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Abstract

A Measurement of the Underlying Event Distributions in BreProton Collisions a{/s
=7 TeV in Events containing Charged Particle Jets using TeAS Detector at the
Large Hadron Collider

by
Joseph Salvatore Virzi
Doctor of Philosophy in Physics
University of California, Berkeley

Professor M. D. Shapiro, Chair

Underlying Event distributions are studied in events cioitg at least one charged-
particle jet produced in proton-proton collisions,& = 7 TeV. Jets are reconstructed from
charged particles using the aktialgorithm with radius parameter R = 0.6. The jet with
the largest transverse momentwfi and|n®| < 1.5 defines the azimuthgi®! direction.
Distributions of the charged particle multiplicity, theaar sum of the transverse momenta
( pr ) of charged particles, and the average charged particre measured as functions
of ' in the transverse region] < |¢— ¢ < 21" ) for 4 GeV < pf' < 100 GeV. The
data are compared to predictions from the Monte Carlo gémsravhich have been tuned
to data from the Large Hadron Collider, and are found in todadgagreement.
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Chapter 1

Introduction and Theoretical Overview

Performing precision physics measurements at a hadroidegllsuch as the Large
Hadron Collider (LHC) [1] where opposing beams of proton8ide at unprecedented
energies, requires that we be able to model not only theasteanergetic (hard scattering)
processes, but also the softer (long-distance) componoétite interactions.

Within the Standard Model (SM) theory of physics, QuantumdBimodynamics (QCD)
is the theory of thestrong nuclear force, the dominant force governing interactians i
hadron colliders. The principle of local gauge symmetryestdhat the laws of physics
exhibit an invariance under certain classes of transfaongt and that these transforma-
tions can vary from point to point in spacetime. UsMdx) = exp(i A G (x) T) to denote a
local unitary gauge transformation, terms containing tigle fieldsg in the Lagrangian
formulation of the SM remain invariant under the transfatioragp — M ¢@. The spacetime
dependence of the transformation is absorbed in the 8 feldg, one for each of the
SU(3) group generators denotedhyandA is the QCD coupling constant that determines
the strength of the fields and their interactions. Three ggiioms ofquark pairs (arranged
as (up, down), (charm, strange), and (top, bottom)) areritestby thefermionic fields ¢,
and we refer to th& fields as gluons, thgauge bosons of QCD. The terms fermion and
boson are used to describe the representations of the fieths Lorentz (O(3,1)) trans-
formations of spacetime coordinates, and can be charaetkby degrees of freedom more
commonly known aspin. Fermions have spin 1/2, 3/2, and so on. Bosons have integer
values of spin.

The Lagrangian formalism contains not only the fietgsbut also derivatives ofp
adding dynamics to the theory. Without these “kinetic” terrinere is no spacetime evo-
lution of the fields, and the theory would be sterile. These#c terms of the fornayg
invoke derivatives of the transformation when applyingalagauge invariance, resulting in
a huge number of terms in the Lagrangiah

LQuantum field theories require the presence of all terms atibip with a proposed symmetry, or have
good reason to exclude it.

2For the reader familiar with differential geometry, the @hs are analogous to the Christoffel symbols.
The principle of local gauge symmetry gives rise to a covaiikerivative, analogous to the covariant deriva-



Analogous to the theory of Laurent expansion of complextedifunctions, the theory
of perturbative Quantum Chromodynamics (pQCD) attemppsddict cross sections (rates
of interaction) by expanding the theory usihgJust ag?* ~ 1+ a x for smalla x, pQCD
posits that ifA < 1, the effects of the transformation %@ G (x) ) can be approximated
by an expression of the formli A G (X) T. The interactions between particles and fields are
then described by the expression of the famr(xo) |@(x1)) = <g0(xo) |ei(tl—t0)H<p(xo)>,
where H is the Hamiltonian operator derived from the LagramgThis compact expression
contains a huge number of terms, due to the large numberrotterthe Lagrangian. All
these terms appear in the Hamiltonian which in turn "muftigcouple to) each other,
when calculating the expectation valuggXo) |@(X1)). The complexity of the calculations
was reduced significantly to a "topological” art form by Fayan, when he introduced the
famous diagrams bearing his name. Each interaction terrbeaenoted graphically, and
the diagrams carry rules for their computation.

We introduced), the QCD coupling "constant”A is a constant with respect to the
spacetime coordinates, but exhibits a dependence on thgyeseales in question. This
phenomenon is referred to as running of the coupling cohstan A (E) [2]. The behavior
of A is determined by th@-function [2] which is in turn determined by the SU(3) group
structure of QCDA is large (technically speaking, divergent) for low enesgiad small
0 (0.1) above/\qep ~ 200 MeV, the so-called QCD scale. This is the phenomenon know
as asymptotic freedom [3].

We use pQCD to calculate cross sections for interactiopardbns (gluons and quarks)
at high energy scales, where the QCD coupling constant iEigutly small to make an
expansion of the QCD interaction terms meaningful. At loemergy scales, however, the
coupling constant becomes large and pQCD can no longer lie We must therefore
resort to an empirical approach to model the interactiamser

The SM has a much richer structure than we have thus far desic8J (3) x 3J(2) x
U (1) to be exact, incorporating thebectroweak interactions. The same general principles
we discussed about QCD apply to the electroweak interagtidrhe group structure is
W (2) x U(1), which has four generators and, therefore, four bosons. eldatroweak
bosons are th&/*, Z° and the photons. There are two coupling constants, mucHesmal
thanA, and the theory is always perturbative. The fermion fiel@sthe 3 generations of
lepton pairs (arranged ag(, Ve), (U, Vy), and [, v¢).) The quark fields also couple to
the electroweak bosons. The left-handed components ofibneaguark and lepton pairs
aredoublets of the electroweak SU(2) group.

We have discussed partons, but these are not the particlestwally observe in our
detector. The principle of confinement states that freelkgudo not exist in nature [4]. We
can only directly observe leptons and final staadrons which are bound states of 2 or 3
quarks. For two quarks, these are the QCD color singletetemutral combinations) of
the U (3) x U (3) product group (mesons). The observable bound states ofrBsjaee
the color singlets of th&UJ (3) x U (3) x J(3) product group (baryons). The momenta

tive of differential geometry.



of the hard scatter partons are highly correlated with thenerda of the hadrons.

As an example of pertubation theory applied to the electabvasnd strong interactions,
we can calculate the cross section for a top quark decayiagtand a bottom quarkt(—
Whb). We observe thé/ experimentally through either its leptonié{ — ¢+ v ) or hadronic
(W — qq) signature. For the reasons already discussed, we cantext d@ isolatedh
quark. Theb quark will interact with the rest of the proton (beam remsgnpossibly
producing pairs of quarks from the vacuum, eventuiadigronizing (forming hadrons) into,
say, aB® or B*. In our example, the direction of ti@meson is highly correlated to the
direction of the outgoindp quark.

Hadronization of partons are extremely complex interastj@nd occur at much lower
energy scales (longer time scales) than does the hard rscattese interactions elude
calculation, and we must adopt alternate models to accoutiéir effects. We feed back
knowledge obtained from experiments to adjust paramet@setmodels will invariably
have.

We can use pQCD to calculate the high energy component afacttens between
gluons and quarks, but the subsequent evolution of theaictien is impossible to calculate,
as final state particles are produced through complex irgéiae QCD parton exchanges
(described by Feynman diagrams), Essentially, we canrotilesée the distributions of
final state particles from first principles. The motivatiar bur measurement begins to
nucleate. In order to relate physics measurements baclkdtodtical predictions, we must
understand how the observed data feeds back to the thedrabclel. We must determine
how does the distribution of particles in our detector aexur interpretation of the hard
scatter between two colliding protons.

One of the most indispensable tools we have are Monte Car®) (Mnerators, such as
PYTHIA [5], SHERPA [6] and HERWIG++ [7]. These are computer programs that imple-
ment phenomonological physics models, and we shall digbissopic in more detail in
Chapter 2. These generators model the hard scatter betwhieing protons, evolve the
interactions through a series of models (e.g. - fragmemtahadronization), and provide
distributions of final state particles. The extent to which kelieve the MC predictions
depends on how well they can model the distributions of fitetegparticles. Our measure-
ment focuses on characterizing the agreement in the "w@illdiese distributions, the lesser
populated regions of phase space. Specifically, we medseithdtributions of particles far
away from the primary regions of interest and compare to tiegvedictions.

Historically, theUnderlying Event (UE) has been a catch-all term, relating to the distri-
butions of particles away from the directions defined by tlogemnteresting hard scatter.
The CDF and DO experiments at the Fermilab Tevatron perfdmekted measurements
[8, 9]. The concept of the UE is important to hadron collidaygics because it enters
the uncertainty analysis for many precision measureméiwsry UE analysis is required
to precisely define the concept and parameters for itsafcthrent analysis is no excep-
tion. As a result, there are many definitions of the UE in ttexditure describing the same
concept.

We motivate our definition and subsequent measurement afniderlying Event with



a highly contrived toy example. We use the uncertainty asislyf adifferent, hypothetical
measurement to motivate our UE measurement.

Suppose we were measuring the differential cross sectipartdn scattering as a func-
tion of Q? in diffractive proton-proton collisions, using an unrséti detector capable of
infinite track momentum and spatial resolution with perfecionstruction efficiency. This
interaction is modelled at leading order finby a parton (gluon or quark) from one proton
scattering with a quark or gluon in the other proton. An exenigpshown in Fig. 1.1. We
refer to these partons ascoming. The leading order terms in pQCD contain teatgo-
ing partons, meaning two partons are produced in the hard schit€ig. 1.1, a u-quark
from one proton scatters against a d-quark from the othd@opy@ach quark radiating a
gluon. Those gluons interact, producing a "s-channel” gJwehich then produces a quark-
antiquark pair. In our detector, the momenta of the outgqumyk-antiquark pair manifest
themselves as a collimated collection of final state hadromawn agets. This situation
is visualized in Fig. 1.3(a). The extent of collimation isachcterized by the jet radius
parameter (R). Low momentum transfers require a largeusatti capture the hadronic
shrapnel from the interaction; high momentum transfer$ sallimate strongly with less
dispersion, thus requiring a smaller radius. For our anmglye settled on the value R = 0.6
as the appropriate jet radius to account for dynamic 4 @;eﬁft < 100 GeV range of our
jets. As an example of the difference between a quark and arjetutgoing parton with
transverse momentumr = 10 GeV may hadronize into 5 more more final state particles
moving approximately in the same direction, each having@pmatelypr = 2 GeV.

In practice, jets are defined by the algorithm used to coosthem. There are vari-
ous algorithms available such as the dqti10] and SiSCone [11], etc., each having their
advantages and drawbacks. This analysis uses th&agerithm to construdrack jets
from charged particles, using only the inner detector ([C)e efficiency and resolution
of the tracking detector allows us to probe very low energy. jdhe antik; algorithm is
an IR- and collinear-safe version of the geometricallytite cone algorithm, which uses
tracks inside a cone i@ —n in to characterize its energy. The terms track jets and elularg
particle jets are used synonomously.

In our example analysis, the most natural strategy woulcbedonstruct track jets,
compute and histogram ti@?. and compare the results to the predictions of Monte Carlo
generators. One relevant diagram of a contributing prosesp — pp+ jets, which can
proceed througlpp — pp+qq (See Fig. 1.1). For simplicity, let us assume the outgoing
guarks each haver = 20 GeV and the direction of the quark momentum vectorg)aze0
and @ = 0 for the quark, and = 71 for the antiquarlé. This scenario is just a quark pair
produced back to back in the lab rest frame. We further asshen@utgoing protons travel
directly down the beampiper{ = +o ). TheQ? of this interaction is 40GeV2. We will
not discuss the plethora of other leading order diagramsutrexample, detailed numeric
information is provided for definiteness.

3The ATLAS experiment uses a right-handed coordinate systémx-directionxX points radially inward
from the interaction point to the center of the LHC riggadints upward, and points along the beampipe.
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Figure 1.1: An example diagram f@p — pp+ jj

In our example Feynman diagram, we have taken the libertypofiating quarks and
jets. In general, the picture is far from straightforwardemwe start to probe the hadroniza-
tion process. Again, we focus on one simplified scenario bahanfinite number of possi-
bilities. The outgoing quarks interact with gluons and satee quarks from the protons, an
example of which can be seen in Fig. 1.2, where the outgoitighgaark interacts with one
of the spectator quarks from the proton via a gluon. The antgquark radiates a gluon
which (a) splits into ald pair, and (b) pulls aiu pair from the vacuum to form a final state
mt andm . The quarks continue through the hadronization processrto & collection
of final state particles. The charged particles leave trackse Inner Detector from which
we reconstruct track jets. In our example, the leading tyackhaving the largespr) has
ptr =21 GeV,p=0andn = 0.1, close to but not coincidental with the direction of the-out
going quarks from the hard scatter. The subleading tradkrfetk jet with the next highest
pr) haspt = 18 GeV,@p = mandn = 0.2. The directions of ther mesons need not follow
the direction of the parent quark due to the interaction& wie beam remnants. In our
example, thett is produced withpr = 3 GeV,n = 0.5 andg = m/2; therr is produced
with pr =2 GeV,n = —0.8 andg = —11/2. This situation is depicted in Fig. 1.3.

Figure 1.2: A example diagram f@p — pp+jj+mtm
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Figure 1.3: An example of particles in ti@ANSVERSEregion, with jets in thecOWARD
andAwAy side.

We now proceed to do something useful with all of this dethilgormation. This
event enters our hypothetical cross section measuremeatge it contains at least two
energetic track jets. The measu®dis 3% GeV?, according to the sum of the track jet
pt. The question arises as to how we account for the pions that preduced away from
the direction of the hard scatter. Their contribution isleetgd because the reconstructed
jets did not account for their energy. If the Monte Carlo gat@ models the pion pair
production as ultimately originating from hard scattertpas, then the pions are accounted
for by jet energy resolution. If MC produces the pions fromeaandary interaction, not
tracing its “ancestrage” to the hard scatter, we must utaedshow the MC models these
effects. The question we are asking is, "How are meaningfaigarisons to Monte Carlo
generator predictions to be made?”

MC generators tend to simplify the hadronization processuich a way that the final
state particles tend to follow the direction of the hard tseaf he population of phase space
away from this direction needs a correction in order to mateberved data. One current
model that performs this correction is known as multiple@aiinteractions (MPI) [12],
where a secondary, softer interaction occurs generatirigciea much more isotropically,
thus filling in phase space. The MPI will also produce pagsabverlapping in phase space
with the hard scatter, contributing particles to the jet amdrestimating itor. The MC
produces the hard scatter with a cross section calculatagare of this secondary inter-
action®. MC must account for the additional energy in order to rencainsistent with the

4Some newer models attempt to reconcile QCD color differebesween the hard scatter, beam remnants



data.

We are now ready to motivate the definition of thederlying Event (UE) for track
jets. The leading track jet is used to define a direction insphepace. The track jet can
be described by four variablept(, 1, ¢, mass). All variables except are relativistically
invariant under boosts along thaxis. We usei®! to define the directiogy, and categorize
the jet using itgr. Jet mass does not enter the analysis. We defineRRESVERSEregion
to be the area of phase spaté3 < |@ — ¢| < 2m1/3.

We tentatively define the Underlying Event as the chargetigb@aactivity in theTRANS-
VERSE region, using the multiplicity and scalar sym of the tracks as relativistically in-
variant measures of particle activity. The caveat is thatesiour tracker offers excellent
tracking to|n| < 2.5, we impose a selection criteria on the tracks. We settléherfihal
definition of the Underlying Event, as it pertains to thislgas:

The Underlying Event is the charged particle activity in tiRANSVERSEregion (3 <
lo—@| < %"), for tracks havingn| < 1.5 andpr > 500 MeV. Charged particle jets are
constructed using the arl-algorithm, with the clustering radius R-parameter valuedix
at 0.6, from tracks havingy| < 2.5 andpr > 500 MeV. The leading jet withn| < 1.5
andprt > 1 GeV is used to defingy on a per event basis. The charged particle activity is
characterized by the scalar sum of the individual tragK Zpt ), the number of tracks (
Nen ), and the averagpr per track Ot = Zpt/Ng).

We now summarize and discuss the Underlying Event. Expetiaflg, this definition
of the UE is an unambiguous and a well-defined quantity. Tétexaily, one encounters
problems in the interpretation, typically arising from tiieral an interpretation of Feyn-
man diagrams. Feynman diagrams are invaluable tools ti@atch&ulate cross sections,
but we must be cautious and remember that any diagram is oae offinite number of
diagrams that must be consistently summgiore interpretation. One popular working
definition is that the UE is "everything” in the event excdm hard scatter, which already
presupposes we can unambiguously classify a hadron asghaenginated from the hard
scatter.

The different available MC use different models to poputatsas of phase space com-
plementary to those defined by the hard scatter. Such moddlsteal-State Radiation
(ISR) and Final-State Radiation (FSR), MPI, beam remnaetactions, bremsstrahlung,
etc. all work differently and complement the hard scattedatoln the end, the goal is to
describe the physics correctly. We refrain here from dbswgithe various MC models; itis
not germane to the current analysis and detailed informaidm be found in the literature.
We focus on characterizing their performance in reprodytie relevant physics distribu-
tions, instead of analyzing the success or failure mode® ré&bults of this analysis will
provide the authors of MC generators another test of thedetso by providing truth-level
distributions which can be compared without reference jodstector.

A similar measurement was performed simultaneously by k& @xperiment [13].
The CMS measurement of the track jet-based UE used charggdegets reconstructed

and secondary interactions. This is knowrcal®r reconnection.



using the SISCone algorithm [11] with R=0.5. The CMS analysed the sampr >
0.5 GeV acceptance for tracks, but thg < 2 was different than the acceptance in this
analysis. ATLAS also performed a similar measurement [@4]urs, except the direction
of the UE was determined by the track with the largest

This analysis measures three different quantities simetiasly, most often with identi-
cal methods for each. We will usually outline the method foe of the observables, noting
the similar or identical approach for the remaining obseles We mention differences,
if any, in the treatment of the different observables. Altgely, we refer to the measured
guantities generically a8. For example, the distributions of vs p‘ft refer to each ok pr,

Nen and pr vs pf'.

UE analyses have been performed at different experimetitsodgh they may use dif-
ferent objects (e.g. - leading track’) to define the directions, these analyses consistently
label the different UE regions. The phase space selectitamiarmay vary, but the concepts
of TOWARD , TRANSVERSEandAWAY regions are used consistently. The different regions
of the UE, as defined for the current analysis, are shown inlF8y



Chapter 2

Monte Carlo

2.1 Generation

Monte Carlo generators are algorithms, implemented as atenprograms, employing
phenomenological models to simulate physics processesoiiput of these generators is
typically a list of partons or final state particles, and thebperties, whose origin reflects
the physics process being modelled. For example, if we adeitiog a top quark decaying
to aW-boson and a b-quark, the list of final state particles wosldhlly include 88-meson
(containing the b-quark). In high energy physics, the mbgjuitous generator iSYAHIA.
Examples of other generators includemrWiG++, SHERPA, AcerMC [15], ALPGEN [16],
etc.

Monte Carlo generators are extremely important in a widescte# analyses, because
it helps us relate what we observe in our detectors to theaiuneatal physics processes.
The distribution of particles in our (imperfect) detectai®es not uniquely point to the
responsible physics process. It must usually be inferregikdaynining its consistency with
different scenarios. As we search for potential new physiacsur experiments, we have
to ask many "what if?” type questions. For example, let usigeswe are looking for a
spin-0 particle with a mass of 120 GeV. We would model theviaiéphysics process and
compare the output to the observed data. What if the pahmtea mass of 115 GeV? or
125 GeV? How would the output of our simulation change, andccour analyses resolve
the differences? What if the particle were a vector bosorcéfanediator described by
a field with vectorial transformation properties) instea@i@e distributions of the decay
products differ depending on whether the particle is desdriby a scalar or vector field.
By modelling the different scenarios, comparing and anatythe data, we determine the
ability of our analysis to resolve new physics from the pecédns of the Standard Model.
Although we used a sleek example to motivate the importahtoote Carlo generators,
the same line of reasoning applies to precision measuresmétiie Standard Model.

In the context of this analysis, we ask what the distribuigiohparticles are, how many
are there, and their energy content. This is one of the firstiéBsurements performed at
the LHC made with early 2010 data. Physicists fed back kndgddrom previous experi-
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ments into existing MC generators and made an educated gugmssphysics distributions
at the LHC. The generators are configured to give distrilbgtibhat agree with data from
previous experiments. The output of these generators angthbe compared to new data.

Monte Carlo generators usually have a set of parametersdhdie adjusted to modify
its behavior, to make it agree better with experimental .dAtaarticular configuration of
parameters is known astane. When referring to MC with a particular configuration, we
use the convention of specifying the tune in parentheses tifé name of the generator.
For example, PTHIA 6 (AMBT1) refers to the AMBT1 tune of PTHIA 6.

This analysis usesYRHIA 6 (MCO09) [17] to validate the analysis techniques, and in
the evaluation of systematic uncertainties. The availahieple had 20M events, approxi-
mately half the size of the data sample. Other MC were usdukiptaluation of systematic
uncertainties. The exhaustive list of Monte Carlo genesatonsidered in this analysis is

e MCOQ9 tune of RTHIA 6 [17]

e AMBTL1 tune of PrTHIA 6 [18]

e UE7-2 tune of HERWIG++ [7]

e Perugia2010 tune ofAHIAG [19]

e Perugia2011 tune ofAHIAG [19]

e Perugia2011 (without color reconnection) tune 8ffRIA6 [19]
e 4Ctune of RTHIA8 [20]

e Z1tune of RTHIAG [21]

e AUET2B tune of RTHIAG [22]

2.2 Simulation

We described Monte Carlo generators in Sec. 2.1. We now shssimulation of the
detector. Any measurement requires knowledge of how tharapys responds to input
stimuli.

The output of a Monte Carlo generator is usually a list ofipka$ and properties that
we might observe with a perfect detector. In order to compaeredictions of MC to the
data, we need a more realistic description of its output.iBykating the detector response,
and applying it to the MC output, we obtain a modified list oftfdes with which we can
make a meaningful comparison to the data.

This analysis makes extensive use @ffRIA 6 (AMBT1) [18] that has undergone full
detector simulation using the GEANT4 package [23]. As wdldiscussed in Sec. 5, this
tune is used in the correction procedure to account for tmtedffects. At the time this
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analysis was performed, this Monte Carlo sample had the awesliable statistics. The
AMBT1 configuration was not tuned to LHC data.

We require high statistics in all of the relevant phase sgaa@gder to obtain an accurate
description of the detector. Unfortunately, modelling tle¢ector isvery time-consuming,
roughly 15 minutes per event. This means we cannot affordilp simulate every gener-
ated event; we must carefully choose the events we wish talaten One of the variables in
our analysis is the transverse momentum of charged pau'ﬂt(ﬂpl?t.) The cross section for

generating MC samples drops rapidly as a functionplﬁ)tf(See Fig.3.7). Without making
specific cuts during the generation process, obtainingsfalulation samples at higpr
would be a very inefficient process. By making specific cutshentransverse momentum
of truth jets, we are able to effiicently populate all relayaimase space. Samples generated
with such cuts are referred to dsces, and the events in these slices are properly weighted
to form consistent distributions when histogrammed.

The details of GEANT4-simulated MC sample generation doeltded in Table 2.1.
PYTHIA 6 (AMBT1) is listed twice; there are two statistically indemment samples.

2.3 Remarks

Because PTHIA 6 (AMBT1) plays a major role in the derivation of the final meses
ment, we compare most of its physics distributions to tha,da¢fore application of any
corrections. For some variables, the differences in tha diatl MC distributions are fairly
large. Binning in these variables removes the leading aflects of such differences, and
we are still able to use the Monte Carlo to obtain good resi#e account for residual
differences as a source of systematic uncertainty in Sec. 6.

We use the termisaseline measurement andcentral valueto refer to the final corrected
measurements.

We compare the central values to the predictions YfHRA 6 (Z1) and RTHIA 6
(AUET2B), which were tuned to CMS and ATLAS data, respedyiv@ hese are the best
configurations CMS and ATLAS had at the time our measurenvesits completed. These
tunes were not used to obtain the central values, but the@osops are interesting because
these Monte Carlo were tuned using LHC results from othersoneanents.
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Table 2.1: GEANT4-simulated Monte Carlo generation

GEANT4 simulation samples

generator generator cut # of events
Pythia 6 (MC09) - 19,693 365
Pythia 6 (AMBT1) 4GeV< pf' < 15GeV | 19,823 155
15GeV< pf' < 30GeV | 19,660,690

30GeV< pr' < 60GeV | 19,618 890

60GeV< pf' 9,745804

Pythia 6 (AMBT1) - 4,907,480
Pythia 6 (Perugia2010) 4GeV< p'TEt <15GeV | 2,477,628
15GeV< pf'<30GeV| 2,445,198

30GeV< pf'< 60GeV| 2,424,625

60GeV< p¢' 1,224,549

Pythia 8.145 (4C) - 4,004,064

Data

42,617,085
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Chapter 3

The ATLAS Inner Detector at the Large
Hadron Collider

3.1 The Large Hadron Collider at CERN

Located in the environs of Geneva, Switzerland, the Largdréta Collider (LHC)
[1] collides proton beams in opposing directions. Desigttedperate at 14 GeV center-
of-mass energy with a luminosity’ = 103%cm2s~1, the LHC was operating at 7 GeV
center-of-mass energy and peak luminosify= 6.6 x 10?8&cm~2s1 in early 2010, when
our measurement was made. The LHC is 27 kilometers in ciretente, and located up
to 175 meters underground.

The beams are produced as hydrogen ions and a chain of atoedesuccessively boost
these protons to increasing energies. A linear accele(atNAC2) brings the protons to
50 MeV and feeds the (PSB) Proton Synchrotron Booster. Thg it9sts the beam to
1.4 GeV and feeds the SP (Proton Synchrotron). The SP boogtsdtan beam to 25 GeV
and feeds the Super Proton Synchrotron (SPS). The SPS lbegisotons to 450 GeV,
which then feeds the last accelerator in the chain, the LHErAroton bunches in each
opposing beam are accelerated to 3.5 GeV, they are collidiée. collisions occur at 4
locations, referred to by the name of the experiment locatede points - ATLAS, CMS,
LHCb and ALICE. The LHC uses a circular array of more than 16Qferconducting
magnets keep the protons in their trajectory. The CERN acatr complex is shown in
Fig. 3.1.

3.2 The ATLAS detector

The ATLAS detector is actually an ensemble of many detecforsning a general-
purpose hermetic detector. The hadronic calorimetry systeasures the energy deposited
by strongly-interacting particles. The electromagnetiioodmetry measures the energy de-
posited by electrons and photons. Both calorimeters haeesBgmentatiorgfanularity)
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Figure 3.1: The CERN accelerator complex [24]

allowing for good spatial resolution and longitudinal enedeposit resolution (dE/dx). As

the outermost detector, the muon system tracks electyrichfirged particles that "punch
through” all the other detectors, including the calorimeWe identify these minimum ion-

izing particles (MIP) as muons. Neutrinos do not intera¢hwie detector; their signature
is missing energy. The innermost detector, the ID (inneedet) resolves charged particle
trajectories and is described in more detail next, as thikdaselevant subsystem for our
analysis. The ATLAS detector is depicted in Fig. 3.2.

3.3 The ATLAS Inner Detector

The ATLAS detector is a system of complex and complementabglstectors. This
analysis, however, makes use of a very small part of the wdweilector. The entire analysis
is based ortracks, which only require the inner detector (ID). We focus ourcdsssion
on this relevant subdetector. Detailed information abbatdifferent components of the
ATLAS detector can be found in the literature. [25]

The ATLAS Inner Detector (ID) consists of 3 separate and dempntary subdetec-
tors. These are the PIXEL detector [26], the SemiConduatacker (SCT) [27] and the
Transition Radiation Tracker (TRT) [28, 29], that comprike innermost component of
the ATLAS detector. The envelope of the ID is located jussalg the beampipe, extend-
ing 1.2m radially and -3.5m z < 3.5m. Geometric details of the ID layout can be seen in
Fig. 3.3. The entire ID is immersed in a 2T axial magnetic fieklsing charged particles
to trace out curved trajectories according to their monmmantThe ID is responsible for
finding charged particles and resolving their momenta.
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Figure 3.2: A diagram of the ATLAS detector indicating itdstomponents [25].

3.3.1 The PIXEL detector

The PIXEL detector is an array of approximately 80 million.®s0x 400um silicon-
based charge detectors, known as pixels. The pixels détaged particles traversing their
geometry, providing 3-dimensional spacepoint informaabout the track. The geometri-
cal layout of the pixel detector was designed to provid® spacepoints (See Fig. 3.5) for
tracks with|n| < 2.5. The pixels are arranged in 3 cylinders concentric to tlaeripepe,
and 6 parallel disks (3 on each side). Fig. 3.3 shows geornadtiail about the PIXEL
detector. The 3 cylinders, collectively referred to as theslpbarrel, are located at=
50.5mm (B-layer), 8&mm (Layer 2) and 128mm (Layer 3) from the beamline, and span
|zl <4005mm. On either side of the barrel, 3 disks are arrangeg at 495mm580mm
and 650mm, and span 8nm<r < 1496mm. The pixels disks are commonly referred
to as the end caps. The pixels are arranged nimddules with 46080 pixels each. The
modules are tiled onto the disk surfaces in the end caps, mtedang carbon fiber strips
(staves) in the barrel. To provide full quality coveragepinthe PIXEL detector provides
some module overlap between modules in the azimuthal direcAs a result, a track may
have more than one hit in on the same layer, if it crosses theetfion of overlap. Detailed
information about the pixels can be found in [26]. Fig. 3.4wh the rendered image of
the PIXEL detector.
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Figure 3.3: Arr — zview of the ATLAS Inner Detector with details of the geometeyout.
Reproduced from [25].

3.3.2 The Semiconductor Tracker

Located just outside the PIXEL detector, the SCT detectatss an array of silicon-
based charge detectors. Theu®®x 1260mm geometry of the SCT detector elements
is much larger length-wise than the pixels, and are refetweas strips. The SCT has a
barrel and endcaps, one on each side of the barrel along éinedige. In the barrel region,
there are 4 double-sided layers, with the strips arranga@agraphically. The layout in
the endcap is more intricate; Fig. 3.3 shows the detail ofgtb@metrical layout of the
strips, which cover tracks witfn| < 2.5. The strips do not offer the same resolution in
z(1260mm vs 40Qm ) as the pixels, but compensate by providing many more aiann
and covering more surface area. Unless lost to efficienggt@raction with material in the
SCT infrastructure, tracks normally register 2 hits peelayetailed information about the
SCT can be found in [27]. Fig. 3.4 shows the rendered imageeSCT detector.

3.3.3 The Transition Radiation Tracker

The outermost component of the ID, located outside the S&TTtansition Radiation
Tracker (TRT) is an array of straw drift tubes. The TRT pr@&dcontinuous tracking
information between the SCT and the outer envelope of the(@Rproximately 1m). In the
barrel, 4mmx 370mm straws, running axially to the beampipe, are fillethviié/CO,/O5.

In the endcap, the 4mm 1440mm straws run radially. A fine tungsten wire anode at the
center of the straw is held at ground; the tube (cathode)ldsdtel.5kV. Charged particles
traversing the straw tube ionize the gas; the potentiatdifice between cathode and anode
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Figure 3.4: Arr — zview of the ATLAS Inner Detector. Reproduced from [25].

causes electrons to drift to the anode. Drift time providesher spatial resolution. A
particle traversing the TRT barrdly| < 0.8) is expected to have 36 TRT hits. Geometric
considerations must be taken into account to determine uingbar of expected hits in
the TRT end cap ( X |n| < 1.9), and in the transition region between the barrel and
endcap. Polypropylene fibers (in the barrel) and foils (@ ¢éindcap) between the straws
act as a transition radiation generator to help descrimibatween electrons and pions.
Different voltage thresholds are used to detect the diffiegebetween transition radiation
from electrons and minimum ionization from pions. Detailefbrmation about the TRT
can be found in [28, 29]. Fig. 3.4 shows the rendered imageeoTRT detector.

3.4 ATLAS Trigger Overview

The ATLAS detector has a 3 level trigger system, known as #hel1 (L1), Level 2
(L2) and Event Filter (EF).

The L1 trigger system is a sum of hardware triggers from ki€ components of the
detector. Detector components are designed to triggema2th piseconds of a significant
signal in that subdetector. Due to various constraintdudiag full detector readout time,
this trigger can operate at a maximum rate of 75 kHz.

The L2 software trigger is performed outside the detectingidedicated computers to
perform optimized reconstruction in the various regiongdrest. The L2 trigger system
reduces the event rate down to approximately 3.5 kHz.

The last component in the trigger chain is the Event Filtéf)(Hhe decision to com-
mit the event to permanent storage is based on full evenhstaation. The EF passes
approximately 200 events per second.

This analysis uses events selected with the L1 Minimum Bigger.
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3.4.1 Minimum Bias Trigger

The different components of the ATLAS detector (calorimgtenuons, etc.) are each
capable of firing the L1 trigger in response to signal debectiThe minimum bias trigger
consists of Beam Pickup Timing (BPTX) devices and the MimmBias Trigger Scintilla-
tor (MBTS).

The BPTX Trigger

Formally considered part of the LHC machine, even thougpdine operated by ATLAS,
there are two BPTX stations on either side of the ATLAS detetbcated at-175m from
the nominal interaction point. Each BPTX station consi$# electrostatic button pickup
devices, arranged symmetrically around and attached toghm pipe. The BPTX devices
pick up the signal from passing proton bunches. A coincaemigger from both sides
of the detector indicates that two proton bunches havedsulli Detailed description and
performance of the BPTX can be found in [30]

The MBTS Trigger

On either side of the ATLAS detector, the MBTS system corsifta disk (its face
perpendicular to the beamline), with scintillator coustemounted on two radial rings.
Each ring is divided into 8 equal segmentggnfor a total of 16 segments on each side of
the ATLAS detector. The two rings sparm0® < |n| < 3.84, and are located at3.56 m
from the nominal interaction point. Particles traversing aegment deposit energy into the
scintillator, and the light is guided to a photomultipliabe (PMT). After signal shaping, a
hit is defined as a signal over the descriminator threshold.

The MBTS trigger efficiency i& 0.97 for events with 2 selected tracks, rising+®.99
for > 3 tracks. The trigger, by construction, does not introdusigaificant selection bias,
and the efficiency does not affect the measurements in olysasiaOur event selection is
based on forming charged patrticle jets, naturally selgatwvents with larger track multi-
plicities, and therefore the MBTS efficiency is essentiallfp% [31].

Events in this analysis are selected with the Minimum Biagr, with at least one
MBTS hit and a coincidence in both sides of the BPTX.

3.5 Event Reconstruction

3.5.1 Track Reconstruction

Because the Inner Detector (ID) is immersed in a 2T magnetid,fa charged par-
ticle will trace out a helical trajectory, the parametersadiich depend on the particle’s
momentum and production vertex. As the charged particletsas the various compo-
nents of the ID, the registered hits are recorded and usexttmstruct its trajectory. This
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trajectory is also referred to agrack. We summarize the salient features of the reconstruc-
tion algorithms, those which are relevant to this analyBistails about the reconstruction
algorithms and their performance can be found in [32].

A helix can be described by the following five parametersyamssg knowledge of the
event’s primary vertex (PV), the point where the protonfidet. The particle’s production
vertex may differ from the PV.

e pr - the transverse momentum of the particle. We measure ttledtavatureo and
use it to determine the particlgs using its chargg and the magnetic field strength
B, via the relatiompr = gB/p.

e 1=—log(tan(¥)), the pseudorapidity of the particle’s production vertex

e dp - the transverse impact parameter, is the distance of ¢lappsoach, in the — ¢
plane, to the PV

e 7 - the longitudinal impact parameter, is theoordinate of the closest point to the
PV

e (1 - the azimuthal coordinate of the point of closest approadhé¢ PV

Hits from adjacent pixels or strips are gathered into chssfeontiguous combinations
of hits), which are used as seeds in the tracking algorithni.cé@mbinations of three
clusters (from any pixel layer or the innermost SCT strig) @sed to define mad, which
is essentially is a track candidate. Hits from the ID are #&sociated with the track, which
is refitted after every hit association using a Kalman fil&8]fand a simplified model of the
detector geometry. After the hit association is compléte ftack undergoes further quality
checks. The track is refit using a more sophisticated desmmipf the detector, and scored
accounting for the quality of the fit, the number of hits, tlienber of holes ("missing” hits)
and thex?/Ngot is used to select good tracks. Hits which are shared betwaekstare
reassigned to the highest quality track. Tracks are sulesgiguextrapolated to the TRT,
and the analogous procedure of attaching TRT hits is regeate

3.5.2 \Vertex Reconstruction

Primary vertex reconstruction begins after track recamsion is complete, requiring
at least two tracks having

o pliack> 100 MeV
. |d§3| <4 mm, whered(EfS is the transverse distance of closest approach to the beamsp
e the uncertainty onl§>, o (d§>) <5 mm

e the uncertainty o@5>, o (z55) <10 mm
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Figure 3.5: Schematic of the different stages of track retraction. Spacepoints are rep-
resented by the yellow dots and blue lines indicate traclse&he dashed blue line is a
seed which shares a single hit and the green line illusteasegd which was rejected prior
to hit association. The green dashed line indicates a ti@o#tidate which failed the impact
parameter cuts. The red line represents a silicon-onlitrBlee black line indicates a track
including TRT hits. Figure reproduced from [34] with persian of the author.

e at least one pixel hitNyx > 1)
e atleast 4 SCT hitsNset > 4)

e at least 6 silicon hits totaNpix + Nsct > 6)

The vertex fitter is seeded with the maximum of #yélistribution of the tracks. Tracks
are tested for consistency with the candidate vertex. Thptac vertex fitter [35] uses a
Xx2-based algorithm to iteratively reduce the contributianiroutlying tracks, which can
become candidates for another vertex. The algorithm is teteaprhen the track collection
is exhausted or no further vertices are found. If the beaimsgaown, it is also used to
constrain the fit. Vertex reconstruction is described iral@t [36].
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3.5.3 Jet Reconstruction

Selected tracks withn| < 2.5 (c.f. Sec. 4.1.1) are clustered into charged particle jets
(track jets) using the antig algorithm, using R = 0.6 for the clustering radius R-paramet
The R-parameter is often referred to as jiteradius. Charged truth jets are formed from
Monte Carlo, applying the ank- algorithm to primary particles in the event HepMC
collection. Fig. 3.6 shows the reconstruction efficiency dbarged truth jets that have
been matched to a charged particle jet, with a matchingririfR = /(An )2 + (Ag)2 <
0.3. Fig. 3.7 shows thet spectrum of reconstructed jets, comparing dataxtoH?A 6
(AMBT1). The MC pr spectrum idharder (having largermr) than the data.
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Figure 3.6: The reconstruction efficiency for charged tjetls. Reconstructed charged
particle jets have® > 1 GeV.
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Chapter 4

Measurement of Raw UE Distributions

We describe the measurement of the Underlying Event digiabs directly from the
data, before any corrections are applied.

4.1 Eventand Data Selection

The data used in this analysis were taken early 2010, acatimgla total integrated
luminosity of 800ub~! (after highly prescaled triggers). More than half the dataen
taking with u < 0.01, whereyu is the average number of collisions per bunch crossing.
and never exceeded = 0.14 throughout the relevant data-taking period. Thereftire,
effects ofpile-up (more than one collision per bunch crossing) are minimak fdtevant
triggers (Sec. 3.4.1) and detectors (Sec. 3.3) were futigtfonal. An event was selected
for analysis if it had exactly one primary vertex (PV) and arged patrticle jet Witrp’Tet >
1GeV and n'®Y| < 1.5.

4.1.1 Track Selection

In this section, we outline the criteria for selecting prisnéracks. Primary tracks
have been studied comprehensively in Minimum Bias studie&TILAS. We adopt the
same selection criteria as the ATLAS Minimum Bias analyd$][A complementary UE
measurement based on the leading track to define the dimexftibhe UE [14] also makes
use of these selection criteria. Using the same track $etectiteria allows us to make
comparisons, and use the same infrastructure for trackfigjeacy uncertainty analysis.
The same tracks are used to make track jets and calculateBhabgkrvables, with one
important exception. Whereas the tracks used in jet rengetgin are allowed to have
In| < 2.5, analysistracks (those used for calculating the UE observables), are céstirio
In| <1.5.

Some history is required to explain the choicernohcceptance used in our measure-
ment. This analysis considers aktitrack jets with a jet radiuR = 0.6. We performed
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variable cut
Pt 0.5 GeV
SCT hits > 6
Pixel hits including >1
B-Layer hit if expected
|ZoSinG)| < 1.5mm
|do < 1.5mm
total tracks withjn| < 2.5 || 404,137,798
total tracks withjn| < 1.5 || 259 643 051

Table 4.1: Track selection criteria

companion analyses [38, 39], considering jet radii rangiog 0.2 < R < 1.0, using the
same analysis techniques outlined in this thesis. To omaibestp’{Et resolution, all tracks
should be within the acceptance regigif¥| < 2.5. Restricting jets tdn®| < 1.5 ensures
that all constituent tracks are within the track acceptaAealysis tracks, however, should
remain within the jet acceptance to avoid cases Wb%?@( > dret, and suppress the effects
of mismeasured higpr tracks.

The track selection criteria are listed in Table 4.1. Tratksst register at least six (6)
hits in the SCT, and at least one (1) hit in the pixel detectorreduce the contamination
of secondary tracks, if the corresponding module in they@#lan the pixel detector is op-
erational, the track must register a hit in the B-layer, engtically satisfying the> 1 pixel
hit requirement. To select tracks from the primary verteacks must have a transverse
impact parametedy| < 1.5mm and longitudinal impact parametegsin(8) | < 1.5mm.

A total of 404 137,798 tracks passed the selection criteria for track jet cangson. A
total of 259643 051 tracks passed the selection criteria for calculatio@fUE observ-
ables. The distributions of the variables used to selecksrare shown in Appendix A.
Fig. [4.1] shows thgor andn distributions of the tracks used to construct charged garti
jets. Fig. [4.2] shows thet andn distributions of the tracks that enter the calculation of
the UE observables.

4.1.2 Jet Selection

Charged particle jets are accepted if they hpif/%‘z 1 GeVandn| < 1.5. This analysis

reports results fmp'}at > 4 GeV. The expanded acceptance is used for the purposes of
analyzing the uncertainties associated with jets "smgarmfrom outside the acceptance.
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Figure 4.1: Thepy andn distributions for tracks used to construct charged pariiets.
The Monte Carlo is normalized to the data.

4.2 Measuring the Distributions from Data

Tracks in selected events are clustered into jets usingtiidgaalgorithm, using R=0.6
as the clustering radius R-parameter. For each event, dldénkgjet with|n| < 1.5 is se-
lected to define the = ¢ direction. Tracks in the event are selected for the UE catmns
if the relative azimuth to the leading jet satisfs< | — g| < %" For each evenp®! is
defined as the transverse momentum of the hardest jet sagisfip < [n| < 2.5. If there
are no jets satisfying this conditiop®! = 0. For each observablg, we recordp’Tet, pt
andd in a 3-dimensional histogram.

The UE observables are calculated for each event as follows:

e Ny, = the number of tracks in thHERANSVERSEregion.

o Ipr =3 piack = scalar sum of the trackr

e pr =the averag@r per track= il%

Figs. [4.3-4.5] show slices in each observalleéholding dret fixed and integrating over
pet. As we will discuss laterp®® enters the correction procedure when we adjust for
detector effects; its measurement is important for detaingithe effects of jets thatmear
in from outside the acceptancerfiA 6 (AMBT1) is compared to the measured data and
is not in good agreement, potentially leading to biases. Theserdifces are accounted for
in Sec. 6, when we discuss systematic uncertainties.



4.2 Measuring the Distributions from Data 26

> e — x10°
8 100 = o— mzrackl <15 g — T T .
s E =4 A8 21 * DaATA ]
S 10k e —e— DATA Z [ o Pythia6 (AMBTL) ]
Q E - -
2 i - —o— Pythia 6 (AMBT1) - M @% ]
S E
£ E 205 . o —
£
5 100 C 3 S (3 ]
I3 E C . o b
£ we C . o © ]
2 b 20— 0®o ° -
E L L 3 [ -
10° - B %; ;ibc'. 1
10E 19.5— os ]
E L o o ]
1= L ]
= L . ]
. 255 19— . -
=3 2E L } Bl
S 150 R E
Q 3 2 102F . o’ E
= 1 a 1E K’M“ =
0.5 . O  098F i 3
1 = 096F =
-2 -1 0 1 2
p;[ack [GEV] f]t ack
(a) trackpr (b) trackn

Figure 4.2: Thept andn distributions for tracks used to calculate the UE obsersblhe
Monte Carlo is normalized to the data.



4.2 Measuring the Distributions from Data 27

6 GeV <= p'Te‘ <8 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

5

5GeV <= pf‘ <6 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

4 GeV <=pl* <5 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

5

5

5
T

5

Mc/DATA  Number of Events per Bin
Mc/DATA  Number of Events per Bin
Mc/DATA  Number of Events per Bin

o 5 10 15 20 75 . s 5 10 15 20 5 E 5 10 15 20 25 .30. ;5 B
ZpT [GeV] ZpT [GeV] ZpT [GeV]
(@) 4Gev< P <5 Gev (b) 5Gev< pf'<6Gev (c) 6 Gev< ' <8 Gev

8 GeV <= plTe‘ <11 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

11 GeV <=p/ < 14 GeV
—e— DATA
* PYTHIA 6 (AMBT1)

14 GeV <=p*' <19 GeV
—e— DATA
L * PYTHIA 6 (AMBT1)

5
oy Ty T

5,

Es.

o*

5

5

mc/DATA  Number of Events per Bin
Mc/DAaTA  Number of Events per Bin
Mc/DATA  Number of Events per Bin

17.."'-.-. . '..."" . 3 "...”...' S E
RS R TR ZpTMEGe; Eam— % ED o, [5&;\;] I [G'e\;]
(d) 8 Gev< P < 11 Gev (e) 11 Gev< pf' < 14 Gev (f) 14 Gev< pf' <19 Gev

19 GeV <= pf‘ <24 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

24 GeV <= piTE‘ <31 GeV
—o— DATA
* PYTHIA 6 (AMBT1)

31 GeV <= pf‘ < 39 GeV
—o— DATA
F * PYTHIA 6 (AMBT1)

5,

5

5

5

ML L L

MC/DATA  Number of Events per Bin
Mc/DATA  Number of Events per Bin
MC/DATA  Number of Events per Bin

R 16 20 30 7o E 'y 10 20 30 7o EY N R 50 N
ZpT [GeV] ZpT [GeV] ZpT [GeV]

(9) 19 Gev< pf' < 24 Gev (h) 24 Gev< p' <31 Gev (i) 31 Gev< p' <39 Gev

65 GeV <= p* < 100 GeV
—e— DATA
* PYTHIA 6 (AMBT1)

50 GeV <=p/* < 65 GeV
—e— DATA
* PYTHIA 6 (AMBT1) 3

39 GeV <=p/* <50 GeV
—e— DATA
* PYTHIA 6 (AMBT1)

Mc/DATA  Number of Events per Bin
Mc/DATA  Number of Events per Bin
Mc/DATA  Number of Events per Bin

: . — 1P o B

Pttt te e ) . T : T . 3

o 10 20 30 20 ZS?DT [Ge.\; * B0 E};T [GEIO 10 20 30 40 %0 60 70 ZpT;‘EGe\;
() 39 Gev< p' <50 Gev (K) 50 Gev< p' < 65 Gev (I) 65 Gev< P < 100 GeV

Figure 4.3: The measuretpr distributions before any corrections are applied. The data
are compared toPHIA 6 (AMBTL1). The ratio is shown in the bottom plot.



4.2 Measuring the Distributions from Data

28

4 GeV <= p'Te‘ <5GeV
—o— DATA

5

5

5

5
T

2

Ty

5GeV <= pf‘ <6 GeV
—o— DATA

* PYTHIA 6 (AMBT1)

6 GeV <= p'Te‘ <8 GeV
—o— DATA
_% PYTHIA 6 (AMBT1)

Mc/DATA  Number of Events per Bin

Mc/DATA  Number of Events per Bin

Mc/DATA  Number of Events per Bin

.
5 10 15 20 25

(@) 4Gev< P <5 Gev

(b) 5Gev< pf'<6Gev

(c) 6 Gev< ' <8 Gev

8 GeV <= plTe‘ <11 GeV
—o— DATA

5 5

5,

11 GeV <= p':‘ <14 GeV
—o- DATA

14 GeV <=p*' <19 GeV
—e— DATA

£ E = £ 5|
o ? o o =
gk g g E
%] c 2] 1%} E|
EE *x PYTHIA6 (AMBT1) § 5 * PYTHIA6 (AMBT1) 1 5. * PYTHIA 6 (AMBT1) -
oY - ir = i E
5wk s g Ch
®.F 3 5 5
0 10 o o E
E E S [ |
S 1 4 3 =] =
zE E z 3
7 ERER D ERER S E
< teas < ATV < Seteees,
[a) LTI A . . ERr-a 2 .. =
o . . o ¢ . . Q . .
= S e . = c . . = . .

K 5 10 15 20 25 30 N E — 10 15 20 25 30 3 20 8 T 15 20 25 30 3 40 4

ch Nch Nch
(d) 8 Gev< pf' <11 Gev (e) 11 Gev< pf' < 14 Gev (f) 14 Gev< pf' <19 Gev

g 19 GeV <=p/*' < 24 GeV ’g 24 GeV <=p/* <31 GeV g E 31 GeV <=p/* < 39 GeV
2 —o— DATA > —o— DATA o —o— DATA E
= * PYTHIA6 (AMBT1) ¥ § * PYTHIAG (AMBT1) § 5 b * PYTHIA 6 (AMBT1) ]
@ 10 1 o fir El
5 E El 5 4 4
g E ER ] E
o E 3 Qo o 3
E ok 4 E £ -
=] E 3 =3 =] 3
z E 3 Zz z 3
< ;; EREE R < E
= ®eene [~ ..c- . . =
2 coee, < LIYTLRY . <
o L =5 o 1 3 [a} 3
S o e 3 * o . 3}
= . . = =

E— 10 15 20 75 30 35 20 E— ET R |- (M- R - 3 K 5 16 15 20 75 3

ch Nch Nch
(9) 19 Gev< pf' < 24 Gev (h) 24 Gev< p' <31 Gev (i) 31 Gev< p' <39 Gev

£ E T T T T T 3 £ F T T T T T 7 £ T T T T T =
Ca:; wb 39 GeV <=pl' < 50 GeV ] 'g 50 GeV <= pl' < 65 GeV Ca:; 65 GeV <= p/** < 100 GeV 3
Sk —o— DATA El- —&- DATA S —o— DATA 4
Sl * PYTHIA6 (AMBT1) 4 § * PYTHIA 6 (AMBT1) 5 F * PYTHIA 6 (AMBT1)
o El 1 d@s B
5wk 4 5 5 E
i ]2 g .
£ we I E £ El
57E 5 5 E E
=z E | 4 =z b

;f = e B e - e
=k k. . b
< < P e, . . . <
S 4 9 e .. ERE E
o O . o
s . b3 o o] s . N

o 5 10 15 20 25 30 = o 5 10 15 20 25 30 - 35 40 5 10 15 20 25 30

N N N

() 39 Gev< p' <50 Gev

(K) 50 Gev< p' < 65 Gev

(I) 65 Gev< P < 100 GeV
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Chapter 5

Correcting the UE Distributions for
Detector Effects

As discussed in Sec.3.5, the ATLAS detector has finite moamemesolution and re-
construction inefficiencies for tracks and jets. Our goabiprovide distributions that can
be compared to predictions of Monte Carlo (MC) generatoithoumt reference to any de-
tector. In this section, we outline the procedure for makiogections to the observed
distributions that will account for the detector effectse Vabel the desired distributions
generically asf'™®(x'''®), We need to relate them to the measured quantfff&8(x<°).
The equation governing the procedure is

fl’eCO(s’(I’ECO) — /R (y(true, X’I’E‘CO) ftrue (T(II’UE) d;»(true (51)

where we have introduced the concept of the deteesmponse matrix R (X'U€ X"®0), At
first glance, Eq. 5.1 defines a matrix equation that might kertible. For reasons dis-
cussed below, matrix inversion is not the appropriate pfoceto use.

The detector response is built using Monte Carlo that hasngode full detector sim-
ulation using the GEANT4 framework [23]. We have access ¢otthe values of the dis-
tributions f{7¢¢(X""¢), and the reconstructed distributiofig<°(X"®%). This analysis uses
PYTHIA 6 (AMBT1) and the ATLAS simulation to determine the detectBsponse matrix.
Sixty-eight million events were generateddinces having specific cuts on truth jegtr for
efficient population of the higlpt regions of phase space.

5.1 The Response Matrix

In the previous section, we introduced the response mRtrencapsulating the detector
response to charged particles. To develop the concept dime dlee response matrix, it is
instructive to start with small, but real, examples. Thd Bssample starts with thigansfer
function for Ng, (the track multiplicity in the transverse region.)
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We count the number of events (766387) where the transvegsarhas a single track
at the generator-level. In Table 5.1, we tabulate the nurobexconstructed events with 1
track in the transverse region (572545 events), 2 tracks4@4vents), and 3 tracks (6122
events). This corresponds to having 3 bins alongNf&® axis. This situation is also
depicted as a histogram in Fig. 5.1. If we divide this hiséogrby the total number of
events with a single track, as we have done in Fig. 5.2(a), bt&im the transfer function
for NI“¢ = 1. The total visible area in the histogram is the efficiermyen event with with
Ntrue =1 to be reconstructed with <4 N3 < 3. We interpret the individual bin contents
of Flg 5.2(a) as the probabilities that an event Wift'® = 1 will be reconstructed as an
event withNF° = 1, N[F°°= 2 andN;*° = 3, respectively.

We have deflned the concept of the transfer function; it isabalility distribution
function of theNJ;°° spectrum corresponding to charged truth jets with specifts on
NIUe . Turning our focus back to Table 5.1, we look at the other roarsesponding to
dlfferent values oV, By dividing each row by the total number of correspondingres
(in the column |abe||ed'OTAL), we have constructed a set of 4 transfer functions, each
having 3 bins. The results of this operation are tabulate@ainle 5.2, and depicted as
histograms in Fig. 5.2. We use the nomenclafBeto denote the)" transfer function.
For each transfer functioRj, we defineRk to be the contents of it&'" bin. Note that
we have chosen 4 transfer functions with 3 bins; the numbgaasfer functions need not
match the number of binsRk is one of the simplest examples of the response matrix,
with elements enclosed within the double lines in Table Ft2e response matrix is often
referred to as the smearing matrix in the literature.

‘ TOTAL H NI’ECO 1 ‘ Nreco 2 ‘ Nreco 3 H

NIUe =1 766387 || 572545 | 44749 | 6122

NIU® =2 843600 | 236531 | 508282 | 53453
Nghue —3| 845925 69646 | 278381 | 417639
NIU®>4 4131439 29187 | 152576 | 468731

Table 5.1: Tabulated values of the example response matrix
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| EFFICIENCY || NJE®=1 | N[F°=2 | Nf*®°=3 |

Ne—1] 0813 0.747 | 0.058 | 0.008
NIUE—2 | 0.946 0280 | 0.603 | 0.063
Nf*—3] 0.905 0082 | 0329 | 0494
NIUe>2 ] 0157 0.007 | 0.037 | 0113

Table 5.2: Tabulated values of the example response maitieticiency calculations

We have shown a simple example of the response matrix. Wa arpasition to make
a more general definition. The example above used bins, wdiiolost every analysis
would do, but we define the "continuous” version of the reggomatrixR (X" X'<0) to
be the probability that an object with prope®{'® is reconstructed with properf/e.
The reconstruction efficienay(X'"'®) is given by

€ (y(true) = /R (y(true, X’I’E‘CO) ds(*l’eCO (52)

The entry corresponding méwe > 4in Table 5.2 has a very low efficiency. This points
out a subtlety in the definition of efficiency. In our examplee efficiency accounts for
events reconstructed<I N7 < 3. If we had expanded the range f¢}f“°, we would have
a substantially larger efficiency for tlmﬁrh“e > 4 bin. The definition of efficiency must also
specify a range of reconstruction values.

We have denoted the response matrix!™'® X' where the composite nature of
the quantity(ies) in question is emphasized using vedterriotation. The variables being
corrected are binned, leading to a modified nomencld®yke whereJ refers to the bin(s)
containing the truth-level quantity, ar refers to the bin(s) containing the reconstructed
guantities. The response matrix is neither required to lj@ayvéhe same binning for truth
and reconstructed quantities, nor (b) an equal number of flointruth and reconstructed
guantities. The unfolding algorithm constructs one lafftgd, vector out of the multiple
binned variables, for both truth and reconstructed leu@ksieby rendering the response
matrix a 2-dimensional matrix. We relax the nomenclaturd&jig without any loss of
generality. The efficiency assumes the form:

&= ZkRjk (5.3)

To make contact with some of the definitions used in the liteea[40], which charac-
terize the procedure using "Bayesian terminology”, th@oese matrix i$ (Ex |Cj). The
response matrix is the probability that tBf& cause (generator-level object) gave rise to the
Kth effect (reconstructed object).
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5.1.1 Construction of the Response Matrix

For each of the UE observable#’(= Zpt, Nowy and pt ), a separate response matrix is
created using full GEANT4-simulatedrPHIA 6 (AMBT1). The "Zpt” response matrix

maps three variablesp!ft, p®t, Zpr) against the same set of corresponding reconstructed

values, wherge:" is the transverse momentum of the hardest jet Wjth< 1.5 andp$¢ is
the transverse momentum of the hardest jet wjth> 1.5. The construction procedure of
the response matrices processNgs and pr is analogous to that &pr.

The response matrices are constructed for each obseabkefollows.

e Events are accepted if there exists at least one chargddjétugwith ptr > 1 GeV
and|n| < 1.5), and at least one accepted charged particle jet with the &mematic
acceptance.

— If the event satisfies the truth-level acceptance critbahas no charged par-
ticle jet inside the acceptance, the event is recorded aslimsto efficiency.
Dedicated bins in the response matrix retain efficiencyrmftdion.

— Events with at least one accepted charged particle jet,dabarged truth jets,
are not accounted for in the response matrix. This situasdmneated as a
systematic uncertainty in Section 6.

The truth level UE observablé'™® in the TRANSVERSEregion is calculated using
charged primary particles, witpr > 0.5, |[n| < 1.5 andm/3 < |¢— @| < 211/3,
whereg is the azimuth of the leading truth jet. If there are no p&ti¢or calculating
O,2Zpt =Nenh = pr =0.

The measured UE observali#®cin the TRANSVERSEregion is calculated using
reconstructed tracks, witpr > 0.5, |[n| < 1.5 andmn/3 < | — @| < 211/3, where
¢ is the azimuth of the leading track jet. If there are no traftkscalculating?,
>pr =N = pr =0.

o p2*'"®is the transverse momentum of the hardest charged truthifet g > 1.5.

If no such jet existsp$* = 0.

p3*"®is the transverse momentum of the hardest track jets jitt> 1.5. If no

such jet existsp$t = 0.

The valueg p‘ft, p@t, &))" are recorded witlg p‘ft, pet, o)rece,

5.1.2 Purity and Stability

The response matrix is often characterized with two figufeserit, purity andsta-
bility. To develop these concepts in the context of our currentyaisalwe turn our
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focus back to the simple example response matrix from théqrs section. Look-
ing at the 766387 events with a single track (at generat@l)l@vthe TRANSVERSE
region, we see that 572545 are reconstructed with a sirgg&,t44749 are recon-
structed with 2 tracks, 6122 are reconstructed with 3 traakd so on. The prob-
abilities of reconstruction into thep“° = {1,2,3} bins are{0.747,0.058 0.008},
respectively, with an efficiency equal taB1.3. We see that events with a single truth
particle have a high probability to be reconstructed intingle bin, in this case it is
the bin corresponding t7°°= 1. This is an example of high stability. Stability is
the maximum probablllty that events originating in one kie eeconstructed into a
singlebin. The working definition of stability only concerns itbefith reconstructed
events, so we divide by the efficiency. The stability of jh truth bin is

max{Rjk} (k— 1 2 Nreco)

stability, (j =1,2,---,Ngine) = N 2_bins] (5 4)
221 Rik
_ maX{Rjk}(k—LwaNé?ﬁS)
_ :

In our example, theN}'® = 1" bin has a stability equal to.®47 / 0813 = 0918.

The concept of purity complements stability. Purity is thaximum probability that
objects reconstructed in a bin originated igiagle bin at truth level. In our example
(see Table 5.3), we see that of the 946690 events that weoasteacted with 3
tracks in theTRANSVERSEregion, 745 originated as events with no truth particles,
6122 originated as events with a single truth particle, andrs Scanning down the
column corresponding tNf“°= 3 we have an exhaustive list of possible origins for
any event. An important subtlety in the construction of tegponse matrix is that
every reconstructed object must have originated in exactéytruth bin.

The definition for the purity of th&-th reconstructed bin, as used in this analysis, is

_ max (Rix) (j =1,2,---,NIue
puntyk{k = 17 27 e 7Ntr)?r(1:s = ( J ) ( lt)rue bInS) (55)
Zj ins

Applying Egn. 5.5, the purity for the bin correspondlng\tgﬁcO 3is 0495.

High stability is desirable, usually indicating a sharpedédr response. High stability
can also be achieved by making larger bins. Low stabilitycats that the resolution
of the truth objects is wide, smeared out across more thamiondn practice, as it

relates to the Bayesian Iterative Unfolding algorithm heigstabilities are desirable
in the regions of low statistics. Lower stability values @gions with high statistics
will not significantly affect the results, but one must exseccaution to quantify the
size of the effect. We have verified this is the case for outyaia In regions of
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NEP=1 | NJ°=2 | N}°=3 | STABILITY

NIt®=0| 26666 2833 745 -

NIVe=1| 572545 | 44749 | 6122 0.918
NIte=2| 236531 | 508282 | 53453 0.637
NIVe=3| 69646 | 278381 | 417639 0.545
NIte> 4| 29187 | 152576 | 468731 0.721

purity | 0.613 | 0.515 | 0.495 |

Table 5.3: Purity and stability for the example responseimat

low statistics, large statistical fluctuations tend to deupto neighboring bins. The
extent of the coupling depends on the stability - high stigtieeps the correlations
between neighboring bins low. We chose the bin sizes to balbatween reasonable
stability and good resolution; the emphasis is on keepiegbin widths small for

better resolution. Fig. 5.3 (5.4) shows the stability (pgrior pi?t, > pt, Neh, andpr.

5.2 Bayesian lterative Unfolding with RooUnfold

The RooUnfold framework [41] implements an iterative algon proposed in [40],
based on Bayes’ Theorem in the following form:

P (ExICj) P (Ci)

PGB = v B (B P(C))

(5.6)

whereP (Cj) is the probability of thej'" cause P (Ex|Cj) is the conditional proba-
bility of the j*" cause to produce tHé" effect, andP (C;|E) is the probability that
the k" effect was due to th¢" cause. Translating into our formalism:

YiRik
2kYiRijk
whereyy denotes the content of theth truth bin. The algorithm starts by using an
initial distribution (orior) as an estimate of the final distributiqoogterior). We use
the relevant PTHIA 6 (AMBTL1) distribution as the prior for the first iteratiompim
which the algorithm produces an improved estimate of the @isdribution. Each
subsequent iteration processes the output distributitiregérevious iteration, to pro-
duce yet another improved estimate. Since each iteratiesBayes’ Theorem in an
intermediate step, the algorithm is often referred to aseBmay Iterative Unfolding.
We continue the process of iteration until the output habiktad, at which point

P (Cj|Ex) =

(5.7)
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Figure 5.3: The stability for PTHIA 6 (AMBT1)

we stop. It is important not to perform excessive iteratiafier the output has sta-
bilized, for reasons we will discuss shortly. We charaztestabilization by visually
examining they? between the prior and posterior distributions of each fil@na Our
decision to use 4 iterations for each of the UE observablesb&aed on observing
the behavior on Monte Carlo distributions.

The difference between stabilization and convergence é&\aimportant distinction,
and a topic in the theory akgularization in unfolding methods [42, 43, 44]. The
salient point is that if we allow the solution to convergestarts to track the statisti-
cal fluctuations in the input distribution, producing unpiegal ripples in the output.
Stability plays a role in controlling these ripples. Thelgeim with these ripples is
that, from a mathematical viewpoint, they are the correkettsan. We want to iterate
the solution until the large scale structure is resolved ftasic form of the curves),
and stop before we track the fine scale structure (the stalifiuctuations). Differ-
ent number of iterations give different results, leadin@mouncertainty in the final
answers. We account for this uncertainty in Section 6.2.

It is outside the scope of this work to delve into the thecedtdetails of the al-
gorithm. We describe the mechanical aspects of the algoréh it pertains to the
current analysis, and how it uses the response mRtrixperform the unfolding.
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Figure 5.4: The purity for PTHIA 6 (AMBT1)

Let po = (p1,P2,---,Ppm) be an initial set of probabilities (derived from the
input spectrum, or even a constant value) for an event to lnedfn each bin,
andniet = 3 nj be the total number of entries.

Define

[lo = NtotPo (5.8)

Update to a new valye, using the response matiikin indexed formR;x. This
step is motivated by Eqn. 5.6.

i 1 N ipi )
M=% Z <ZkRkJ ) &9
Form new probabilitiep
[l
— 5.10
Pe=1 (5.10)

. Iterate steps 3 and 4 on Monte Carlo, until the change ibetween iterations

indicates the distribution has stabilized, and before thfelded distributions
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start to track the statistical fluctuations from the inpuheTsame number of
iterationsNiter is used when unfolding data. This analysis uSles = 4, as
described earlier in this section.

5.3 \Validation of the Unfolding Procedure

To characterize the unfolding process, we perfatosure tests using full GEANT4
simulation FTHIA 6 (MCO09) [17] as a control sample. We apply the unfolding teghes
described in Sec. 5.2 to unfold the®41A 6 (MCO09) control sample and compare the
results to the known truth values. The response matrix id tesanfold the control sample
distributions and calculate the mean values as functiomgtof

We quantify the closure tests by taking the ratio of the meanes of the corrected
distributions to the true mean values. A value of 1.0 indisabtal closure - indicating
the corrected and true values agree perfectly. The clossts for the mean values of the
UE observables are shown in Fig. [5.5], indicating a 1% perémce level for the mean
values of the UE observables 1‘p¥rEt < 50GeV. Thepr closure tests degrade to the 3%

level abovepjT‘Et > 50GeV, albeit with a large statistical uncertainty.
These tests confirm that the correction procedure workstasded. We return to the
closure test performance in Chapter 6, when we analyzersgsiteuncertainties.
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Figure 5.5: The closure tests for the mean values of the UEreables, as a function of
plﬁt. Error bars reflect statistical uncertainties.

5.4 Corrected Distributions

The output of the correction process is a set of 3D histogremmsaining the final

distributions ofpiret, pe and 0. The final form of thep®* spectrum does not interest us,
SO we integrate over it, essentially projecting it onto temaining axes. The results of
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this projection are 2D histogram#&’(vs pl‘rat). The information in these histograms is best
rendered as slices in th@ variable (projections along y-axis), holdirpﬁt fixed along the
x-axis (Figs.[5.6-5.8]). The data are compared YaiA (Z1) and FFTHIA (AUET2B).
The agreement is good, buvPHIA (Z1) reproduces the data distributions better than the
AUET2B tune.
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5.4.1 Mean Values of Corrected Distributions

As pointed out in the previous section, the output of theamiron process is a his-
togram, with binned contents. It is straightforward to tekihe binned mean value, defined
in Egn. 5.11,

31 Nk
She1 Nk
but potentially misleading if interpreted as the true mealu of the distribution defined

in Egn. 5.12.

Mpinned= (5-11)

_ Jo, Xn(x) dx
Utrue = —f(;)o n(x) dx

If the bins are sufficiently small, the difference betweemnhimned mean and true mean
values is small, and the uncertainty in the (true) mean \a@dgeciated with finite bin widths
is negligible. The available statistics for this analysisgbude small bins at highr and/or
large values of the UE observables; we compensate withrléigs. Fortunately, we can
use cubic splines to correct for the bias due to large binhgidtFitting a cubic spline
to the cumulative distributions, not the actual distribag, is a well-defined process. In
calculating the mean value of the distribution, the integfaéhe distribution is more useful
than the actual distribution itself. This is outlined in @iétn Appendix B, OnlyZpt and
Nch require correctionpr is sufficiently finely binned and doesn'’t require the splbesed
corrections.

Figs. [5.9-5.11] show the mean values of the correctedibigtons ofZpr, N, and
pT, obtained using the spline-based approach for removinbittsedue to large bin widths.
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Figure 5.9: The mean values of the correckgst distributions, as functions qijet, are
compared to Monte Carlo. The error bars indicate the stlsincertainty; the shaded
area shows the combined statistical and systematic unterta
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The data are compared torPHIA (Z1) and FTHIA (AUET2B). The agreement is
good, but RTHIA (Z1) reproduces the data distributions better than the AREEMine.
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Chapter 6

Uncertainty Analysis

Table 6.1: The systematic uncertainties associated widsorement of the mean values
of Zpt, Neh andpr.

Relative Systematic Uncertainties
source >pr Nch PT

Track Reconstruction 2.3% 2.1% 0.2%

Unfolding 1.5%-6% | 1.5%-4% 1%-4%
Response Matrix 0.5%-1% | 0.5%-1% | 0.5%-1%

Lead Jet Misidentification <1% <1% < 1%
Discretization Effects <0.5% <0.5% <0.5%
Dependence on Number of Iterations < 0.5% <0.5% <0.5%

| Total [2.9%-6.5%]| 2.7%-4.6%]| 1.3%-4.1%]

Table 6.1 summarizes the systematic uncertainties asedeidth the measurement of
the UE distributions. In this section, we discuss each dalsources of uncertainty, which

are
1

2.

. Track Reconstruction - the effects of imperfect efficieand momentum resolution
Uncertainty in the Unfolding Procedure - potential brasif the unfolding procedure

Sensitivity to the Response Matrix - potential bias duéitierences in distributions
between the data and MC used to build the response matrix

Misidentification of the Leading Jet - the leading jet esponds to a subleading jet
Discretization Effects - large bin widths introduce agrttal bias in the mean values

Dependence on Number of Iterations - the optimal numbéetdtions used in the
unfolding procedure
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6.1 Track Reconstruction

6.1.1 Track Momentum Resolution

The momentum resolution uncertainty was studied in d&3&ijl [We assess the induced
uncertainty in the baseline measurements, due to the anagrin track momentum res-
olution, by smearing the track momentum [45]. The momentesolution for the tracks
in our sample is excellent; the track momentum resolutiareuainty induces a negligible

uncertainty in our measurement 0.1% for pi?t <20 GeV ana 0.5% for pi?t >20GeV.)

6.1.2 Tracking Efficiency

Because the ID has substantial material, charged partielede lost due to hadronic
interactions. Uncertainties in the ID material budget [B2§ult in an uncertainty in the
track reconstruction efficiency, which propagate into oeasurements. The uncertainties
in the tracking efficiency are approximately 2% fgi < 1.3, 3% for 13 < |n| < 1.9, 4%
for 1.9 < |n| < 2.3 and rises to 7% for.3 < |n| < 2.5 [46] for tracks withpt > 0.5GeV
[37, 47].

We propagate the uncertainties in the track reconstruefftziency into an uncertainty
in the measurement of the underlying event as follows:

1. For each track in thERANSVERSE regions, generate a uniform random number
between 0 and 1.

2. Ifthe track hasn| < 1.3, retain it if 098 < x. Otherwise, the track is discarded.
3. Ifthetrack has B<|n| < 1.5, retainitif 097 < x. Otherwise, the track is discarded.

4. Perform a measurement of the UE observables using thegdt@constructed tracks
from the previous steps.

5. Unfold the measurement in (4) using the baseline respoasex.

6. Compare the results of the unfolding procedure in theiposvstep to the baseline
measurement.

7. The relative deviation from the baseline is taken as tleerainty in the measure-
ment

The method of discarding tracks to simulate a differentkirag efficiency only works
for a lower efficiency; it will not work for a higher efficiencfhe propagated uncertainties
are relatively small; we symmetrize the uncertainty duedoking efficiency.

Fig. [ 6.1] shows the uncertainties Eprt, N, and pt due to uncertainties in the
tracking efficiency. The uncertaintiesiipr andNg, are generally between 2% to 3%; for
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pT, the uncertainties are much lower 0.5%), as the uncertainties factor out in the ratio
Zpt / Nen. We assess the final systematic uncertainty by performirtgadiconstant value
throughout the entir@r range, to compensate for the loss in statistical power dit Hﬁj
The final values assessed for the uncertainties are denptéeé botted lines.

Figs. [6.9 - 6.14] show the uncertainty for the individuah®iof plﬁt and . We point
out the contribution from the uncertainty in the trackingjeééncy to the uncertainty in
the calculation of the mean values of the UE, may be substhngimaller than those of
the individual bins. This effect is due to the high corralatin the uncertainties in the
individual bins; high upward fluctuations in some bins guéea a downward fluctuation
in others. Fig. [6.2] illustrates the correlation in the artainties in the individual bins.
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Figure 6.1: The relative uncertainties in the measuremiemiean values of the UE distri-
butions, due to uncertainties in the tracking efficiencyfuagtions ofp‘Tet. The horizontal
lines indicate the assessed uncertainty.
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6.2 Uncertainty in the Unfolding Procedure

6.2.1 Unfolding Uncertainty for Individual Bins of p‘?t and 0

The closure test for a single bin gy and &, where the valu®\,«h is expected, is the
value

Ncorrected (6 1)

Ntruth

The unfolding process provides an excellent, but not pgrfiescription of the true
physics distributions. In this section, we describe howeately we can expect the unfold-
ing to predict the truep‘Tet and & distributions. We saw in Section 5.3 that the unfolding
process reproduces the mean values of the UE observabtes witew percent, with the
uncertainties on individual bins gfs' and & somewhat higher. To estimate how well the
unfolding procedure works on the data, we should use Monte Cantrol samples that
resemble the data, in both the physics distributions artéssts. Since the MC and data
are not in agreement with respect to thegetand UE observables, we reweight the MC to
reproduce the data. We compensate for the the lack of statisting the bootstrap method
[48] to increase the statistical power of the MC. The defims of the variables and details
of this process follow:
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1. Nwc andNpara are the numbers of events in the MC and data, respectively.

2. HDATA(plret, 0 ) is the unfolded data distribution of traq:il;'-at and 0, represented by
a 2D-histogram.

3. HMC(ﬂ?t, 0)) is the truth MC distribution of charged trup!}at ando, represented by
a 2D-histogram.

4. For each eventy is a random number drawn from a Poisson distribution withnmea
_ Npata
H= Nmc -~

5. Ho(p5, 0) = 'LD—A/;TCA% is the weighting 2D-histogram.
6. For each MC event, the leading charged tmﬂfhandﬁ are used to index the weight
w, from Hp.

7. The same weighth = ayp x wy is applied to the event at generator and reconstructed
levels, when constructing new vs plret histograms.

After reweighting the Monte Carlo control sample to reprtmsejlthepiret and & distri-
butions, there may exist residual differences between #it@ and MC. For example, the
topological distribution of tracks inside theRANSVERSEregion will differ for the Monte
Carlo and the data. The tracks in the data may be more unydtistributed in therRANS-
VERSE region, whereas the Monte Carlo may exhibit "clumpinesshother example is
the subleading®" distribution. A control sample with a harder sublead#g distribution
will have a higher likelihood of erroneously promoting thibkeading jet to the leading jet,
due to track jefpt resolution. These differences introduce a potential Imdke unfolding
procedure.

In general, as we repeat the closure tests using different\i@ closure tesk, we
would obtain a collectiorr of closure tests. The mean valyg-| of F is the bias in the
unfolding procedure. The RM3€) of F is the dispersion in the closure tests. The total
uncertainty in the unfolding procedure is given by

Otot = UF © OF = \/[JE + GE (6.2)

The uncertainty is calculated as follows, usibgr as an example. The analogous proce-
dures forNg, and pr are otherwise identical.

e For each MC and dret , 2pT ) bin, Ny is the expected (generator-level) value &hd
is the corrected value.

o Form the sunto = e 1/ (6M€)?, wherealC is the statistical uncertainty in the
unfolding procedure of each MC.
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w is a weight formed from the statistical uncertainqg’F) in the unfolding proce-
dure.w=1/ <(a§”c)za_)).

p = N/Np is the closure test.

Hc is the weighted mean of the closure tegis= 5; wpi/3i w

Bc is the bias= |uc — 1.
ac is the weighted RMS of the closure testsg = (zgmz)fziaf i@ (o — e).

We have four fully simulated Monte Carlo control samplesiatde - PrTHIA (6) with
MCO09, AMBT1 and Perugia2010 tunes, andTiRIA (8.145) with the 4C tune. To illus-
trate the procedure for evaluation of this uncertainty, Fig8 compares the unfolded and
generator-level spectra afpr for 11 GeV< plﬁt < 14 GeV, obtained by reweighting the
control samples to reproduce the data.
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Figure 6.3: The spectra afpt corresponding to 11 Ge¥ piﬁt < 14 GeV, for different
Monte Carlo control samples. The bottom plot shows the mttithe unfolded values to
the generator-level (truth) values.

As an example, we will work out the detailed calculation o tmcertainty for one
bin, corresponding to 3 Ge¥ Zpt < 4 GeV (hatched region in Fig. 6.3). The expected
(generator-level) and corrected (unfolded) values areladdd in Table [6.2], along with
the numbers of merit used to calculate the uncertainty. Tieentainty for this bin can be
seen as the large red star in Fig. 6.4, along with the unogigaifor the other bins in Fig.
6.3.
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Control Sample Expected] Unfolded | Closure Test Weight

No N 4+ og X w
PYTHIA 6 (AMBT1) 20438 | 20349+ 332 0.996 0.151
PYTHIA 6 (MCO09) 20701 | 20548+ 180 0.993 0.515
PYTHIA 8 19267 | 18980+ 382 0.985 0.114

PYTHIA 6 (Perugia 2010) 26227 | 25752+ 276 0.982 0.220

Property | Value
bias -0.010
RMS 0.006

bias® RMS | 0.012

Table 6.2: Example calculation of unfolding uncertainty

We must discuss another important effect before finaliziegcalculation of the unfold-
ing uncertainty. The unfolding uncertainty has a statttomponent which can be large,
especially in regions with low statistics. The effects ohmgk statistical component of the
unfolding uncertainty can be seen in Fig. 6.5, where we ietunfolding uncertainty for
3GeV< 2Zpt <4GeV, as a function oﬂ?t. The black points show the uncertainties (with
error bars), as just discussed in the text. The red pointfharstatistical uncertainty taken
directly from the unfolding algorithm. We can see that thegistical uncertainty strongly
influences the calculations of the unfolding uncertaintyavoid overestimation of the sta-
tistical uncertainty in our final measurements, we must @rigremove this component.
Assuming the resolution pt in the TRANSVERSEregion is independent qj‘Tet L we

harness the power of high statistics in the Iowgf’ regions by fitting to a constant value
for the unfolding uncertainty for each bin kpt. The results can be seen in Fig. 6.5. The
numbers from the yellow band comprise the curves labelleddlding” in Figs.[ 6.9 -
6.14].

lWhereas the mean values of thpr and p’ft distributions are correlated, the resolution of each \deia
is not because they are in different regions of the detector.
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Figure 6.4: The uncertainty in ti¥epy spectra corresponding to 24 Ge_i/p’ft < 31 GeV.
The red star indicates the uncertainty discussed and a#éclin the text, as an example.

2‘0_257””””HHHHHHHHHHHHHHH‘L
£ - B
S B ]
£ B N ]
8 02 B e -
C — .
=] - a
) - ) i
> L uncertainty i
© 0.151 ¢ unfolding 7
o - _ & L * statistics .
B [Jassessed ]

0.1— —

B il ]

i _e ]

0.05 % 5 -

B 4 ]

i Ll ]

i“‘ -*-1 1*1 lll 111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 111 |

00 10 20 30 40 50 60 70 80 90 100

pr [GeV]

Figure 6.5: The unfolding uncertainty fpt as a function ofdft, compared to the sta-
tistical uncertainty. The yellow band denotes the final ssse value of the uncertainty,

obtained by performing a fit to a constant value acrosspﬁﬁaxis.
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We have just prescribed a method for evaluating the unogytan the number of events
in any bin for plft andZpr. For the mean values of thepr Ng, and pr distributions,
as functions ofpl?t, we take an analogous approach to assessing the unceritaithtg
unfolding procedure. The number of events in a bin is replagéh the mean value of the
spectrum.

6.2.2 Unfolding Uncertainty in the Mean Values ofo

We calculate the unfolding uncertainty in the mean valueudations much in the same
manner as for the individual bins. Due to a high degree ofetation in the uncertainties
between the individual bins qfft andd, we obtain a better estimate in the uncertainty in
the mean value by examining it directly, not simply propagathe individual bin uncer-
tainties through Eqn. 5.11.

The uncertainty is calculated as follows, usibgr as an example. The analogous
procedures foNg, andpt are otherwise identical.

e For each control sample ano|oj¢t , 2pt ) bin, Lo is the expected (generator-level)
value andu is the corrected value.

Form the sunw = Syc 1/ (agAC)z, whereo¥€ is the statistical uncertainty in the
unfolding procedure of each MC.

w is a weight formed from the statistical uncertainqé’(:) in the unfolding proce-
dure.w=1/ <(U§”C)za_)).

P = U/ Lo is the closure test.

Hc is the weighted mean of the closure tegis= 5 wpi/3Ti @

Bc is the bias= |uc — 1.

ac is the weighted RMS of the closure testsf = (ZTAZ)IZ?T@Z i@ (o — te).

6.3 Sensitivity to the Response Matrix

The baseline response matrix was constructed usvigiiR2 6 (AMBT1), which has
different ' and & distributions than the data. These differences lead to entiat bias
in the measurement. We estimate the size of this bias byrmtisty an alternate response
matrix, formed from RTHIA 6 (AMBT1) which has been reweighted to reproduce the
corrected distributions from data.

Reweighting the Monte Carlo used to construct the resporsexcloses the differ-
ences between it and the data. Residual differences cotgréecond order effects. Using
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the reweighted response matrix to perform the correctioogmture, we calculate the final
distributions we would obtain were the Monte Carlo were inedbent agreement with the
data.

The results from this reweighted unfolding is compared tohhseline measurement,
and the difference is interpreted as the bias. Fig. [6.6]mames the baseline measurements
(black circles) to those made by unfolding aistributions with the reweighted response
matrix (red circles.) The ratio is shown at the bottom of ealcit; the yellow band denotes
the small assessed uncertaintiégQ.5%) for 5 GeV< pf'.) The lowestp:' = 4 GeV bin
is slightly higher - 1%.
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Figure 6.6: The mean values of the unfolded UE distributidine baseline measurements
(black points) are compared to the measurements (redgjrolade using a response matrix
constructed from PTHIA 6 (AMBT1) that has been reweighted to reproduce the unfolded
pl?t and . The ratio is shown in the bottom plot. The yelllow band iradés the assessed
uncertainty.

6.4 Statistical Uncertainty in the Response Matrix

The response matrix was constructed usingHRA 6 (AMBT1) with high statistics.
Since the MC was generated with specific cuts on trutpjethe high regimepr (20GeV<
pl?t) has a very high population, much higher than the data. &t jetpt ~ 20GeV, how-
ever, the situation is reversed; the data has a higher piigru(@pproximately ) than the
MC. We explore the effects of statistical uncertainty in tesponse matrix by using the
bootstrap [48] method to form statistical perturbations of the baselesponse matrix. We
compare the baseline measurements to the results of thielumgf@rocedure using these
alternate response matrices. The RMS width of the resudfpiegtrum of measurements is
the associated uncertainty, and is negligibly less th&#o0
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6.5 Misidentification of the Leading Jet

Due to track jet reconstruction efficiency apg resolution, the leading track jet may
be matched to a non-leading charged truth jet. As a reseltjittection of the UE will be
incorrectly specified, leading to an uncertainty in the mmeasient of the UE observables.

The rate at which the leading charged truth jet fails reqotibn as the leading track
jet is encoded in ther distributions of the leading ' ) and subleading jets g3U° )

. As an example, assume the leading jet spectrum between twweMCarlo (MG and
MCg) samples were identical, but M(Qas a hardep%Ub distribution. Because of th|si?t
transfer function, the subleading jet from M@ more likely to reconstruct as the leading
jet, potentially confusing the true direction of the ungtary event. However, if the leading
and subleading jets were perfectly back-to-babg € m), then the misidentification would
have no effect on theRANSVERSEregion because of symmetry. The spectrum between
the leading and subleading jet captures the effects oflggei misidentificationjet swap).

In principle, we would consider ther andA¢ spectrum of all the jets. Due to the avail-
able statistics, we only consider the first subleading jae 3teeply falling jet multiplicity
curve indicates consideration of subsubleading jets wprdstide 29 order corrections.

Due to differences in the', ps"® and Ag distributions between the data and the
PYTHIA 6 (AMBT1) used to construct the response matrix, the caoegirocedure may
introduce a potential bias. The strategy taken to evalbatbibis due to jet swap is to create
an alternate response matrix, wheserRIA 6 (AMBT1) has been reweighted to reproduce
the datap;' p$“PandAg distributions. The baseline measurements are comparédse t
obtained using the reweighted response matrix. The relaviation is taken as the bias
due to jet swap.

The procedure foEpr is as follows; the treatment &, and pr is identical.

1. Create a new response matrix to unfold in four variablps ef the leading and subleading
jets,Ap andXpr. Events with only one jet are assigneg = 0 for the subleading jet and
Ap=0.

2. Unfold data using the new response matrix to obtain trenklldistribution of the unfolded
variables= FO, (p’Tet, p3t A, ZpT) :
3. Derive the equivalent distributidfd (pjTet, p%“b,A(p,ZpT) from Pythia 6 (AMBTL1) truth.

4. NormalizeF3,;, andFJ. to unity when integrated over all variables, and form theghei
@ = Fara/Fitc:

5. Reweight RTHIA 6 (AMBTL1) by w.

6. Create another (reweighted) response matrix using theighted RTHIA 6 (AMBTL1).

7. Use the reweighted response matrix to unfold data to robite next approximation to the
correct distributions Flyra (p’f‘t, pstb Ag, ZpT) :
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8. UseFiyra (pjTet, Pt Ag, ZpT) to plot the distributions of pr as functions of®".

9. Plot the mean values &fpr as a function of’®".

10. Interpret the ratio of the baseline measurement to tl@malues in the previous step, as the
induced bias.

Steps (1) - (2), in principle, provide a central value that ba used to estimate the
bias. Steps (3) - (8) attempt to correct for (a) insufficien Btatistics and (b) technical
complications (memory limitations) using the RooUnfolctckage and ROOT, forcing us
to use different binning than the baseline measurementsratialysis.

6.6 Discretization Effects

Sec. 5.4.1 discussed the issues of obtaining an unbiased vakee of a distribution,
when calculating the mean values using a histogram withdairesontents. FoEpt and
Nch, @ correction for the bias was made using cubic splines. [FogZ] indicates the level
of performance of these methods. By sampling various MomtdoGamples (Pythia 6
with Z1, AMBT1, MCO09, Perugia2011 tunes, Pythia 8, and Hgrwi with UE7-2 tune),
making the spline corrections (to the binned distributjassd comparing the results to
the true (unbinned) mean values, we obtain a distributiath@fperformance index (ratio
of corrected to truth) of the spline-based methods. Thalselil lines indicate the mean
values of the distributiompt the baseline measurement of this analysis); the yellowdand
indicate the RMS. We take the RMS value as the uncertaintytaldéscretization effects
for Zpt andNg,. The uncertainty is negligible for low track jet and rises to 0.3% - 0.5%
at highpt. The splines definitely help to correct the bias due to diszagon effects, as can
be seen by comparing Fig. 6.7(a) to Fig. 6.7(b), and comgaiig. 6.7(c) to Fig. 6.7(d).

For pr, no spline-based corrections were made as the binning kaasseen to be
negligible. The binning allows an accuraf&0.1%) calculation of the mean value (See

Fig. [6.7(e)].)
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6.7 Dependence on Number of Iterations

We use the Bayesian Iterative Unfolding algorithm to cadteilthe truep'T‘at and UE
distributions, from the observed data and the responsexn&ec. 5.2 discussed using 4
iterations in the algorithm to obtain the central valueshaice motivated by the perfor-
mance of the closure tests agpélvalues between iterations. We have no reliable method of
determining the optimal number(s) of iterations. To defamthe size of the uncertainty
associated with this ambiguity, we repeat the analysigyudiiferent numbers of iterations,
yielding a spectrum of measurements, We interpret the ugiveid?> RMS (cf. Eqn. 6.4)
of these measurements as the uncertainty.

_ 1 iter=8
iter=4
) 1 iter=8 )
0" =N_1 > (Xiter —%) (6.4)
iter=4

where N =5 (iterations = 4, 5, 6, 7, 8).

Fig. [6.8] shows the mean values of the UE distributions giglifferent numbers of
iterations. The bottom plot shows the (relative) differeretween the mean value for
each iteration number and the baseline mean value. thewyédmd denotes the RMS
width. We assess the uncertainty due to the choice of nunilierations as 0.5%, a small
contribution.

6.8 Statistical Uncertainties

The statistical uncertainty in the measurement is provimethe RooUnfold package.
This uncertainty is propagated through the unfolding pdoce as outlined in [40, 49]. The
statistical uncertainties in the measurements of the iddat bins of &' vs pff* are shown
in Figs.[ 6.9 - 6.14].

As a cross check of the reported statistical uncertaintgemteasurement, we used the
bootstrap method to derive statistical perturbations@f{theasured) data distributions, and
unfolded them to give a spectrum of corrected distributiohe compared the dispersion
(width) of the spectrum to the statistical uncertaintiggoréed by RooUnfold. On average,
RooUnfold gave uncertainties approximately 2% higher tbanresults. We report the
errors given by RooUnfold.

2Since each point has approximately equal weight, namelstatstical uncertainty, the difference be-
tween weighted and unweighted RMS is not important.
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Figure 6.8: The mean values bpt as a function of track jgbr, using different number of
iterations for the unfolding algorithm. The bottom plot sisthe ratio of the measurements
to the baseline measurement. The width of the yellow bantkislispersion (RMS) of the
different measurements relative to the baseline.

6.9 Summary of Total Systematic Uncertainties

We have discussed the different sources of the systemate&rtamties and estimated
their sizes. We add each of the sources in quadrature (ct.&gn

O = Zakz (6.5)

The uncertainties for the individual bins 6f and pi?t are shown in Figs.[ 6.9-6.12].

6.10 Consistency Checks - Refolding the Distributions

Closure tests on fully simulated Monte Carlo control sarsgliee extremely important.
Knowledge of the truth distributions allows us to calibrate expectations of the unfolding
procedure. We do not have the luxury of this knowledge fordhia, but we can perform
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some consistency checks that increase confidence in odtste3ine concept is simple;
we refold (See Eqn. 6.6) the unfolded data with the response matrikcampare to the
measured distributions.

The refolding procedure is defined as follows:

true
Nbi ns

ylr(eco: Z Rjkytjrue (6.6)
J

whereyc° andy'™® are the observed and corrected data, respectively. Sinoe éiists a
high degree of correlation between the refolded data aneleéd data, it would be difficult
to gauge the performance of such tests as KSy@ndComparison of the refolded data to
the measured data still retain power. These consistenckslaannot tell us that we have
the correct answers; but they do indicate that our resut€ansistent. To the extent that
all binsin p‘T‘at and & simultaneously agree, then the corrections we have peeidion the
measured distributions are a feasible approximation ofrtreephysics distributions.

The refolded data is compared with the observed data (beforections) in Figs. [6.15
- 6.17]. The bottom plots show the ratio of the refolded datdne measured data. A value
of 1 indicates perfect agreement. We see very good agredymaeméen the observed and
corrected data in the regions of high statistics. Signiticlvations from unity occur in
regions of low statistics, where the uncertainties aredrigh
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Figure 6.9: The correctedpt data and uncertainties.
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Figure 6.10: The correctetpr data and uncertainties (cont.)
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Figure 6.11: The correctddy, data and uncertainties
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Figure 6.12: The correctddy, data and uncertainties (cont.)
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Figure 6.13: The correctegr data and uncertainties
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Figure 6.14: The correctepl data and uncertainties (cont.)
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Figure 6.15: The refoldeBpr distributions are compared to the raw (uncorrected) data.
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Figure 6.16: The refoldeBpr distributions are compared to the raw (uncorrected) data.
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Figure 6.17: The refoldegy distributions are compared to the raw (uncorrected) data.
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Chapter 7

Conclusions

We have measured the full distributions of the UE obsensa{d@r, Nen andpr ) in the
TRANSVERSETregion, in slices ofp‘ft. Jets were constructed using the datalgorithm,
using a value of 0.6 as the R-parameter, from reconstrucéetts in the ATLAS Inner
Detector. The excellent tracking performance of the Innetebtor allowed us to probe
very low p‘TEt > 4 GeV. The relative systematic uncertainties in the meamegivere 2.9%
- 6.5% Epr), 2.7%-4.6% Ng) and 1.3%-4.1%t¢r). PYyTHIA 6 Z1 performed better than
PYTHIA 6 AUET2B, although both gave good agreement with the data.méasurements
presented provide another testing ground for further i Monte Carlo generators.
Future analyses would benefit from larger data samples hwhaaild allow us to probe the

high piﬁt > 50 GeV range.
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Appendix A
Track Quality

The track selection criteria for tracks used in this analysie plotted in Fig. [A.1-
A.2]. The black curves indicate the tracks which have pasdlesther selection criteria;
the yellow filled areas depict tracks that also pass the spomding selection criteria. Out
of a total of 407.9 million tracks that pass all other selaticriteria, 3.8 million fail the
B-Layer requirement. The plots that follow are so-calledINplots, where the indicated
variable is shown for tracks that have passed all other ts@ecriteria. The tracks passing
the selection criteria for that variable is shown in yellow.
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Figure A.1: The“N-1" distributions for the ID track seleati criteria. Tracks passing all
other selection criteria are plotted in black. The yello@aacorresponds to the tracks that
also pass the indicated cut.
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all other selection criteria are plotted in black. The ywillarea corresponds to the tracks
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Appendix B

Discretization Effects

For measured (uncorrected) data, it is straightforwarcdutale the true mean values of
the UE distributions because we have access to the variablags event-by-event basis.
The correction process, described in Sec. 5.2, reqdisesetization (binning) of the vari-
ables in question. After the correction procedure, we ngéoimave access to the variables
on a per-event basis, but rather only to the number of everiigs of the given variables.
This situation prevents a straightforward calculatiorheftrue mean value of the corrected
variables. One can decide to use the bin center as the repagge abscissa of the bin.
This choice may be appropriate for distributions that pafithe bin uniformly, but this is
not our situation. Most of the distributions in this ana$/save an exponential dependence
on the abscissa, which could lead to significant differermda/een the mean values cal-
culated using different representative abscissae. Fangbea in Fig. [B.1], we calculate
the mean value using the lower edge of the bin, the bin ceamérthe upper edge. We see
differencesy’ (10%) between the different calculations. Using the center obiheppears
to be the best choice, but we have no guarantee this condifibpersist with different
distributions. We propose a method to overcome this olstasing numerical methods
based on cubic splines. Each UE observabler( Nsn and pr) is treated differently in the
following sections.

B.1 Discretization Effects inZpr

The binning used to analy2gpT, being of finite width, introduces an uncertainty in the
x-value (abscissa) when calculating the mean value. Fanpbag a bin with coordinates
4GeV < Zpr < 5GeV lumps events havingpt = 4.1GeV together with events having
> pt = 4.9GeV. When calculating binned mean value, as in Eq. B.1, all the events in that
bin contribute equally to the mean value, although thereraey more events withpr =
4.1GeV than there are withpt = 4.9GeV. We have lost information, i.e. - introduced
an uncertainty, pertaining to the abscissa of the bin. Thedainty due to discretization
diminishes as the bins become smaller. Due to lack of stjstie are not able to make
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sufficiently small bins in the higpr region. Fig. [B.1] indicates the size of the uncertainty
due to discretization, comparing the binned mean value gragh) (cf. Eq. B.1) to the
true mean value (black graph). Fig. [B.1] compares the lirared true mean values for
uncorrected data and truth-level Monte Carlo (Pythia 6 ViiBT1 tune) distributions.
The failure (binned vs. unbinned) 8(1%) throughout the track jgbt spectrum.
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Figure B.1: Comparison of thEpr mean values to the mean values obtained via binned
calculations and a spline-based calculation, as a fundtidrack jetpr. The binned cal-
culations are performed using the lower edge, center andriggige of the bins. The plots
on the bottom are the ratios of the predicted mean valuegtkrtbwn mean values.

T k2 M
Hoinned = “—n—— (B.1)
S ki1 M
k(X — )2
O't%nned = 2 Sk Mk — (B.2)

where {n¢} and {x¢} are the histogram contents and bin centers, respectivdie T
reader will notice that the summations in the numeratorsgs. HB.1-B.2] start at 2, ig-
noring the lowest bin. The first bin, spanningc® pt < 0.5GeV, is populated by events
having no tracks in theRANSVERSEregion, for whichZpr is identically 0. There is no
uncertainty in the abscissa of this bin. The summations kvhiclude a factor ok, can
safely omit the first bin, as it identically contributes 0. W#l have more to say on this
subject shortly, referring to this as the "0-bin” effect.

We now propose a method to compensate for the loss of resoldiie to discretization.
The procedure involves fitting a cubic spline to thieegral of Zpt. Fitting directly to the
variable is not a well-defined procedure because, as wasanedtabove, the abscissa of
the bin is not well-defined. Knowledge of the number of evemesin a bin, however, is
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equivalent to knowledge of the integral of the function, e bin coordinates. Further-
more, the integral of the function may be a more suitable tityefor calculating the mean
value. To see this, Idt(s) be the antiderivative oN(s), wheres= Zpr andN(s) is the
number of events witkpr = s.

dF(s)
ds
The rule of integration by parts gives the following formaileor the true mean and
standard deviation:

=N(s) (B.3)

_ JasN(s)ds  [PsF'(s)ds bF(b)—aF(a)— [2F(s) ds

MRE= BN ds  [PF(9ds  F(B)-F(@) (B.4)
b2 _l(s—W?NEds _ [2(s—p)?F(9)ds
RS PNgds  PF(9ds
b2 F(b)—a2F(a)—2 [°sF(s)ds
- F(b) - F(a) K (BS)

The final results on the right hand side (RHS) depend on F)tanntegral, but not
onF’(s) = N(s) itself.
The exact process for the construction of the cubic splineisned next:

1. Given thexpr histogram withN bins with contentsy, fork =1, 2, 3,..., N, defineN
pairs of (X, y)-values. As was discussed earlier in thisisacthe "0-bin” (covering
> pr = 0), is omitted in these calculations. We define:

e x[k] = upper edge ok" bin (k=1, ..., N)
e y[1]=0
e yKI=5K,ni(k=2,...,N)

2. Fit a standard cubic spline, with the(x, y)-pairs asknots. *

3. The derivative of the cubic spline &y is specified as the contents of the overflow
bin.

The total number of eventsror must include the contents of the "0-bin”, retaining
consistency with the definition of the mean value of a distidn.

”TOTE/O ZppoTz/O Nchdezfo Bt dpr (B.6)

LIn the context of splines, a knot is a point where the valuéefitinction is specified.
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In summary, the mean values of t@r and pr are calculated in Egs. [B.7 - B.8],
invoking Eq. B.4. Note the different limits of integrationrfeach variable. The lower
limits are chosen to exclude the "0-bin” discussed abovee Uper limits are practical
limits set by the available data and Monte Carlo statistics.

1 r120GeV g
2 = sN(s) ds B.7
Zpr) NTor Jo.5GeV (s) (B.7)
B 1 9GeV B B
(pr)=— pr N(pr) dpr (B.8)

~ nror JosGeV

Fig. [B.1] compares the true mean values (black graph) tonen values obtained via
the spline-based methods (blue graph) described in thi®oesesummarized in Egs.[B.7
- B.8]. The uncertainties associated with these cubic sglimsed methods are almost
negligible, as will be further discussed in Sec. B.4.

B.2 Discretization Effects inNg,

The distributions oNg, are treated differently than thoseXft andpt described in the
previous sectionNg, the number of tracks, is a discrete variable (a non-negatieger),
whereas> pr and pt are continuous variables. For the bins numbered sequgrftiam
0, incrementing by 1, the abscissae of the bins are exactwRkn After a certain point,
it becomes statistically unfeasible to continue to incretrtee bins by 1. However, the
abscissae of bins spanning two or more integers (suchad 8 < 11) is not well-defined.
Fig. [B.2] compares the mean values to the binned mean valltes difference is a bias
of ©/(0.5%) We correct this bias using the spline to evaludfe) at each of the integers,
as follows. Just as foEpt and pr, described in Sec. B.1, we fit a cubic spliRén)
to the integral ofN(n), whereN(n) is the number of events witNy, = n. The discrete
"derivative” of the splineF (n+ 1) — F(n) approximates\N(Ng) at each of the integers,
Ngy =n=0,1,---. 2 The mean value dfly, is calculated as

(N = =20 kx (F (k+ 1)~ F () (8.9)

The upper limit ofNg, = 60 is determined by the available statistics.

2The derivative is identicalliN(Ng,) at the knots.
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Figure B.2: Comparison of the3, mean values to the mean values obtained via binned
calculations and a spline-based calculation, as a functidrack jetpr. The binned cal-
culations are performed using the lower edge, center andriggge of the bins. The plots
on the bottom are the ratios of the predicted mean valuesthrtbwn mean values.

B.3 Discretization Effects inpr

For pr, the mean value of the traqk-, has sufficiently fine binning that the difference
between the true and binned mean values is acceptable. §efFHi(e)]. No further
corrections are performed.

B.4 Validation of the Spline-based Methods

Splines are extremely powerful tools, but must be used watltion to avoid fluctu-
ations in the solutions, associated with the rapidly fallapectra® we are attempting to
describe. In Fig. [B.3], the distributions obtained usihg standard (baseline) binning are
compared to the distributions obtained using a fine binnkag.the purpose of evaluating
the performance of the spline-based predictions, we exaboth measured (uncorrected)
data distributions and truth-level Monte Carlo distribbuis. The spline-based predictions
for the contents of the fine bins are compared to the knowreotsit The predictions for
> pr are extremely good (within 0.01%) fapt < 40GeV, after which fluctuations cause
the predictions to fail. Similary, foNg, < 25, the predictions are extremely good. The
performance diminishes substantially fdy, > 25. These bins contribute negligibly to the
mean and standard deviations.

3The errors in polynomial interpolations tend to be promol to then'" derivative of the approximated
functions.
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Figure B.3: Comparison of the distributions of the UE obaétes to the predictions made
by the spline-based methods. The standard binning refetsetbins used to obtain the
central values in this analysis. The plots on the bottomlaeatios of the predicted values
to the known values in the fine bins.



