 6 due to the increase in the computational time, but
we shall test similar relations involving other quivers later.

So far we have not used any explicit results for Qg or Q5. We now note that
Q4(1,1, 1) vanishes since the corresponding 'yz{j’s fail to satisfy the triangle inequality. The
single-centered index Qg(1,1,1;t) = 9 is easily computed from the results in [26, 28, 29].
Thus we have

Q4(1,1,158) = Qg(2,1,1:8) =0, 94(2,1,1;¢) = Qg(1,1,1;¢) = 9. (3.18)

It will be interesting to check the prediction for Qg(2,1,1) by direct computation.
Note that in general Qg(y) # Qg(v). For example 49] + v, + 75 = 71 + 72 + 73 and
Q/S(4a 1, 1) ?é QS(L 1, 1)

Example 2. We again consider a 3-node quiver with

a=2 b=2 c¢=2 (1 =-31, (=N/No+.2/Ns, (3=21N;/N;3— .2/Ns,

(3.19)
and mutate with respect to the node 1. Then we get
M2 = —2, Va3 = —2, Va1 = 2,
C{ = 3.1, Cé :Nl/NQ—l-.Q/NQ, Cé :2.1N1/N3—6.2—.2/N3, (320)
N{ =2N3 — N;, Nj=No, Ni = Nj. (3.21)
Egs. (3.7) give
Qs(Nl, NQ, Ng) = Q’S(mm(2N3, 2N2) - Nl, NQ, Ng) . (322)

On the other hand since the new quiver is the same as the old one with the arrows reversed
and different FI parameters, and since (g is independent of the FI parameters we have

Q5(N1, Na, N3) = Qg (N3, N2, N1) . (3.23)
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Furthermore cyclic invariance of the quiver implies that Qg(Ny, Na, N3) is invariant under
cyclic permutations of (N7, N2, N3). Using these relations we can severely constrain the

values of Qg. For example we have!'"
Qs(N,1,1) =Q5(2 — N,1,1) = Qg(1,1,2 —= N) = Qg(2 — N, 1,1), (3.24)
and as a consequence
Qs(N,1,1) =0 for N >2. (3.25)
More generally we get
Qg(N1,Na,N3) =0 for Nj > min(2N2,2N3). (3.26)

Together with cyclic symmetry this implies that a necessary condition for getting non-
vanishing Qg(Ny, No, N3) is that each N; should be strictly less than the double of each of
the other two N;’s. Using cyclic symmetry we can take Nj to be the largest of (N1, Na, N3).
The mutation rule (3.22) then equates Qg(N1, N2, N3) to Qg(N7, Na, N3) = Qg(N3, N2, N{)
with N{ < Ni. The equality sign holds only if Ny = Ny = N3. Thus unless N1 = Ny = N3
we can repeatedly use mutation and cyclic symmetry to reduce the rank of the quiver until
the maximum N; becomes greater than or equal to twice the minimum N;, and then (g
vanishes by (3.26). Thus the only non-vanishing {2g in this case are Qg(N, N, N). We know
from [26] that in the Abelian case, Qg(1,1,1;¢) = 1.

We now proceed to test the invariance of the Coulomb branch formula under mutation.
From the general equation Q (N1, N2, N3) = Q(2N3 — N1, N3, N3) that follows from (3.21),
we get in particular

Q(N,1,1)=Q(2—-N,1,1) = Q(N,1,1)=0 for N >3. (3.27)

Explicit calculation gives

Q(1,1,1) =1+ Qg(1,1,1), Q'(1,1,1) = 1+Q’ (1,1,1),

Q(2,1,1) = Qg(2,1,1), Q'(0,1,1) =

Q0,1,1) = —(y+y ), Q'(2,1,1) = (y+y D+ 05(2,1,1),
Q(3,1,1) = Qg(3,1,1), Q(4,1,1) = Qg(4,1,1),

Q'(3,1,1) = Q4(3,1,1), Q'(4,1,1) = Q4(4,1,1). (3.28)

These results are all consistent with (3.27) after we use egs. (3.24), (3.25).

More generally, for any 3-node quiver with a,b > 0 and ¢ = 2, the Abelian representa-
tion (1,1,1) is mapped by a mutation on node 1 to an Abelian representation. We know
from the analysis of Qg for N = (1,1,1) given in [26-29], that the only non-vanishing Qg
arise for a = b > 2. In this case (3.7) gives

Qs(N,1,1) = Q4(2 — N, 1,1). (3.29)

9The fact that Qs(V, 1,1) vanishes is consistent with the fact that in the chamber ¢z > 0,¢; — 0~ the
moduli space is a codimension Na surface in P*~! x G(N,c), with dimension 1 — N2,
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In particular Qg(1,1,1) = Qg(1,1,1). On the other hand since in each of these cases the
arrow multiplicities computed using (3.2) are just reversed under the mutation, the equality
of Qg(1,1,1) and Qg(1,1,1) follows automatically, confirming the transformation laws of
Qg under mutation. Using this we can verify the equality of Q(1,1,1) and Q'(1,1,1).

Example 3. Next we consider the 4-node quiver

71 a Ve (3.30)

|
|

V4 C 73

with multiplicities of the arrows a = 5, b = 5, ¢ = 2 and d = 1. We choose for the FI
parameters

- 25Ng4+.1 1TNy+.2 3Ng4— .3
= —45 | . 3.31
R T =) (3.31)
We now perform a mutation at node 4. The mutated quiver is:
% \ % (3:32)
I Cd\
Vi c 7
with
M= %= B=r+2u V=N, (3.33)
5 25Ny +.1 1TNgy+.2 3Ny — .3
"= — 90,45 3.34
o= (B TR 0ss) (3.3)
N{ = Nl, Né:NQ, NéZNg, Ni:CNg—N4:2N3—N4. (335)
Note that the multiplicity ¢ is chosen such that the Abelian representation N = (1,1,1,1)

is mapped to the Abelian representation N/ = (1,1,1,1). More generally eq. (1.10) implies
Q(N1, N2, N3, Ny) = Q' (N1, N2, N3, cN3 — Ny) = Q' (N1, No, N3,2N3 — Ny).  (3.36)
Thus we should have

Q(17 17 ]"0) = Q/(17 17 ]" 2)7 Q(17 17 17 1) = Ql(17 17 17 1)7 Q(17 17 ]" 2) = Q/(17 1? 170)7
Q(1,1,1,N) =0=Q'(1,1,1,N) for N >3. (3.37)

In order to test this we need to first study the transformation law of Qg. Eq. (1.13) gives

Qs(Nl,NQ, Ng, N4) = Q/S(Nl,NQ, N3, CN3 — N4 — max(cNg — le,()))

3.38
= Q,S(Nl,NQ,Ng,min(CNg,le) — N4) = Q,S(Nl,NQ,Ng,min(2N3,N1) — N4) . ( )
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This gives in particular

Os(1,1,1,1) = Q5(1,1,1,0), Qs(1,1,1,0) = Qg(1,1,1,1)
Os(1,1,1,N) = 0 =Q4(1,1,1, N) for N >2. (3.39)

We now proceed to verify (3.37). One finds using (1.3):

Q(1,1,1,0) = 1/y° +2/y° + 3/y* +4/y° + 5+ 4y* + 3y* + 2° +¢°

Q(1,1,1,1) = y 8+ 3y C + 5y + 7y 2 + 94+ 7T + 5yt +3y° + 45+ Qs(1,1,1,1)
Q(1,1,1,2) =y S+ 20 + 3y 2+ 44+ 37 + 2 + 45 + Qs(1,1,1,1) + Qs(1,1,1,2)
Q(1,1,1,3) = Qg(1,1,1,2) + Qg(1,1,1,3)

Q(1,1,1,4) = Qg(1,1,1,3) + Qg(1,1,1,4), (3.40)

and

Q(1,1,1,2) = 1/o® +2/y° + 3/y* +4/y* + 5+ 4 + 3y* + 2% +4°
+04(1,1,1,1) + Q4(1,1,1,2)

Q(1,1,1,1) = y 3+ 3y 45y + 7y 2 + 9+ 7y + 5y + 3% +4°
+Q4(1,1,1,0) + Qg(1,1,1,1) (3.41)

Q(1,1,1,0) = y S+ 2y 43y 2 + 4+ 3% + 2" + 5 + Q4(1,1,1,0).

Compatibility of these expressions with (3.40), (3.37) follows directly from (3.39)
and (3.43). In particular the last two equations of (3.40) are consistent with (3.37), (3.39).
We can also test the vanishing of @'(1,1,1,N) for N > 3. For (' given by (3.34) with
(N1, Na, N3, Ng) = (1,1,1,2 — N), we get

Q'(1,1,1,3) = Q4(1,1,1,2) + Q4(1,1,1,3),
Q'(1,1,1,4) = Q4(1,1,1,3) + Q4(1,1,1,4) . (3.42)

These vanish using (3.39).

Note that in the above analysis we have not explicitly used the values of Qg and Qg or
tested (3.39). From direct analysis of 3-node and 4-node cyclic quiver given in [26-29] we
know that Qg(1,1,1,0;t) = 0 (as there is no loop) and Qg(1,1,1,1;¢) = 4. Thus we have

Q4(1,1,1,1;8) = Qg(1,1,1,0;¢) =0, Q4(1,1,1,0;¢) = Qg(1,1,1,1;¢) =4.  (3.43)

The value of 5(1, 1, 1, 0;t) given in [26-29] agrees with the result given above. Vanishing of
Q5(1,1,1,1;t) can be seen by direct analysis of the Higgs branch moduli space of this quiver.

4 Examples of generalized quiver mutations

In this section we test the conjectured invariance of the Coulomb branch formula for gen-
eralized quivers where the condition (1.6) is relaxed.
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Example 1. We consider the generalized Kronecker quiver with m = 712 > 0 arrows
from node 1 to node 2, with Qg(kv1;y;t) and Qg(¢y2;y;t) given by arbitrary symmetric
Laurent polynomials and Qg(y) = 0 otherwise. In the chamber ¢; < 0 < (2 the total index
for charge v coincides with Qg() as there are no bound states with two or more centers.
The index in the other chamber ¢; > 0 > (2, which we shall denote by Q(N7, N2), can be
obtained using the wall-crossing formula. We shall define, as in (1.3),

-1

O 1 Y-y m.,m
QS(%ZJ%UZZEW s(y/msy™;t™),

m|y

_ 1 -1

QCoulomb(’Y; Y3 t) = Z m % QCoulomb(’Y/m ym tm) (4'1)
mly

and drop the arguments y and ¢ from Qg to avoid cluttering. Using the shorthand notation
Q(p, q) for Qcoutomb(PY1 + ¢72; (; y; t) ete. the wall-crossing formula then takes the form

ZQS ly2)eq é] exp

l

ZQS (k1)ex 0] ; (4.2)

k

H exp Q(p, 9)ep, q} = exp
p/qi
where e, , are elements of an algebra satisfying the commutation relation

v e ] = (1Y) epirgras YEPN @0, Y =07+ d e,
(_y)(%v’> _ (_y)—hm/)
K(v,7') = - : (4.3)
y—y !
The product over p, ¢ runs over non-negative integers p, ¢ and symbol p/q | on the left hand

side of (4.2) implies that the product is ordered such that the ratio p/q decreases from left
to right. If p/¢ = p’/q’ then the order is irrelevant since e, and e, o will commute.
Taking the p = 0 terms on the left hand side to the right hand side and using the fact that
Q(0,0) = Qs(f72), we can express (4.2) as

Hexp (p, q epq =exp ZQS {y2)eq g] exp

p#O,p/qL

ZQS kvi)ex 0] eXp[ ZQS ly2)eq z] .

l
(4.4)
Under generalized mutation with respect to the node 2, we have 7}, = —712 and
¢ < 0 < ¢4 The effect of reversal of the sign of (;’s will be to change the order of the
products on both sides of (4.4). On the other hand the effect of changing the sign of 12 is

that the corresponding generators e/, , which replace e, 4 in (4.4) will satisfy a commutation

X
relation similar to that of e, , but with an extra minus sign on the right hand side. This
means that —ep ¢ '8 will satisfy the same commutation relations as e, ’s. Thus we can
write an equation similar to that of (4.4) with the order of products reversed on both

sides, Q(p, q) replaced by Q'(p,q) and e, , replaced by —e, 4
I e [-Q @ a)epd =

#0.p/qt
e (4.5)

= exp [Z Qs(ﬁ’yz)eo,e] exp [—ZQ (kn)ex 0] exp [ > Qg(lya)eq e] :
0

l k
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Taking the inverse of this has the effect of reversing the order of the products and changing
the signs of e,’s in the exponent. The resulting equation is identical to that of (4.4) with
Q(p, q) replaced by Q'(p,q), showing that Q(p,q) = Q'(p,q) [22]. Mutation invariance
however requires us to prove a different equality, namely Q’(p, ¢) = Q(p, M~12p — q) where

M=) POg(lyy =1t =1). (4.6)
¢

To proceed, we shall assume that as a consequence of (4.4) we have

Qp,q) =0 for q> Mryp. (4.7)

Later we shall prove this relation. Assuming this to be true, we define p’ = p, ¢ =

M~12p — q (or equivalently p = p’, ¢ = M~12p" — ¢') which are both non-negative for p > 0,
0 < g < M~12p and note that p//q’ are ordered in increasing order if p/q are ordered in
the decreasing order. Then we can express (4.4) as

I[I e Q0 My — ey mmap—o]

/ !

.4
#010/!1?

= exp . (4.8)

Z (€y2)eo é] €xp

14

Z Qs(ky1)er 0] exp [— Z 95(672)6074
V4

k

Since p’, ¢’ are dummy indices we can change them to p, ¢ on the left hand side. Furthermore
notice that e, rry,p—¢'s and —ep 4’s have isomorphic algebra for different p,q. Thus we
can replace €p pf~,p—g DY —€pq on both sides without changing the basic content of the
equations. This gives

H exp [—Q(p, Mv12p — q)epq)

pP,q
p#0,p/qT
=exp [—ZQS(MQ)eO,_g] exp [—ZQs(k‘ﬁ)ek,Mvmk] exp
V4 k

Thus the proof of mutation symmetry Q'(p,q) = Q(p, M~y12p — q) reduces to proving the
equality of the right hand sides of (4.5) and (4.9). This is the task we shall undertake now.
For this we define

(4.9)

ZQS ((’}/2)607_4 .

14

U = exp [Z Qs(f%)eox] ,  V=exp [— > 98(572)60,4] : (4.10)
¢

L

and express eqs. (4.5) and (4.9) as

H exp [—Q'(p, 9)ep.q] Hexp [—Qs(kn)U eroU '], (4.11)
p#&f}/q?
and
H exp[-@(p,M’ymp qepq Hexp QS (Ev1)V er MoV ™ ] (4.12)

p.q
p#0,p/qt
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Note that the order of terms in the product over k on the right hand sides of these two
equations is irrelevant since the terms for different & commute. Thus the equality of the
right hand side of the two expressions require us to prove that Uek’oU_1 = Ver My, VL

Now suppose we combine all the factors on either side of (4.11) and (4.12) using the
Baker-Campbell-Hausdorff formula, and consider the coefficients of e; s in the exponent.
On the left hand sides of (4.11) and (4.12), these are determined in terms of @Q’'(1,q)
and Q(1, M~2 — q) respectively. Since we have already proved the equality of Q'(1,q)
and Q(1, M~yi2 — q) with the help of semi-primitive wall-crossing formula, we see that the
coefficients of e; s in the exponent on the left hand sides are equal. On the other hand
since Uek’()U_1 and Vey, M,mkv—l are linear combinations of ey 4, on the right hand sides
the coefficient of e; s in the exponents are given by the terms proportional to Uej oU -1
and Ve, M,YHV_I, respectively. Thus the equality of the coefficients of e ; in the exponent
of the two left hand sides imply that

UeroU ™' =Ver pqyp,V . (4.13)

Now note that if we had considered a Kronecker quiver with nodes carrying charges kv
for fixed k£ and and #~s for different £ > 0, the semi-primitive wall-crossing formula would
have given the equality of this with a quiver whose nodes carry charges kvi + Mvy120k~ys
and —/{~, for dimension vector (1, N). On the other hand such a quiver is equivalent to
the one we are considering with Qg(rvy1) = 0 for r # k, and we can use (4.11), (4.12) for
such a quiver. In this case Q(p,q) and Q'(p, My12p — ¢q) would vanish for 1 < p < k — 1
and for p = k they would be equal due to the generalized mutation invariance of the rank
(1, N) quiver. On the right hand sides of the corresponding eqs. (4.11) and (4.12) the ey 4
in the exponent come from the UeM)U_1 and Vek,M%ZkV_l terms, with U and V given
by the same expressions (4.10) as the original quivers. Thus we conclude that

Uek,oUil = VehM,anVfl . (4.14)

Since this is valid for every k, we see that the right hand sides of (4.11) and (4.12) are
equal for the original quiver. This in turn proves the equality of the left hand sides and
hence the desired relation

Q(p, My12p — q) = Q' (p. q) - (4.15)

Finally, we prove (4.7) as follows. From the analysis of the rank (1, N) case we know
that Q'(1,q) vanishes for ¢ > M~;2. With the help of (4.11) we can translate this to a
statement that U eljonl is a linear combination of e; 4 for 0 < ¢ < M~12. Generalizing
this to the quiver whose nodes carry charges kv, and 2 we can conclude that Uey, o U lisa
linear combination of e 4 for 0 < ¢ < M~y2k. Eq. (4.11) then shows that Q'(p, q) vanishes
for ¢ > M~12p. Equality of Q(p,q) and Q'(p, q), discussed below (4.5) independent of the
validity of generalized mutation symmetry, then leads to (4.7).

We shall now test this for some specific choices of single-centered indices, namely

QS(’YI) = P1, QS(’YQ) = {q1, 98(272) =4q2, P1,491,q92 > 0) (416)
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m|p1,q1,q2| F(1,q) F(2,9)
1] 1,1,0 1+¢q 0
1| 1,2,0 | (1+¢q)? 0
1| 1,3,0 | (1+¢q)3 ¢
1] 2,1,0 | 2(149q) q
1] 2,2,0 [2(1+4¢)? 2q(1 — q + ¢
1] 2,3,0 [2(1+4)3 q(3 — 6g + 14¢%> — 6¢° + 3¢
1| 3,1,0 | 3(1+4¢q) 3¢
1] 3,2,0 |3(1+4¢)? 6q(1 —q+ ¢°)
1] 3,3,0 [3(1+¢)3 3¢(3 — 6q + 13¢® — 6¢> + 3¢%)
20 1,1,0 | (1-gq)? q(1+¢*)
2] 1,2,0 | (1-¢)* q(2 — 4q + 22¢% — 204> + 22¢* — 4¢° + 24¢°)
2] 2,1,0 |2(1 —q)? 2q(3 — 2q + 3¢?)
2] 2,2,0 |2(1—¢)* 4q(3 — 8q + 29¢% — 28¢> + 29¢* — 8¢° + 3¢%)
3| 1,1,0 | (1+¢)? q(3 — 6q + 13¢% — 6¢° + 3¢*)
3] 1,2,0 | (1+q)%2¢(3 — 15¢ + 85¢% — 165¢> + 351¢* — 337¢° + 35145 + - - - 4 3¢'7)

Table 1. Generating functions of Qcoulomb (71 + N72) and Qcoulomb (271 + Nv2) for the generalized
Kronecker quiver with Qg(v1) = p1,Qs(2) = ¢1,28(272) = g2. The symmetry under ¢ — 1/q
shows mutation invariance in these cases.

with all other single-centered indices vanishing. Generalized mutation invariance with
respect to the node 2 requires that the generating function

F(NL, ¢y;:t) = Y Qcoutomb(Nim1 + Nova; Gy t) ¢ (4.17)
N2>0

satisfies the functional equation
¢"NMF(Ny, 1 g yit) = F(NL g w3 t) - (4.18)

where M = ¢; + 4¢g2 > 0. This equation holds for N7 = 1 by assumption. Using the
generalized semi-primitive formulae established in [22], we can test this property for
N1 =2 or N1 = 3. For simplicity we restrict to No =2, 1 < m <3 and set y =t =1. We
have computed F(2,q) for the values of (m,p1,p2,q1,q2) displayed in table 1, and found
that (4.18) was indeed obeyed.

In this case, we can also test whether the conditions (1.11) can be relaxed. Let us set

p2 = q2 = 0, m = 1 for simplicity, and try ¢y = —1. . The semi-primitive partition function
P
F(l,q) = 4.19
R (119)

is multiplied by ¢ under ¢ — 1/¢ but its rank 2 counterpart, computed using the formulae
in [22], is not multiplied by ¢? under ¢ — 1/¢:

1—p — 1)qg?
F(2.q) = 291(1(2(1 _191(])2((1171_‘;4))61 )

(4.20)
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This illustrates the importance of the assumption that the mutating node must carry
positive 2g.

Example 2. We consider a three node quiver of rank (N7, No, N3) with 412 = v32 = a =1
and 31 = ¢ = 2, and take the invariants Qg(¢y;) and Qg(¢vy3) to be generic functions of ¢,
y and t and Qg(¢y2;y;t) for different integers ¢ to be specific functions of y and ¢ to be de-
scribed below. All other Qg(~v;y;t)’s will be taken to vanish. For the FI parameters, we take

(1 :(3N2+1)/N1, (o = =8, C5:(5N2—1)/N3 (421)

Under mutation with respect to the node 2, we get

N=m+Mn, V2= =2, V5 =3+ M2, (4.22)
M2 = —a, Yoz =@, Va1 = ¢ (4.23)
where
M = Zézﬂs(ﬁw; y=1;t=1). (4.24)
>1
Then
Niy1 + Noyz + Nyyz = Nivyj + (MN1 + MN3 — Na)vs + Navs . (4.25)

The Qg’s for the mutated quiver are given by

Qs(Oyst) = Qs(Onsyst),  Qs(Oriyst) = Qs(brsyst),  Q(@rdiyst) = Qs(brsyit) .
(4.26)
Finally the FI parameters of the mutated quiver are

¢t =BNy+.1)/Ny —8M, (,=(5Ny—.1)/N3—8M, (,=38. (4.27)

As before we denote Qcoulomb(N171 + Nova + N3vs3; C;y;t) by Q(N1, N2, N3) and similarly
for the mutated quiver. Also Qg(vy) without any other argument will denote Qg(v;y;t).
The expected relationship between @) and @’ then takes the form:

Q(N1, N2, N3) = Q'(N1, MNy + M N3 — No, N3). (4.28)
We shall now consider several choices for the single-centered indices Qg(¢v2; y;t).

(a): Qs(y2;y3t) =2, Qg(lye;y;t) = 0 for £ > 1. In this case M = 2, and the rela-
tion (4.28) takes the form

Q(N1, Na, N3) = Q'(N1,2N1 + 2N3 — No, N3) . (4.29)

Explicit calculation gives

Q(1,2,1) = —(y '+ )y >+ 4+ y°) Qs(71)2s(73),
Q'(1,2,1) = —(y ' +y)(y* + 4+ y*) Q5 (11) Q% (5),
Q(1,3,1) = 2(y 2+ 1+ y°) Qs(m1)s(13), Q'(1,1,1) =2(y~> + 1+ %) Q5(11)%(15),



Q(1,4,1) = —(y 1 +y) (1) (13), Q(1,0,1) = —(y ' +y) Q1% (v4),
Q(1,3,2) = (y S +y t+y 2+ 1+ +y +4°)

X {98(73; yit)? = Qs(ysy%t%) — 20y~ +y) Qs(2735 5 t)} Qs(v135t)
Q(1.3,2) =y +y  +y P+ 14y’ +y' +y°)

X {Q's('vé; yit)? = Qs (v 9% 1%) = 2(y ™" +y) Qs (29555 t)} Qs(visyit) . (4.30)
These results are in agreement with the generalized mutation hypothesis (4.29).

(b): Qs(vy2;y;t) = 3, Qg(ly2;y;t) = 0 for £ > 1. In this case M = 3, and the rela-
tion (4.28) takes the form

Q(Nl,NQ,Ng) :Q/(N1,3N1—|-3N3—N2,N3). (431)

Explicit calculation gives

Q(1,2,1) = =3 (y > + 4y~ + 4y + 3*) Qs(11)Qs(73),

Q'(1,4,1) = =3(y > + 4y~ + 4y +1°) Qs (11)%(13),

Q(1,3,1) = (y~* +10y~% + 10+ 10y + y*) s(11)2s(73),

Q'(1,3,1) = (y~* 4+ 10y~ + 10 + 10> + ) Q5 (71) %5 (73),

Q(1,4,1) = =3 (y > + 4y + 4y + %) Qs(1) Qs (13),

Q'(1,2,1) = =3 (y* + 4y~ + 4y + %) Q5 (+)) Q% (73), (4.32)

in agreement with the generalized mutation hypothesis (4.31).

(c): Qs(yo;y;t) =92 +14+y72, Qs(fye;y;t) =0 for £ > 1. In this case M = 3, and the
relation (4.28) takes the form

Q(Nl,NQ,Ng) :Q/(N1,3N1+3N3—N2,N3). (4.33)

Explicit calculation gives

Q(1,2,1) = —(2y~° + 5y + 8y~ + 8y + 5y° + 2°) Qs (1) Qs (73),

Q'(1,4,1) = —(2y~° + 5y > + 8y~ + 8y + 5¢° + 2°) Qs(71) % (73),

Q(1,3,1) = (w+y )W + v Qs (11)Qs(13),

Q'(1,3,1) = (y+y '@ +y2) Q%(11)%(15),

Q(1,4,1) = =2y~ + 5y~ > + 8y~ + 8y + 5y® + 2¢°) Qs (1) Qs (73),

Q(1,2,1) = =2y " + 5y > + 8y~ + 8y + 5y° + 24°) Qs (1)) (14),  (4.34)

in agreement with the generalized mutation hypothesis (4.33).
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(d): Qs(y;yst) =4, Qs(ly2;y;t) = 0 for £ > 1. In this case M = 4, and the rela-
tion (4.28) takes the form

Q(Nl,NQ,Ng) :Q/(N1,4N1+4N3—N2,N3). (435)
Explicit calculation gives

Q(1,4,1) = —(y° + 17y + 53y~ + 53y + 17y> + 4°) Qs (1) Qs (73),
Q'(1,4,1) = —(y° + 17y + 53y~ + 53y + 179> +v°) Qs (1) (74) . (4.36)

These results are in agreement with the generalized mutation hypothesis (4.35).

(e): Qg(yay5t) =t 4+ 1/t, Qs(lye;y;t) = 0 for £ > 1. In this case M = 2, and the
relation (4.28) takes the form

Q(Nl,NQ,Ng) :Q/(N1,2N1—|-2N3—N2,N3). (437)
Explicit calculation gives
Q(1,2,1) = —(y '+ )t 2+ 2+ 3> + 24 3%) Qs(1)Qs(13),
Q(1,2,1) = —(y '+t + P+ y 2+ 2+ y%) Qs(V) Q% (15),
Q(1,3,1) = (7' + 1)y 2+ 1+ 9%) Qs()Qs(73),
T+ 0y 2+ 1+ 37 Q()Q (1),
(' +y) Qs(1)s(v3), Q(1,0,1) = —(y~ " +y) Q5 (11) % (),

E+t D +y Yy Ly g )

N =

50050507 = D075 2) = 2007+ 9) V(i) (s
Q'(1,3,2) = %(t HEN Ty Ty T Ly 4y )
X{Qé(vé; yit)? =5 (vas % %) —2(y ™ +y) Q5 (2955 y; t)} Q5(71; 93 t) - (4.38)
These results are in agreement with the generalized mutation hypothesis (4.37).

(£): Qs(ye;y;t) =0, Qg(2y2;y5t) =1, Qg(by2;y;t) =0 for £ > 2. In this case M = 4,
and the relation (4.28) takes the form

Q(N1, Na, N3) = Q'(N1,4N1 + 4N3 — Ny, N3) . (4.39)
Explicit calculation gives

Q(L4,1) = —(y 7 + 2y + 4y~ + 4y + 20 + v°) Qs (1) Qs (73),
Q'(1,4,1) = —(y >+ 2y 3 + 4y~ + 4y + 29> + y°) Q5 (71) Q% (V) - (4.40)

These results are in agreement with the generalized mutation hypothesis (4.39).
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(g): we end this series of examples with a choice of dg which violates condition i)
on page 6, but which preserves the mutation symmetry at the level of numerical DT-
invariants. We mentioned earlier this possibility in section 1.2. We take Qg(y2;y;t) = —1
and Qg(2y2;y;t) = 1. We may expect the generalized mutation to be a symmetry for
y =t = 1 since the generating functions F (]\7 :1q;C;q; 1; 1) are symmetric polynomials in
q. In particular for this choice we have M = 3 and hence Q (N1, N3, N3) would have to be
equal to Q'(N1,3N71 + 3N3 — No, N3). We find that while this does not hold for general v,
it does hold for y =t = 1. For example we have Q(1,4,1) = Q'(1,2,1) =2 at y = 1.

Example 3. Now we consider a three node quiver with loop by choosing vi2 = 2,
vo3 = 1, and 31 = 5. We choose Qg(v2;y;t) = 2, Qs(ly2;y;t) = 0 for £ > 1, and leave
Qs(N1v1 + Nove + N3vs;y;t) arbitrary except for the constraints imposed due to the
restrictions mentioned at the end of section 1. This in particular will require {2g to vanish
when either N; or N3 vanishes with other NV;’s being given by positive integers. The
choice of FI parameters remain the same as in (4.21):

GG=BN2+.1)/N1, (=-8, (3=(5Ny—.1)/N3. (4.41)
Under mutation with respect to the node 2, we get

N=mn+42, w=-7  B=7 (4.42)
Niy1 4+ Nova + Nayg = Ni1yp + (4N1 — Na)vg + Navs . (4.43)

The Qg’s for the mutated quiver for charge vectors proportional to the basis vectors continue
to be given by (4.26). For general charge vectors we get from (1.13)

Qg(N1v1+(2N3—Na)vy+N3vys; y;t)  for  2N;3 > N3

Qs(N1m1+Nov2 +Naysy;t) =
Q/S(Nl’yi—l-(élNl—Ng)’}/é—i-Ng’yé; y;t) for 2N;< N3

4.44
Finally the FI parameters of the mutated quiver are | )
(t=0BNy+.1)/N; —32, (3=(5Ny—.1)/N3, (;=8. (4.45)
The mutated quiver has
M2 =-2, Yz=-1, 73 =-1. (4.46)
and the expected relation is
Q(N1, N2, N3) = Q'(N1,4N1 — No, N3) . (4.47)

Explicit calculation gives

Q(1,2,1) = (y 45y % + 6+ 5y° + y*) Qs (15 ;1)
+Qs( +3593t) +2Qs (11 + 72 + 3595
Q'(1,2,1) = (y " +5y 2+ 6+ 57 + y*) (15 w3 ) (y
+Q5(n +3393t) +29Q5(7 +s + 353t

V3; Y3 t)
+ Qs(71 + 272 + 73595 1)
3,y, t)
+ Qs(71 + 2% + 135 431)

\_//\\_//\
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Q(1,3,1) = 2(y~ " +y)* Qs(v1; 1 )Qs (3393 1)
FQs(y1 +v2 +35y5t) +2Qs(v1 + 272 +3595t) + Qs(y1 + 372 + 3393 1)
Q'(1,1,1) = 2(y ' +y)? Qs (v1; y; ) (V5 y3 1)
+F2Q5(71 +3395t) + Q51 + 72 +733951)
1, _ _ _
QL,2,2) = Sy +1+y°)(y 2+4+y2){(y P+ 1497 Qs(y3;51)
(7 =1+ ) Qs ) = 2(y77 = 1+ )y +) Qs(%:s;y;t))} Qs(3y5t)
+(y 2+ 1497 Qs(Vs;y;t){Qs(% + 3595 ) + 2 Qs (71 +v2 + 3595 1)

+Qs(71 + 272 + vs;y;t)} + Qs(m1 + 272 + 273593 t)

Q'(1,2,2) = %(y‘2 +1+y8)(y 2 +4+ yQ){(y‘2 +1+y%) Qs (v3; 93 1)°
—(y =14+ Qs(v5 0% 8) =2 2 =1+ (v +y) Q’s(%é;y;t))} Q5159 t)
Hy 7+ 1+ 4%) Qs (3503 t){Q's(vi +5593t) +2Q5(v1 + 75 + 55y t)
+Q5( + 27 + vé;y;t)} + Qs(v1 + 275 + 2933 y51)

QUL23) = 2 44412 (72 + 14 57 Dslomi it
—3(y‘2—1+y2)(y_2+1+y2)2Qs(va;y;t){ﬂs(vs;yz;t2)+2(y‘1+y) Qs(273;y;t)}
+2(y 0+ 1+ yﬁ){Qs(vs;yg;t‘"’) +3(y7 2 + 1+ 9%) Qs (333 5 t)}] Qs(n;43t)
+;{(y‘2 + 14972 Qs (305 8)° = (v~ + 1+ y") Qs (v3;9%1%)

=2y +y 7y Ty Y+ %) Ds(20 y;t)}

X{Qs(’h +v3:93t) + 2Qs(71 + 2 + 3593 t) + Qs + 292 + ’Y3;y;t)}

Fy 2+ 14y Qs (3593 1) Qs (11 + 272 + 2353 1)
+Qs(71 + 272 + 3735 ¥3 t)

1 _
Q(1.23) = G+ 4497 |7 + 1P g
=3y =14y (y 2+ 14y7)? Q’s(vé;y;t){ﬂ's(vé;yz;t2)+2(y’1+y) Q’s(Z"Yé;y;t)}
+2(y C+ 1+ yﬁ){Qé(vé;y?’;tS) +3(y 2+ 1497 Q’s(37é;y;t)}] Q5(v1;95t)
1( _
+2{(y P+ 14+ t)? — (vt + L+ Qs (v v )

2y P +y Py Ty + )2y t)}

X{Q’s(vi + 73395 t) + 2Q5(71 + 75 + 3595 t) + Qs (01 + 275 + vé;y;t)}
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Hy 2+ 14y (05 5 Qs (1 + 295 + 295 93 t)
HQL (V) + 295 + 3% 5 1) - (4.48)

Using (4.44) we see that these results are in agreement with (4.47).
We have checked similar agreement for many other examples.
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