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Abstract

A Measurement of the Underlying Event Distributions in Proton-Proton Collisions at
√

s
= 7 TeV in Events containing Charged Particle Jets using the ATLAS Detector at the

Large Hadron Collider

by

Joseph Salvatore Virzi

Doctor of Philosophy in Physics

University of California, Berkeley

Professor M. D. Shapiro, Chair

Underlying Event distributions are studied in events containing at least one charged-
particle jet produced in proton-proton collisions at

√
s = 7 TeV. Jets are reconstructed from

charged particles using the anti-kt algorithm with radius parameter R = 0.6. The jet with
the largest transverse momentumpjet

T and|η jet| ≤ 1.5 defines the azimuthalφ jet direction.
Distributions of the charged particle multiplicity, the scalar sum of the transverse momenta
( pT ) of charged particles, and the average charged particlepT are measured as functions
of pjet

T in the transverse region (π3 ≤ |φ − φ jet| ≤ 2π
3 ) for 4 GeV≤ pjet

T ≤ 100 GeV. The
data are compared to predictions from the Monte Carlo generators which have been tuned
to data from the Large Hadron Collider, and are found in to be good agreement.
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Chapter 1

Introduction and Theoretical Overview

Performing precision physics measurements at a hadron collider, such as the Large
Hadron Collider (LHC) [1] where opposing beams of protons collide at unprecedented
energies, requires that we be able to model not only the relevant energetic (hard scattering)
processes, but also the softer (long-distance) componentsof the interactions.

Within the Standard Model (SM) theory of physics, Quantum Chromodynamics (QCD)
is the theory of thestrong nuclear force, the dominant force governing interactions in
hadron colliders. The principle of local gauge symmetry states that the laws of physics
exhibit an invariance under certain classes of transformations, and that these transforma-
tions can vary from point to point in spacetime. UsingM (x)≡ exp(iλG(x)τ) to denote a
local unitary gauge transformation, terms containing the particle fieldsφ in the Lagrangian
formulation of the SM remain invariant under the transformation φ → Mφ . The spacetime
dependence of the transformation is absorbed in the 8 fieldsG(x), one for each of the
SU(3) group generators denoted byτ, andλ is the QCD coupling constant that determines
the strength of the fields and their interactions. Three generations ofquark pairs (arranged
as (up, down), (charm, strange), and (top, bottom)) are described by thefermionic fieldsφ ,
and we refer to theG fields as gluons, thegauge bosons of QCD. The terms fermion and
boson are used to describe the representations of the fields under Lorentz (O(3,1)) trans-
formations of spacetime coordinates, and can be characterized by degrees of freedom more
commonly known asspin. Fermions have spin 1/2, 3/2, and so on. Bosons have integer
values of spin.

The Lagrangian formalism contains not only the fieldsφ , but also derivatives ofφ
adding dynamics to the theory. Without these “kinetic” terms, there is no spacetime evo-
lution of the fields, and the theory would be sterile. These kinetic terms of the form∂xφ
invoke derivatives of the transformation when applying local gauge invariance, resulting in
a huge number of terms in the Lagrangian1 2.

1Quantum field theories require the presence of all terms compatible with a proposed symmetry, or have
good reason to exclude it.

2For the reader familiar with differential geometry, the gluons are analogous to the Christoffel symbols.
The principle of local gauge symmetry gives rise to a covariant derivative, analogous to the covariant deriva-
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Analogous to the theory of Laurent expansion of complex-valued functions, the theory
of perturbative Quantum Chromodynamics (pQCD) attempts topredict cross sections (rates
of interaction) by expanding the theory usingλ . Just aseα x ≈ 1+α x for smallα x, pQCD
posits that ifλ � 1, the effects of the transformation exp(iλG(x)τ) can be approximated
by an expression of the form 1+ iλG(x)τ. The interactions between particles and fields are

then described by the expression of the form〈φ (x0) |φ (x1)〉 =
〈

φ (x0) |ei(t1−t0)Hφ (x0)
〉

,

where H is the Hamiltonian operator derived from the Lagrangian. This compact expression
contains a huge number of terms, due to the large number of terms in the Lagrangian. All
these terms appear in the Hamiltonian which in turn ”multiply” (couple to) each other,
when calculating the expectation values〈φ (x0) |φ (x1)〉. The complexity of the calculations
was reduced significantly to a ”topological” art form by Feynman, when he introduced the
famous diagrams bearing his name. Each interaction term canbe denoted graphically, and
the diagrams carry rules for their computation.

We introducedλ , the QCD coupling ”constant”.λ is a constant with respect to the
spacetime coordinates, but exhibits a dependence on the energy scales in question. This
phenomenon is referred to as running of the coupling constant, λ = λ (E) [2]. The behavior
of λ is determined by theβ -function [2] which is in turn determined by the SU(3) group
structure of QCD.λ is large (technically speaking, divergent) for low energies and small
O (0.1) aboveΛQCD ≈ 200 MeV, the so-called QCD scale. This is the phenomenon known
as asymptotic freedom [3].

We use pQCD to calculate cross sections for interactions ofpartons (gluons and quarks)
at high energy scales, where the QCD coupling constant is sufficiently small to make an
expansion of the QCD interaction terms meaningful. At lowerenergy scales, however, the
coupling constant becomes large and pQCD can no longer be used. We must therefore
resort to an empirical approach to model the interaction terms.

The SM has a much richer structure than we have thus far described,SU(3)×SU(2)×
U(1) to be exact, incorporating theelectroweak interactions. The same general principles
we discussed about QCD apply to the electroweak interactions. The group structure is
SU(2)×U(1), which has four generators and, therefore, four bosons. Theelectroweak
bosons are theW±, Z0 and the photons. There are two coupling constants, much smaller
thanλ , and the theory is always perturbative. The fermion fields are the 3 generations of
lepton pairs (arranged as (e−, νe), (µ−, νµ ), and (τ−, ντ ).) The quark fields also couple to
the electroweak bosons. The left-handed components of the above quark and lepton pairs
aredoublets of the electroweak SU(2) group.

We have discussed partons, but these are not the particles weactually observe in our
detector. The principle of confinement states that free quarks do not exist in nature [4]. We
can only directly observe leptons and final statehadrons which are bound states of 2 or 3
quarks. For two quarks, these are the QCD color singlets (color-neutral combinations) of
theSU(3)×SU(3) product group (mesons). The observable bound states of 3 quarks are
the color singlets of theSU(3)× SU(3)× SU(3) product group (baryons). The momenta

tive of differential geometry.
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of the hard scatter partons are highly correlated with the momenta of the hadrons.
As an example of pertubation theory applied to the electroweak and strong interactions,

we can calculate the cross section for a top quark decaying toaW and a bottom quark (t →
Wb). We observe theW experimentally through either its leptonic (W → `+ν ) or hadronic
( W → qq̄ ) signature. For the reasons already discussed, we cannot detect an isolatedb
quark. Theb quark will interact with the rest of the proton (beam remnants), possibly
producing pairs of quarks from the vacuum, eventuallyhadronizing (forming hadrons) into,
say, aB0 or B±. In our example, the direction of theB-meson is highly correlated to the
direction of the outgoingb quark.

Hadronization of partons are extremely complex interactions, and occur at much lower
energy scales (longer time scales) than does the hard scatter. These interactions elude
calculation, and we must adopt alternate models to account for their effects. We feed back
knowledge obtained from experiments to adjust parameters these models will invariably
have.

We can use pQCD to calculate the high energy component of interactions between
gluons and quarks, but the subsequent evolution of the interaction is impossible to calculate,
as final state particles are produced through complex intermediate QCD parton exchanges
(described by Feynman diagrams), Essentially, we cannot calculate the distributions of
final state particles from first principles. The motivation for our measurement begins to
nucleate. In order to relate physics measurements back to theoretical predictions, we must
understand how the observed data feeds back to the theoretical model. We must determine
how does the distribution of particles in our detector affects our interpretation of the hard
scatter between two colliding protons.

One of the most indispensable tools we have are Monte Carlo (MC) generators, such as
PYTHIA [5], SHERPA [6] and HERWIG++ [7]. These are computer programs that imple-
ment phenomonological physics models, and we shall discussthis topic in more detail in
Chapter 2. These generators model the hard scatter between colliding protons, evolve the
interactions through a series of models (e.g. - fragmentation, hadronization), and provide
distributions of final state particles. The extent to which we believe the MC predictions
depends on how well they can model the distributions of final state particles. Our measure-
ment focuses on characterizing the agreement in the ”tails”of these distributions, the lesser
populated regions of phase space. Specifically, we measure the distributions of particles far
away from the primary regions of interest and compare to the MC predictions.

Historically, theUnderlying Event (UE) has been a catch-all term, relating to the distri-
butions of particles away from the directions defined by the more interesting hard scatter.
The CDF and D0 experiments at the Fermilab Tevatron performed related measurements
[8, 9]. The concept of the UE is important to hadron collider physics because it enters
the uncertainty analysis for many precision measurements.Every UE analysis is required
to precisely define the concept and parameters for itself; the current analysis is no excep-
tion. As a result, there are many definitions of the UE in the literature describing the same
concept.

We motivate our definition and subsequent measurement of theUnderlying Event with
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a highly contrived toy example. We use the uncertainty analysis of adifferent, hypothetical
measurement to motivate our UE measurement.

Suppose we were measuring the differential cross section ofparton scattering as a func-
tion of Q2 in diffractive proton-proton collisions, using an unrealistic detector capable of
infinite track momentum and spatial resolution with perfectreconstruction efficiency. This
interaction is modelled at leading order (inλ ) by a parton (gluon or quark) from one proton
scattering with a quark or gluon in the other proton. An example is shown in Fig. 1.1. We
refer to these partons asincoming. The leading order terms in pQCD contain twooutgo-
ing partons, meaning two partons are produced in the hard scatter. In Fig. 1.1, a u-quark
from one proton scatters against a d-quark from the other proton, each quark radiating a
gluon. Those gluons interact, producing a ”s-channel” gluon, which then produces a quark-
antiquark pair. In our detector, the momenta of the outgoingquark-antiquark pair manifest
themselves as a collimated collection of final state hadrons, known asjets. This situation
is visualized in Fig. 1.3(a). The extent of collimation is characterized by the jet radius
parameter (R). Low momentum transfers require a larger radius to capture the hadronic
shrapnel from the interaction; high momentum transfers will collimate strongly with less
dispersion, thus requiring a smaller radius. For our analysis, we settled on the value R = 0.6
as the appropriate jet radius to account for dynamic 4 GeV≤ pjet

T ≤ 100 GeV range of our
jets. As an example of the difference between a quark and a jet, an outgoing parton with
transverse momentumpT = 10 GeV may hadronize into 5 more more final state particles
moving approximately in the same direction, each having approximatelypT = 2 GeV.

In practice, jets are defined by the algorithm used to construct them. There are vari-
ous algorithms available such as the anti-kt [10] and SiSCone [11], etc., each having their
advantages and drawbacks. This analysis uses the anti-kt algorithm to constructtrack jets
from charged particles, using only the inner detector (ID).The efficiency and resolution
of the tracking detector allows us to probe very low energy jets. The anti-kt algorithm is
an IR- and collinear-safe version of the geometrically-intuitive cone algorithm, which uses
tracks inside a cone inφ −η in to characterize its energy. The terms track jets and charged
particle jets are used synonomously.

In our example analysis, the most natural strategy would be to reconstruct track jets,
compute and histogram theQ2. and compare the results to the predictions of Monte Carlo
generators. One relevant diagram of a contributing processis pp → pp+ jets, which can
proceed throughpp → pp+qq̄ (See Fig. 1.1). For simplicity, let us assume the outgoing
quarks each havepT = 20 GeV and the direction of the quark momentum vectors areη = 0
andφ = 0 for the quark, andφ = π for the antiquark3. This scenario is just a quark pair
produced back to back in the lab rest frame. We further assumethe outgoing protons travel
directly down the beampipe (η = ±∞ ). TheQ2 of this interaction is 402 GeV2. We will
not discuss the plethora of other leading order diagrams. Inour example, detailed numeric
information is provided for definiteness.

3The ATLAS experiment uses a right-handed coordinate system. Thex-directionx̂ points radially inward
from the interaction point to the center of the LHC ring, ˆy points upward, and ˆz points along the beampipe.
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Figure 1.1: An example diagram forpp → pp+ j j

In our example Feynman diagram, we have taken the liberty of conflating quarks and
jets. In general, the picture is far from straightforward once we start to probe the hadroniza-
tion process. Again, we focus on one simplified scenario out of an infinite number of possi-
bilities. The outgoing quarks interact with gluons and spectator quarks from the protons, an
example of which can be seen in Fig. 1.2, where the outgoing anti-quark interacts with one
of the spectator quarks from the proton via a gluon. The outgoing quark radiates a gluon
which (a) splits into add̄ pair, and (b) pulls auū pair from the vacuum to form a final state
π+ andπ−. The quarks continue through the hadronization process to form a collection
of final state particles. The charged particles leave tracksin the Inner Detector from which
we reconstruct track jets. In our example, the leading trackjet (having the largestpT) has
pT = 21 GeV,φ = 0 andη = 0.1, close to but not coincidental with the direction of the out-
going quarks from the hard scatter. The subleading track jet(track jet with the next highest
pT) haspT = 18 GeV,φ = π andη = 0.2. The directions of theπ mesons need not follow
the direction of the parent quark due to the interactions with the beam remnants. In our
example, theπ+ is produced withpT = 3 GeV,η = 0.5 andφ = π/2; theπ− is produced
with pT = 2 GeV,η =−0.8 andφ =−π/2. This situation is depicted in Fig. 1.3.

Figure 1.2: A example diagram forpp → pp+ j j+π+π−
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Transverse
Region

Transverse
Region

Toward Region

Away Region

3
π = φ∆

3
π2 = φ∆

3
π-

 = φ∆

3
π-2 = φ∆

Leading Charged-Particle Jet
 = 0φ

Figure 1.3: An example of particles in theTRANSVERSEregion, with jets in theTOWARD

andAWAY side.

We now proceed to do something useful with all of this detailed information. This
event enters our hypothetical cross section measurement because it contains at least two
energetic track jets. The measuredQ2 is 392 GeV2, according to the sum of the track jet
pT. The question arises as to how we account for the pions that were produced away from
the direction of the hard scatter. Their contribution is neglected because the reconstructed
jets did not account for their energy. If the Monte Carlo generator models the pion pair
production as ultimately originating from hard scatter partons, then the pions are accounted
for by jet energy resolution. If MC produces the pions from a secondary interaction, not
tracing its “ancestrage” to the hard scatter, we must understand how the MC models these
effects. The question we are asking is, ”How are meaningful comparisons to Monte Carlo
generator predictions to be made?”

MC generators tend to simplify the hadronization process insuch a way that the final
state particles tend to follow the direction of the hard scatter. The population of phase space
away from this direction needs a correction in order to matchobserved data. One current
model that performs this correction is known as multiple parton interactions (MPI) [12],
where a secondary, softer interaction occurs generating particles much more isotropically,
thus filling in phase space. The MPI will also produce particles overlapping in phase space
with the hard scatter, contributing particles to the jet andoverestimating itspT. The MC
produces the hard scatter with a cross section calculated unaware of this secondary inter-
action4. MC must account for the additional energy in order to remainconsistent with the

4Some newer models attempt to reconcile QCD color differences between the hard scatter, beam remnants
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data.
We are now ready to motivate the definition of theUnderlying Event (UE) for track

jets. The leading track jet is used to define a direction in phase space. The track jet can
be described by four variables (pT, η, φ , mass). All variables exceptη are relativistically
invariant under boosts along thez axis. We useφ jet to define the directionφ0, and categorize
the jet using itspT. Jet mass does not enter the analysis. We define theTRANSVERSEregion
to be the area of phase spaceπ/3≤ |φ0−φ | ≤ 2π/3.

We tentatively define the Underlying Event as the charged particle activity in theTRANS-
VERSE region, using the multiplicity and scalar sumpT of the tracks as relativistically in-
variant measures of particle activity. The caveat is that since our tracker offers excellent
tracking to|η| ≤ 2.5, we impose a selection criteria on the tracks. We settle on the final
definition of the Underlying Event, as it pertains to this analysis:

The Underlying Event is the charged particle activity in theTRANSVERSEregion (π3 ≤
|φ −φ0| ≤ 2π

3 ), for tracks having|η| ≤ 1.5 andpT ≥ 500 MeV. Charged particle jets are
constructed using the anti-kt algorithm, with the clustering radius R-parameter value fixed
at 0.6, from tracks having|η| ≤ 2.5 andpT ≥ 500 MeV. The leading jet with|η| ≤ 1.5
andpT ≥ 1 GeV is used to defineφ0 on a per event basis. The charged particle activity is
characterized by the scalar sum of the individual trackpT ( ΣpT ), the number of tracks (
Nch ), and the averagepT per track ( ¯pT ≡ ΣpT/Nch).

We now summarize and discuss the Underlying Event. Experimentally, this definition
of the UE is an unambiguous and a well-defined quantity. Theoretically, one encounters
problems in the interpretation, typically arising from tooliteral an interpretation of Feyn-
man diagrams. Feynman diagrams are invaluable tools that help calculate cross sections,
but we must be cautious and remember that any diagram is one ofan infinite number of
diagrams that must be consistently summed,before interpretation. One popular working
definition is that the UE is ”everything” in the event except the hard scatter, which already
presupposes we can unambiguously classify a hadron as having originated from the hard
scatter.

The different available MC use different models to populateareas of phase space com-
plementary to those defined by the hard scatter. Such models as Initial-State Radiation
(ISR) and Final-State Radiation (FSR), MPI, beam remnant interactions, bremsstrahlung,
etc. all work differently and complement the hard scatter model. In the end, the goal is to
describe the physics correctly. We refrain here from describing the various MC models; it is
not germane to the current analysis and detailed information can be found in the literature.
We focus on characterizing their performance in reproducing the relevant physics distribu-
tions, instead of analyzing the success or failure modes. The results of this analysis will
provide the authors of MC generators another test of their models, by providing truth-level
distributions which can be compared without reference to any detector.

A similar measurement was performed simultaneously by the CMS experiment [13].
The CMS measurement of the track jet-based UE used charged particle jets reconstructed

and secondary interactions. This is known ascolor reconnection.
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using the SISCone algorithm [11] with R=0.5. The CMS analysis used the samepT ≥
0.5 GeV acceptance for tracks, but the|η| ≤ 2 was different than the acceptance in this
analysis. ATLAS also performed a similar measurement [14] to ours, except the direction
of the UE was determined by the track with the largestpT.

This analysis measures three different quantities simultaneously, most often with identi-
cal methods for each. We will usually outline the method for one of the observables, noting
the similar or identical approach for the remaining observables. We mention differences,
if any, in the treatment of the different observables. Alternately, we refer to the measured
quantities generically asO . For example, the distributions ofO vs pjet

T refer to each ofΣpT ,

Nch and p̄T vs pjet
T .

UE analyses have been performed at different experiments. Although they may use dif-
ferent objects (e.g. - leading track,Z0) to define the directions, these analyses consistently
label the different UE regions. The phase space selection criteria may vary, but the concepts
of TOWARD , TRANSVERSEandAWAY regions are used consistently. The different regions
of the UE, as defined for the current analysis, are shown in Fig. 1.3.
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Chapter 2

Monte Carlo

2.1 Generation

Monte Carlo generators are algorithms, implemented as computer programs, employing
phenomenological models to simulate physics processes. The output of these generators is
typically a list of partons or final state particles, and their properties, whose origin reflects
the physics process being modelled. For example, if we are modelling a top quark decaying
to aW -boson and a b-quark, the list of final state particles would usually include aB-meson
(containing the b-quark). In high energy physics, the most ubiquitous generator is PYTHIA .
Examples of other generators include HERWIG++, SHERPA, AcerMC [15], ALPGEN [16],
etc.

Monte Carlo generators are extremely important in a wide class of analyses, because
it helps us relate what we observe in our detectors to the fundamental physics processes.
The distribution of particles in our (imperfect) detectorsdoes not uniquely point to the
responsible physics process. It must usually be inferred byexamining its consistency with
different scenarios. As we search for potential new physicsin our experiments, we have
to ask many ”what if?” type questions. For example, let us assume we are looking for a
spin-0 particle with a mass of 120 GeV. We would model the relevant physics process and
compare the output to the observed data. What if the particlehad a mass of 115 GeV? or
125 GeV? How would the output of our simulation change, and could our analyses resolve
the differences? What if the particle were a vector boson (force mediator described by
a field with vectorial transformation properties) instead?The distributions of the decay
products differ depending on whether the particle is described by a scalar or vector field.
By modelling the different scenarios, comparing and analyzing the data, we determine the
ability of our analysis to resolve new physics from the predictions of the Standard Model.
Although we used a sleek example to motivate the importance of Monte Carlo generators,
the same line of reasoning applies to precision measurements of the Standard Model.

In the context of this analysis, we ask what the distributions of particles are, how many
are there, and their energy content. This is one of the first UEmeasurements performed at
the LHC made with early 2010 data. Physicists fed back knowledge from previous experi-
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ments into existing MC generators and made an educated guessat the physics distributions
at the LHC. The generators are configured to give distributions that agree with data from
previous experiments. The output of these generators are then to be compared to new data.

Monte Carlo generators usually have a set of parameters thatcan be adjusted to modify
its behavior, to make it agree better with experimental data. A particular configuration of
parameters is known as atune. When referring to MC with a particular configuration, we
use the convention of specifying the tune in parentheses after the name of the generator.
For example, PYTHIA 6 (AMBT1) refers to the AMBT1 tune of PYTHIA 6.

This analysis uses PYTHIA 6 (MC09) [17] to validate the analysis techniques, and in
the evaluation of systematic uncertainties. The availablesample had 20M events, approxi-
mately half the size of the data sample. Other MC were used in the evaluation of systematic
uncertainties. The exhaustive list of Monte Carlo generators considered in this analysis is

• MC09 tune of PYTHIA 6 [17]

• AMBT1 tune of PYTHIA 6 [18]

• UE7-2 tune of HERWIG++ [7]

• Perugia2010 tune of PYTHIA 6 [19]

• Perugia2011 tune of PYTHIA 6 [19]

• Perugia2011 (without color reconnection) tune of PYTHIA 6 [19]

• 4C tune of PYTHIA 8 [20]

• Z1 tune of PYTHIA 6 [21]

• AUET2B tune of PYTHIA 6 [22]

2.2 Simulation

We described Monte Carlo generators in Sec. 2.1. We now discuss simulation of the
detector. Any measurement requires knowledge of how the apparatus responds to input
stimuli.

The output of a Monte Carlo generator is usually a list of particles and properties that
we might observe with a perfect detector. In order to comparethe predictions of MC to the
data, we need a more realistic description of its output. By simulating the detector response,
and applying it to the MC output, we obtain a modified list of particles with which we can
make a meaningful comparison to the data.

This analysis makes extensive use of PYTHIA 6 (AMBT1) [18] that has undergone full
detector simulation using the GEANT4 package [23]. As will be discussed in Sec. 5, this
tune is used in the correction procedure to account for detector effects. At the time this
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analysis was performed, this Monte Carlo sample had the bestavailable statistics. The
AMBT1 configuration was not tuned to LHC data.

We require high statistics in all of the relevant phase space, in order to obtain an accurate
description of the detector. Unfortunately, modelling thedetector isvery time-consuming,
roughly 15 minutes per event. This means we cannot afford to fully simulate every gener-
ated event; we must carefully choose the events we wish to simulate. One of the variables in
our analysis is the transverse momentum of charged particlejet (pjet

T .) The cross section for

generating MC samples drops rapidly as a function ofpjet
T (See Fig.3.7). Without making

specific cuts during the generation process, obtaining full-simulation samples at highpT

would be a very inefficient process. By making specific cuts onthe transverse momentum
of truth jets, we are able to effiicently populate all relevant phase space. Samples generated
with such cuts are referred to asslices, and the events in these slices are properly weighted
to form consistent distributions when histogrammed.

The details of GEANT4-simulated MC sample generation are tabulated in Table 2.1.
PYTHIA 6 (AMBT1) is listed twice; there are two statistically independent samples.

2.3 Remarks

Because PYTHIA 6 (AMBT1) plays a major role in the derivation of the final measure-
ment, we compare most of its physics distributions to the data, before application of any
corrections. For some variables, the differences in the data and MC distributions are fairly
large. Binning in these variables removes the leading ordereffects of such differences, and
we are still able to use the Monte Carlo to obtain good results. We account for residual
differences as a source of systematic uncertainty in Sec. 6.

We use the termsbaseline measurement andcentral value to refer to the final corrected
measurements.

We compare the central values to the predictions of PYTHIA 6 (Z1) and PYTHIA 6
(AUET2B), which were tuned to CMS and ATLAS data, respectively. These are the best
configurations CMS and ATLAS had at the time our measurementswere completed. These
tunes were not used to obtain the central values, but the comparisons are interesting because
these Monte Carlo were tuned using LHC results from other measurements.
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Table 2.1: GEANT4-simulated Monte Carlo generation
GEANT4 simulation samples

generator generator cut # of events
Pythia 6 (MC09) - 19,693,365
Pythia 6 (AMBT1) 4GeV≤ pjet

T ≤ 15GeV 19,823,155
15GeV≤ pjet

T ≤ 30GeV 19,660,690
30GeV≤ pjet

T ≤ 60GeV 19,618,890
60GeV≤ pjet

T 9,745,804
Pythia 6 (AMBT1) - 4,907,480
Pythia 6 (Perugia2010) 4GeV≤ pjet

T ≤ 15GeV 2,477,628
15GeV≤ pjet

T ≤ 30GeV 2,445,198
30GeV≤ pjet

T ≤ 60GeV 2,424,625
60GeV≤ pjet

T 1,224,549
Pythia 8.145 (4C) - 4,004,064
Data - 42,617,085
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Chapter 3

The ATLAS Inner Detector at the Large
Hadron Collider

3.1 The Large Hadron Collider at CERN

Located in the environs of Geneva, Switzerland, the Large Hadron Collider (LHC)
[1] collides proton beams in opposing directions. Designedto operate at 14 GeV center-
of-mass energy with a luminosityL = 1034cm−2s−1, the LHC was operating at 7 GeV
center-of-mass energy and peak luminosityL = 6.6×1028cm−2s−1 in early 2010, when
our measurement was made. The LHC is 27 kilometers in circumference, and located up
to 175 meters underground.

The beams are produced as hydrogen ions and a chain of accelerators successively boost
these protons to increasing energies. A linear accelerator(LINAC2) brings the protons to
50 MeV and feeds the (PSB) Proton Synchrotron Booster. The PSB boosts the beam to
1.4 GeV and feeds the SP (Proton Synchrotron). The SP boosts theproton beam to 25 GeV
and feeds the Super Proton Synchrotron (SPS). The SPS booststhe protons to 450 GeV,
which then feeds the last accelerator in the chain, the LHC. After proton bunches in each
opposing beam are accelerated to 3.5 GeV, they are collided.The collisions occur at 4
locations, referred to by the name of the experiment locatedat the points - ATLAS, CMS,
LHCb and ALICE. The LHC uses a circular array of more than 1600superconducting
magnets keep the protons in their trajectory. The CERN accelerator complex is shown in
Fig. 3.1.

3.2 The ATLAS detector

The ATLAS detector is actually an ensemble of many detectors, forming a general-
purpose hermetic detector. The hadronic calorimetry system measures the energy deposited
by strongly-interacting particles. The electromagnetic calorimetry measures the energy de-
posited by electrons and photons. Both calorimeters have fine segmentation (granularity)
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Figure 3.1: The CERN accelerator complex [24]

allowing for good spatial resolution and longitudinal energy deposit resolution (dE/dx). As
the outermost detector, the muon system tracks electrically charged particles that ”punch
through” all the other detectors, including the calorimetry. We identify these minimum ion-
izing particles (MIP) as muons. Neutrinos do not interact with the detector; their signature
is missing energy. The innermost detector, the ID (inner detector) resolves charged particle
trajectories and is described in more detail next, as this isthe relevant subsystem for our
analysis. The ATLAS detector is depicted in Fig. 3.2.

3.3 The ATLAS Inner Detector

The ATLAS detector is a system of complex and complementary subdetectors. This
analysis, however, makes use of a very small part of the wholedetector. The entire analysis
is based ontracks, which only require the inner detector (ID). We focus our discussion
on this relevant subdetector. Detailed information about the different components of the
ATLAS detector can be found in the literature. [25]

The ATLAS Inner Detector (ID) consists of 3 separate and complementary subdetec-
tors. These are the PIXEL detector [26], the SemiConductor Tracker (SCT) [27] and the
Transition Radiation Tracker (TRT) [28, 29], that comprisethe innermost component of
the ATLAS detector. The envelope of the ID is located just outside the beampipe, extend-
ing 1.2m radially and -3.5m≤ z ≤ 3.5m. Geometric details of the ID layout can be seen in
Fig. 3.3. The entire ID is immersed in a 2T axial magnetic field, causing charged particles
to trace out curved trajectories according to their momentum. The ID is responsible for
finding charged particles and resolving their momenta.
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Figure 3.2: A diagram of the ATLAS detector indicating its sub-components [25].

3.3.1 The PIXEL detector

The PIXEL detector is an array of approximately 80 million 50µm×400µm silicon-
based charge detectors, known as pixels. The pixels detect charged particles traversing their
geometry, providing 3-dimensional spacepoint information about the track. The geometri-
cal layout of the pixel detector was designed to provide≥ 3 spacepoints (See Fig. 3.5) for
tracks with|η| ≤ 2.5. The pixels are arranged in 3 cylinders concentric to the beampipe,
and 6 parallel disks (3 on each side). Fig. 3.3 shows geometric detail about the PIXEL
detector. The 3 cylinders, collectively referred to as the pixel barrel, are located atr =
50.5mm (B-layer), 88.5mm (Layer 2) and 122.5mm (Layer 3) from the beamline, and span
|z| ≤ 400.5mm. On either side of the barrel, 3 disks are arranged at|z|= 495mm,580mm
and 650mm, and span 88.8mm≤ r ≤ 149.6mm. The pixels disks are commonly referred
to as the end caps. The pixels are arranged intomodules with 46080 pixels each. The
modules are tiled onto the disk surfaces in the end caps, and onto long carbon fiber strips
(staves) in the barrel. To provide full quality coverage inφ , the PIXEL detector provides
some module overlap between modules in the azimuthal direction. As a result, a track may
have more than one hit in on the same layer, if it crosses the the region of overlap. Detailed
information about the pixels can be found in [26]. Fig. 3.4 shows the rendered image of
the PIXEL detector.
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Figure 3.3: Anr−z view of the ATLAS Inner Detector with details of the geometric layout.
Reproduced from [25].

3.3.2 The Semiconductor Tracker

Located just outside the PIXEL detector, the SCT detector isalso an array of silicon-
based charge detectors. The 80µm× 1260mm geometry of the SCT detector elements
is much larger length-wise than the pixels, and are referredto as strips. The SCT has a
barrel and endcaps, one on each side of the barrel along the beampipe. In the barrel region,
there are 4 double-sided layers, with the strips arranged stereographically. The layout in
the endcap is more intricate; Fig. 3.3 shows the detail of thegeometrical layout of the
strips, which cover tracks with|η| ≤ 2.5. The strips do not offer the same resolution in
z ( 1260mm vs 400µm ) as the pixels, but compensate by providing many more channels
and covering more surface area. Unless lost to efficiency, orinteraction with material in the
SCT infrastructure, tracks normally register 2 hits per layer. Detailed information about the
SCT can be found in [27]. Fig. 3.4 shows the rendered image of the SCT detector.

3.3.3 The Transition Radiation Tracker

The outermost component of the ID, located outside the SCT, the Transition Radiation
Tracker (TRT) is an array of straw drift tubes. The TRT provides continuous tracking
information between the SCT and the outer envelope of the TRT(approximately 1m). In the
barrel, 4mm×370mm straws, running axially to the beampipe, are filled with Xe/CO2/O2.
In the endcap, the 4mm×1440mm straws run radially. A fine tungsten wire anode at the
center of the straw is held at ground; the tube (cathode) is held at -1.5kV. Charged particles
traversing the straw tube ionize the gas; the potential difference between cathode and anode
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Figure 3.4: Anr− z view of the ATLAS Inner Detector. Reproduced from [25].

causes electrons to drift to the anode. Drift time provides further spatial resolution. A
particle traversing the TRT barrel (|η| ≤ 0.8) is expected to have 36 TRT hits. Geometric
considerations must be taken into account to determine the number of expected hits in
the TRT end cap ( 1≤ |η| ≤ 1.9 ), and in the transition region between the barrel and
endcap. Polypropylene fibers (in the barrel) and foils (in the endcap) between the straws
act as a transition radiation generator to help descriminate between electrons and pions.
Different voltage thresholds are used to detect the difference between transition radiation
from electrons and minimum ionization from pions. Detailedinformation about the TRT
can be found in [28, 29]. Fig. 3.4 shows the rendered image of the TRT detector.

3.4 ATLAS Trigger Overview

The ATLAS detector has a 3 level trigger system, known as the Level 1 (L1), Level 2
(L2) and Event Filter (EF).

The L1 trigger system is a sum of hardware triggers from different components of the
detector. Detector components are designed to trigger within 2.5 µseconds of a significant
signal in that subdetector. Due to various constraints, including full detector readout time,
this trigger can operate at a maximum rate of 75 kHz.

The L2 software trigger is performed outside the detector, using dedicated computers to
perform optimized reconstruction in the various regions ofinterest. The L2 trigger system
reduces the event rate down to approximately 3.5 kHz.

The last component in the trigger chain is the Event Filter (EF). The decision to com-
mit the event to permanent storage is based on full event reconstruction. The EF passes
approximately 200 events per second.

This analysis uses events selected with the L1 Minimum Bias trigger.
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3.4.1 Minimum Bias Trigger

The different components of the ATLAS detector (calorimeters, muons, etc.) are each
capable of firing the L1 trigger in response to signal detection. The minimum bias trigger
consists of Beam Pickup Timing (BPTX) devices and the Minimum Bias Trigger Scintilla-
tor (MBTS).

The BPTX Trigger

Formally considered part of the LHC machine, even though they are operated by ATLAS,
there are two BPTX stations on either side of the ATLAS detector, located at±175m from
the nominal interaction point. Each BPTX station consists of 4 electrostatic button pickup
devices, arranged symmetrically around and attached to thebeam pipe. The BPTX devices
pick up the signal from passing proton bunches. A coincidental trigger from both sides
of the detector indicates that two proton bunches have collided. Detailed description and
performance of the BPTX can be found in [30]

The MBTS Trigger

On either side of the ATLAS detector, the MBTS system consists of a disk (its face
perpendicular to the beamline), with scintillator counters mounted on two radial rings.
Each ring is divided into 8 equal segments inφ , for a total of 16 segments on each side of
the ATLAS detector. The two rings span 2.09≤ |η| ≤ 3.84, and are located at±3.56 m
from the nominal interaction point. Particles traversing any segment deposit energy into the
scintillator, and the light is guided to a photomultiplier tube (PMT). After signal shaping, a
hit is defined as a signal over the descriminator threshold.

The MBTS trigger efficiency is≥ 0.97 for events with 2 selected tracks, rising to> 0.99
for ≥ 3 tracks. The trigger, by construction, does not introduce asignificant selection bias,
and the efficiency does not affect the measurements in our analysis. Our event selection is
based on forming charged particle jets, naturally selecting events with larger track multi-
plicities, and therefore the MBTS efficiency is essentially100% [31].

Events in this analysis are selected with the Minimum Bias trigger, with at least one
MBTS hit and a coincidence in both sides of the BPTX.

3.5 Event Reconstruction

3.5.1 Track Reconstruction

Because the Inner Detector (ID) is immersed in a 2T magnetic field, a charged par-
ticle will trace out a helical trajectory, the parameters ofwhich depend on the particle’s
momentum and production vertex. As the charged particle traverses the various compo-
nents of the ID, the registered hits are recorded and used to reconstruct its trajectory. This
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trajectory is also referred to as atrack. We summarize the salient features of the reconstruc-
tion algorithms, those which are relevant to this analysis.Details about the reconstruction
algorithms and their performance can be found in [32].

A helix can be described by the following five parameters, assuming knowledge of the
event’s primary vertex (PV), the point where the protons collided. The particle’s production
vertex may differ from the PV.

• pT - the transverse momentum of the particle. We measure the track curvatureρ and
use it to determine the particle’spT using its chargeq and the magnetic field strength
B, via the relationpT = qB/ρ .

• η =− log
(

tan
(θ

2

))

, the pseudorapidity of the particle’s production vertex

• d0 - the transverse impact parameter, is the distance of closest approach, in ther−φ
plane, to the PV

• z0 - the longitudinal impact parameter, is thez coordinate of the closest point to the
PV

• φ0 - the azimuthal coordinate of the point of closest approach to the PV

Hits from adjacent pixels or strips are gathered into clusters (contiguous combinations
of hits), which are used as seeds in the tracking algorithm. All combinations of three
clusters (from any pixel layer or the innermost SCT strip) are used to define aroad, which
is essentially is a track candidate. Hits from the ID are thenassociated with the track, which
is refitted after every hit association using a Kalman filter [33] and a simplified model of the
detector geometry. After the hit association is complete, the track undergoes further quality
checks. The track is refit using a more sophisticated description of the detector, and scored
accounting for the quality of the fit, the number of hits, the number of holes (”missing” hits)
and theχ2/Ndo f is used to select good tracks. Hits which are shared between tracks are
reassigned to the highest quality track. Tracks are subsequently extrapolated to the TRT,
and the analogous procedure of attaching TRT hits is repeated.

3.5.2 Vertex Reconstruction

Primary vertex reconstruction begins after track reconstruction is complete, requiring
at least two tracks having

• ptrack
T ≥ 100 MeV

• |dBS
0 | ≤4 mm, wheredBS

0 is the transverse distance of closest approach to the beamspot

• the uncertainty ondBS
0 , σ

(

dBS
0

)

≤ 5 mm

• the uncertainty onzBS
0 , σ

(

zBS
0

)

≤ 10 mm
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Figure 3.5: Schematic of the different stages of track reconstruction. Spacepoints are rep-
resented by the yellow dots and blue lines indicate track seeds. The dashed blue line is a
seed which shares a single hit and the green line illustratesa seed which was rejected prior
to hit association. The green dashed line indicates a track candidate which failed the impact
parameter cuts. The red line represents a silicon-only track. The black line indicates a track
including TRT hits. Figure reproduced from [34] with permission of the author.

• at least one pixel hit (Npix ≥ 1)

• at least 4 SCT hits (Nsct≥ 4)

• at least 6 silicon hits total (Npix +Nsct≥ 6)

The vertex fitter is seeded with the maximum of thez0 distribution of the tracks. Tracks
are tested for consistency with the candidate vertex. The adaptive vertex fitter [35] uses a
χ2-based algorithm to iteratively reduce the contribution from outlying tracks, which can
become candidates for another vertex. The algorithm is complete when the track collection
is exhausted or no further vertices are found. If the beamspot is known, it is also used to
constrain the fit. Vertex reconstruction is described in detail in [36].
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3.5.3 Jet Reconstruction

Selected tracks with|η| ≤ 2.5 (c.f. Sec. 4.1.1) are clustered into charged particle jets
(track jets) using the anti-kt algorithm, using R = 0.6 for the clustering radius R-parameter.
The R-parameter is often referred to as thejet radius. Charged truth jets are formed from
Monte Carlo, applying the anti-kt algorithm to primary particles in the event HepMC
collection. Fig. 3.6 shows the reconstruction efficiency for charged truth jets that have
been matched to a charged particle jet, with a matching criteria ∆R ≡

√

(∆η)2+(∆φ)2 ≤
0.3. Fig. 3.7 shows thepT spectrum of reconstructed jets, comparing data to PYTHIA 6
(AMBT1). The MC pT spectrum isharder (having largerpT) than the data.
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Chapter 4

Measurement of Raw UE Distributions

We describe the measurement of the Underlying Event distributions directly from the
data, before any corrections are applied.

4.1 Event and Data Selection

The data used in this analysis were taken early 2010, accumulating a total integrated
luminosity of 800µb−1 (after highly prescaled triggers). More than half the data were
taking with µ ≤ 0.01, whereµ is the average number of collisions per bunch crossing.
and never exceededµ = 0.14 throughout the relevant data-taking period. Therefore,the
effects ofpile-up (more than one collision per bunch crossing) are minimal. The relevant
triggers (Sec. 3.4.1) and detectors (Sec. 3.3) were fully functional. An event was selected
for analysis if it had exactly one primary vertex (PV) and a charged particle jet withpjet

T >
1GeV and|η jet| ≤ 1.5.

4.1.1 Track Selection

In this section, we outline the criteria for selecting primary tracks. Primary tracks
have been studied comprehensively in Minimum Bias studies in ATLAS. We adopt the
same selection criteria as the ATLAS Minimum Bias analysis [37]. A complementary UE
measurement based on the leading track to define the direction of the UE [14] also makes
use of these selection criteria. Using the same track selection criteria allows us to make
comparisons, and use the same infrastructure for tracking efficiency uncertainty analysis.
The same tracks are used to make track jets and calculate the UE observables, with one
important exception. Whereas the tracks used in jet reconstruction are allowed to have
|η| ≤ 2.5, analysis tracks (those used for calculating the UE observables), are restricted to
|η| ≤ 1.5.

Some history is required to explain the choice ofη acceptance used in our measure-
ment. This analysis considers anti-kt track jets with a jet radiusR = 0.6. We performed
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variable cut
pT 0.5 GeV

SCT hits ≥ 6
Pixel hits including ≥ 1

B-Layer hit if expected
|z0sinθ | ≤ 1.5mm
|d0| ≤ 1.5mm

total tracks with|η| ≤ 2.5 404,137,798
total tracks with|η| ≤ 1.5 259,643,051

Table 4.1: Track selection criteria

companion analyses [38, 39], considering jet radii rangingfrom 0.2≤ R ≤ 1.0, using the
same analysis techniques outlined in this thesis. To obtainthe bestpjet

T resolution, all tracks
should be within the acceptance region|ηtrk| ≤ 2.5. Restricting jets to|η jet | ≤ 1.5 ensures
that all constituent tracks are within the track acceptance. Analysis tracks, however, should
remain within the jet acceptance to avoid cases whereptrack

T ≥ pjet
T , and suppress the effects

of mismeasured highpT tracks.
The track selection criteria are listed in Table 4.1. Tracksmust register at least six (6)

hits in the SCT, and at least one (1) hit in the pixel detector.To reduce the contamination
of secondary tracks, if the corresponding module in the B-layer in the pixel detector is op-
erational, the track must register a hit in the B-layer, automatically satisfying the≥ 1 pixel
hit requirement. To select tracks from the primary vertex, tracks must have a transverse
impact parameter|d0| ≤ 1.5mm and longitudinal impact parameter|z0sin(θ) | ≤ 1.5mm.

A total of 404,137,798 tracks passed the selection criteria for track jet construction. A
total of 259,643,051 tracks passed the selection criteria for calculation ofthe UE observ-
ables. The distributions of the variables used to select tracks are shown in Appendix A.
Fig. [4.1] shows thepT andη distributions of the tracks used to construct charged particle
jets. Fig. [4.2] shows thepT andη distributions of the tracks that enter the calculation of
the UE observables.

4.1.2 Jet Selection

Charged particle jets are accepted if they havepjet
T ≥ 1 GeV and|η| ≤ 1.5. This analysis

reports results forpjet
T ≥ 4 GeV. The expanded acceptance is used for the purposes of

analyzing the uncertainties associated with jets ”smearing” in from outside the acceptance.
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Figure 4.1: ThepT andη distributions for tracks used to construct charged particle jets.
The Monte Carlo is normalized to the data.

4.2 Measuring the Distributions from Data

Tracks in selected events are clustered into jets using the anti-kt algorithm, using R=0.6
as the clustering radius R-parameter. For each event, the leading jet with|η| ≤ 1.5 is se-
lected to define theφ = φ0 direction. Tracks in the event are selected for the UE calculations
if the relative azimuth to the leading jet satisfiesπ

3 ≤ |φ −φ0| ≤ 2π
3 . For each event,pext

T is
defined as the transverse momentum of the hardest jet satisfying 1.5≤ |η| ≤ 2.5. If there
are no jets satisfying this condition,pext

T ≡ 0. For each observableO , we recordpjet
T , pext

T
andO in a 3-dimensional histogram.

The UE observables are calculated for each event as follows:

• Nch = the number of tracks in theTRANSVERSEregion.

• ΣpT ≡ ∑Nch
k=1 ptrack

T,k = scalar sum of the trackpT

• p̄T = the averagepT per track≡ ΣpT
Nch

Figs. [4.3-4.5] show slices in each observableO , holdingpjet
T fixed and integrating over

pext
T . As we will discuss later,pext

T enters the correction procedure when we adjust for
detector effects; its measurement is important for determining the effects of jets thatsmear
in from outside the acceptance. PYTHIA 6 (AMBT1) is compared to the measured data and
is not in good agreement, potentially leading to biases. These differences are accounted for
in Sec. 6, when we discuss systematic uncertainties.
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Figure 4.2: ThepT andη distributions for tracks used to calculate the UE observables. The
Monte Carlo is normalized to the data.
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Figure 4.3: The measuredΣpT distributions before any corrections are applied. The data
are compared to PYTHIA 6 (AMBT1). The ratio is shown in the bottom plot.
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Figure 4.4: The measuredNch distributions before any corrections are applied. The data
are compared to PYTHIA 6 (AMBT1). The ratio is shown in the bottom plot.
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Figure 4.5: The measured ¯pT distributions before any corrections are applied. The dataare
compared to PYTHIA 6 (AMBT1). The ratio is shown in the bottom plot.
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Chapter 5

Correcting the UE Distributions for
Detector Effects

As discussed in Sec.3.5, the ATLAS detector has finite momentum resolution and re-
construction inefficiencies for tracks and jets. Our goal isto provide distributions that can
be compared to predictions of Monte Carlo (MC) generators, without reference to any de-
tector. In this section, we outline the procedure for makingcorrections to the observed
distributions that will account for the detector effects. We label the desired distributions
generically asf true(~xtrue). We need to relate them to the measured quantitiesf reco(~xreco).
The equation governing the procedure is

f reco(~xreco) =
∫

R
(

~xtrue,~xreco) f true(~xtrue)d~xtrue (5.1)

where we have introduced the concept of the detectorresponse matrix R(~xtrue,~xreco). At
first glance, Eq. 5.1 defines a matrix equation that might be invertible. For reasons dis-
cussed below, matrix inversion is not the appropriate procedure to use.

The detector response is built using Monte Carlo that has undergone full detector sim-
ulation using the GEANT4 framework [23]. We have access to the true values of the dis-
tributions f true

MC (~xtrue), and the reconstructed distributionsf reco
MC (~xreco). This analysis uses

PYTHIA 6 (AMBT1) and the ATLAS simulation to determine the detectorresponse matrix.
Sixty-eight million events were generated inslices having specific cuts on truth jetpT for
efficient population of the highpT regions of phase space.

5.1 The Response Matrix

In the previous section, we introduced the response matrixR, encapsulating the detector
response to charged particles. To develop the concept and define the response matrix, it is
instructive to start with small, but real, examples. The first example starts with thetransfer
function for Nch (the track multiplicity in the transverse region.)
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We count the number of events (766387) where the transverse region has a single track
at the generator-level. In Table 5.1, we tabulate the numberof reconstructed events with 1
track in the transverse region (572545 events), 2 tracks (44749 events), and 3 tracks (6122
events). This corresponds to having 3 bins along theNreco

ch axis. This situation is also
depicted as a histogram in Fig. 5.1. If we divide this histogram by the total number of
events with a single track, as we have done in Fig. 5.2(a), we obtain the transfer function
for Ntrue

ch = 1. The total visible area in the histogram is the efficiency for an event with with
Ntrue

ch = 1 to be reconstructed with 1≤ Nreco
ch ≤ 3. We interpret the individual bin contents

of Fig. 5.2(a) as the probabilities that an event withNtrue
ch = 1 will be reconstructed as an

event withNreco
ch = 1, Nreco

ch = 2 andNreco
ch = 3, respectively.

We have defined the concept of the transfer function; it is a probability distribution
function of theNreco

ch spectrum corresponding to charged truth jets with specific cuts on
Ntrue

ch . Turning our focus back to Table 5.1, we look at the other rowscorresponding to
different values ofNtrue

ch . By dividing each row by the total number of corresponding events
(in the column labelledTOTAL), we have constructed a set of 4 transfer functions, each
having 3 bins. The results of this operation are tabulated inTable 5.2, and depicted as
histograms in Fig. 5.2. We use the nomenclatureRJ to denote theJth transfer function.
For each transfer functionRJ, we defineRJK to be the contents of itsKth bin. Note that
we have chosen 4 transfer functions with 3 bins; the number oftransfer functions need not
match the number of bins.RJK is one of the simplest examples of the response matrix,
with elements enclosed within the double lines in Table 5.2.The response matrix is often
referred to as the smearing matrix in the literature.

TOTAL Nreco
ch = 1 Nreco

ch = 2 Nreco
ch = 3

Ntrue
ch = 1 766387 572545 44749 6122

Ntrue
ch = 2 843600 236531 508282 53453

Ntrue
ch = 3 845925 69646 278381 417639

Ntrue
ch ≥ 4 4131439 29187 152576 468731

Table 5.1: Tabulated values of the example response matrix
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EFFICIENCY Nreco
ch = 1 Nreco

ch = 2 Nreco
ch = 3

Ntrue
ch = 1 0.813 0.747 0.058 0.008

Ntrue
ch = 2 0.946 0.280 0.603 0.063

Ntrue
ch = 3 0.905 0.082 0.329 0.494

Ntrue
ch ≥ 4 0.157 0.007 0.037 0.113

Table 5.2: Tabulated values of the example response matrix and efficiency calculations

We have shown a simple example of the response matrix. We are in a position to make
a more general definition. The example above used bins, whichalmost every analysis
would do, but we define the ”continuous” version of the response matrixR(~xtrue,~xreco) to
be the probability that an object with property~xtrue is reconstructed with property~xreco.
The reconstruction efficiencyε (~xtrue) is given by

ε
(

~xtrue)≡
∫

R
(

~xtrue,~xreco)d~xreco (5.2)

The entry corresponding toNtrue
ch ≥ 4 in Table 5.2 has a very low efficiency. This points

out a subtlety in the definition of efficiency. In our example,the efficiency accounts for
events reconstructed 1≤ Nreco

ch ≤ 3. If we had expanded the range forNreco
ch , we would have

a substantially larger efficiency for theNtrue
ch ≥ 4 bin. The definition of efficiency must also

specify a range of reconstruction values.
We have denoted the response matrix byR(~xtrue,~xreco), where the composite nature of

the quantity(ies) in question is emphasized using vector-like notation. The variables being
corrected are binned, leading to a modified nomenclatureRJK , whereJ refers to the bin(s)
containing the truth-level quantity, andK refers to the bin(s) containing the reconstructed
quantities. The response matrix is neither required to have(a) the same binning for truth
and reconstructed quantities, nor (b) an equal number of bins for truth and reconstructed
quantities. The unfolding algorithm constructs one large,flat vector out of the multiple
binned variables, for both truth and reconstructed levels,thereby rendering the response
matrix a 2-dimensional matrix. We relax the nomenclature toR jk, without any loss of
generality. The efficiency assumes the form:

ε j ≡ ΣkR jk (5.3)

To make contact with some of the definitions used in the literature [40], which charac-
terize the procedure using ”Bayesian terminology”, the response matrix isP(EK |CJ). The
response matrix is the probability that theJth cause (generator-level object) gave rise to the
Kth effect (reconstructed object).
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5.1.1 Construction of the Response Matrix

For each of the UE observables (O = ΣpT , Nch and p̄T ), a separate response matrix is
created using full GEANT4-simulated PYTHIA 6 (AMBT1). The ”ΣpT ” response matrix
maps three variables (pjet

T , pext
T , ΣpT ) against the same set of corresponding reconstructed

values, wherepjet
T is the transverse momentum of the hardest jet with|η| ≤ 1.5 andpext

T is
the transverse momentum of the hardest jet with|η| ≥ 1.5. The construction procedure of
the response matrices process forNch and p̄T is analogous to that ofΣpT .

The response matrices are constructed for each observableO , as follows.

• Events are accepted if there exists at least one charged truth jet (with pT ≥ 1 GeV
and|η| ≤ 1.5), and at least one accepted charged particle jet with the same kinematic
acceptance.

– If the event satisfies the truth-level acceptance criteria,but has no charged par-
ticle jet inside the acceptance, the event is recorded as lost due to efficiency.
Dedicated bins in the response matrix retain efficiency information.

– Events with at least one accepted charged particle jet, but no charged truth jets,
are not accounted for in the response matrix. This situationis treated as a
systematic uncertainty in Section 6.

• The truth level UE observableO true in the TRANSVERSE region is calculated using
charged primary particles, withpT ≥ 0.5, |η| ≤ 1.5 andπ/3 ≤ |φ − φ0| ≤ 2π/3,
whereφ0 is the azimuth of the leading truth jet. If there are no particles for calculating
O , ΣpT ≡ Nch ≡ p̄T ≡ 0.

• The measured UE observableO reco in the TRANSVERSE region is calculated using
reconstructed tracks, withpT ≥ 0.5, |η| ≤ 1.5 andπ/3 ≤ |φ − φ0| ≤ 2π/3, where
φ0 is the azimuth of the leading track jet. If there are no tracksfor calculatingO ,
ΣpT ≡ Nch ≡ p̄T ≡ 0.

• pext,true
T is the transverse momentum of the hardest charged truth jet with |η| ≥ 1.5.

If no such jet exists,pext
T ≡ 0.

• pext,reco
T is the transverse momentum of the hardest track jets with|η| ≥ 1.5. If no

such jet exists,pext
T ≡ 0.

• The values(pjet
T , pext

T ,O)true are recorded with(pjet
T , pext

T ,O)reco.

5.1.2 Purity and Stability

The response matrix is often characterized with two figures of merit, purity andsta-
bility. To develop these concepts in the context of our current analysis, we turn our



5.1 The Response Matrix 35

focus back to the simple example response matrix from the previous section. Look-
ing at the 766387 events with a single track (at generator level) in theTRANSVERSE

region, we see that 572545 are reconstructed with a single track, 44749 are recon-
structed with 2 tracks, 6122 are reconstructed with 3 tracks, and so on. The prob-
abilities of reconstruction into theNreco

ch = {1,2,3} bins are{0.747,0.058,0.008},
respectively, with an efficiency equal to 0.813. We see that events with a single truth
particle have a high probability to be reconstructed into a single bin, in this case it is
the bin corresponding toNreco

ch = 1. This is an example of high stability. Stability is
the maximum probability that events originating in one bin are reconstructed into a
single bin. The working definition of stability only concerns itself with reconstructed
events, so we divide by the efficiency. The stability of thej-th truth bin is

stabilityj

(

j = 1,2, · · · ,Ntrue
bins

)

≡ max
{

R jk
}(

k = 1,2, · · · ,Nreco
bins

)

∑
Nreco

bins
k=1 R jk

(5.4)

=
max

{

R jk
}(

k = 1,2, · · · ,Nreco
bins

)

ε j

In our example, the ”Ntrue
ch = 1” bin has a stability equal to 0.747 / 0.813 = 0.918.

The concept of purity complements stability. Purity is the maximum probability that
objects reconstructed in a bin originated in asingle bin at truth level. In our example
(see Table 5.3), we see that of the 946690 events that were reconstructed with 3
tracks in theTRANSVERSE region, 745 originated as events with no truth particles,
6122 originated as events with a single truth particle, and so on. Scanning down the
column corresponding toNreco

ch = 3 we have an exhaustive list of possible origins for
any event. An important subtlety in the construction of the response matrix is that
every reconstructed object must have originated in exactlyone truth bin.

The definition for the purity of thek-th reconstructed bin, as used in this analysis, is

purityk {k = 1,2, · · · ,Nreco
bins} ≡

max
(

R jk
)(

j = 1,2, · · · ,Ntrue
bins

)

∑
Ntrue

bins
j=1 R jk

(5.5)

Applying Eqn. 5.5, the purity for the bin corresponding toNreco
ch = 3 is 0.495.

High stability is desirable, usually indicating a sharp detector response. High stability
can also be achieved by making larger bins. Low stability indicates that the resolution
of the truth objects is wide, smeared out across more than onebin. In practice, as it
relates to the Bayesian Iterative Unfolding algorithm, higher stabilities are desirable
in the regions of low statistics. Lower stability values in regions with high statistics
will not significantly affect the results, but one must exercise caution to quantify the
size of the effect. We have verified this is the case for our analysis. In regions of
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Nreco
ch = 1 Nreco

ch = 2 Nreco
ch = 3 STABILITY

Ntrue
ch = 0 26666 2833 745 -

Ntrue
ch = 1 572545 44749 6122 0.918

Ntrue
ch = 2 236531 508282 53453 0.637

Ntrue
ch = 3 69646 278381 417639 0.545

Ntrue
ch ≥ 4 29187 152576 468731 0.721

purity 0.613 0.515 0.495

Table 5.3: Purity and stability for the example response matrix

low statistics, large statistical fluctuations tend to couple into neighboring bins. The
extent of the coupling depends on the stability - high stability keeps the correlations
between neighboring bins low. We chose the bin sizes to balance between reasonable
stability and good resolution; the emphasis is on keeping the bin widths small for
better resolution. Fig. 5.3 (5.4) shows the stability (purity) for pjet

T , ΣpT , Nch, andp̄T .

5.2 Bayesian Iterative Unfolding with RooUnfold

The RooUnfold framework [41] implements an iterative algorithm proposed in [40],
based on Bayes’ Theorem in the following form:

P
(

C j|Ek
)

=
P
(

Ek|C j
)

P
(

C j
)

∑nc
j=1 P

(

Ek|C j
)

P
(

C j
) (5.6)

whereP
(

C j
)

is the probability of thejth cause,P
(

Ek|C j
)

is the conditional proba-
bility of the jth cause to produce thekth effect, andP

(

C j|Ek
)

is the probability that
thekth effect was due to thejth cause. Translating into our formalism:

P
(

C j|Ek
)

=
y jR jk

∑k y jR jk
(5.7)

whereyk denotes the content of thek-th truth bin. The algorithm starts by using an
initial distribution (prior) as an estimate of the final distribution (posterior). We use
the relevant PYTHIA 6 (AMBT1) distribution as the prior for the first iteration, from
which the algorithm produces an improved estimate of the final distribution. Each
subsequent iteration processes the output distribution ofthe previous iteration, to pro-
duce yet another improved estimate. Since each iteration uses Bayes’ Theorem in an
intermediate step, the algorithm is often referred to as Bayesian Iterative Unfolding.
We continue the process of iteration until the output has stabilized, at which point
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Figure 5.3: The stability for PYTHIA 6 (AMBT1)

we stop. It is important not to perform excessive iterationsafter the output has sta-
bilized, for reasons we will discuss shortly. We characterize stabilization by visually
examining theχ2 between the prior and posterior distributions of each iteration. Our
decision to use 4 iterations for each of the UE observables was based on observing
the behavior on Monte Carlo distributions.

The difference between stabilization and convergence is a very important distinction,
and a topic in the theory ofregularization in unfolding methods [42, 43, 44]. The
salient point is that if we allow the solution to converge, itstarts to track the statisti-
cal fluctuations in the input distribution, producing unphysical ripples in the output.
Stability plays a role in controlling these ripples. The problem with these ripples is
that, from a mathematical viewpoint, they are the correct solution. We want to iterate
the solution until the large scale structure is resolved (the basic form of the curves),
and stop before we track the fine scale structure (the statistical fluctuations). Differ-
ent number of iterations give different results, leading toan uncertainty in the final
answers. We account for this uncertainty in Section 6.2.

It is outside the scope of this work to delve into the theoretical details of the al-
gorithm. We describe the mechanical aspects of the algorithm as it pertains to the
current analysis, and how it uses the response matrixR to perform the unfolding.
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Figure 5.4: The purity for PYTHIA 6 (AMBT1)

1. Let p0 ≡ (p1, p2, · · · , pM) be an initial set of probabilities (derived from the
input spectrum, or even a constant value) for an event to be found in each bin,
andntot = ∑i ni be the total number of entries.

2. Define

µ̂0 ≡ ntotp0 (5.8)

3. Update to a new valueµ, using the response matrixR in indexed formR jk. This
step is motivated by Eqn. 5.6.

µ̂i =
1
εi

N

∑
j=1

(

Ri j pi

∑k Rk j pk

)

n j (5.9)

4. Form new probabilitiesp

pk =
µ̂k

ntot
(5.10)

5. Iterate steps 3 and 4 on Monte Carlo, until the change inχ2 between iterations
indicates the distribution has stabilized, and before the unfolded distributions



5.3 Validation of the Unfolding Procedure 39

start to track the statistical fluctuations from the input. The same number of
iterationsNiter is used when unfolding data. This analysis usesNiter = 4, as
described earlier in this section.

5.3 Validation of the Unfolding Procedure

To characterize the unfolding process, we performclosure tests using full GEANT4
simulation PYTHIA 6 (MC09) [17] as a control sample. We apply the unfolding techniques
described in Sec. 5.2 to unfold the PYTHIA 6 (MC09) control sample and compare the
results to the known truth values. The response matrix is used to unfold the control sample
distributions and calculate the mean values as functions ofpjet

T .
We quantify the closure tests by taking the ratio of the mean values of the corrected

distributions to the true mean values. A value of 1.0 indicates total closure - indicating
the corrected and true values agree perfectly. The closure tests for the mean values of the
UE observables are shown in Fig. [5.5], indicating a 1% performance level for the mean
values of the UE observables forpjet

T ≤ 50GeV. The ¯pT closure tests degrade to the 3%

level abovepjet
T ≥ 50GeV, albeit with a large statistical uncertainty.

These tests confirm that the correction procedure works as intended. We return to the
closure test performance in Chapter 6, when we analyze systematic uncertainties.
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(b) Nch in theTRANSVERSEregion
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Figure 5.5: The closure tests for the mean values of the UE observables, as a function of
pjet

T . Error bars reflect statistical uncertainties.

5.4 Corrected Distributions

The output of the correction process is a set of 3D histogramscontaining the final
distributions ofpjet

T , pext
T andO . The final form of thepext

T spectrum does not interest us,
so we integrate over it, essentially projecting it onto the remaining axes. The results of
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this projection are 2D histograms (O vs pjet
T ). The information in these histograms is best

rendered as slices in theO variable (projections along y-axis), holdingpjet
T fixed along the

x-axis (Figs.[5.6-5.8]). The data are compared to PYTHIA (Z1) and PYTHIA (AUET2B).
The agreement is good, but PYTHIA (Z1) reproduces the data distributions better than the
AUET2B tune.
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Figure 5.6: The correctedΣpT distributions
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Figure 5.7: The correctedNch distributions
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Figure 5.8: The corrected ¯pT distributions
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5.4.1 Mean Values of Corrected Distributions

As pointed out in the previous section, the output of the correction process is a his-
togram, with binned contents. It is straightforward to taking the binned mean value, defined
in Eqn. 5.11,

µbinned=
∑N

k=1 nkxk

∑N
k=1 nk

(5.11)

but potentially misleading if interpreted as the true mean value of the distribution defined
in Eqn. 5.12.

µtrue =

∫ ∞
0 x n(x) dx
∫ ∞

0 n(x) dx
(5.12)

If the bins are sufficiently small, the difference between the binned mean and true mean
values is small, and the uncertainty in the (true) mean valueassociated with finite bin widths
is negligible. The available statistics for this analysis preclude small bins at highpT and/or
large values of the UE observables; we compensate with larger bins. Fortunately, we can
use cubic splines to correct for the bias due to large bin widths. Fitting a cubic spline
to the cumulative distributions, not the actual distributions, is a well-defined process. In
calculating the mean value of the distribution, the integral of the distribution is more useful
than the actual distribution itself. This is outlined in detail in Appendix B, OnlyΣpT and
Nch require correction; ¯pT is sufficiently finely binned and doesn’t require the spline-based
corrections.

Figs. [5.9-5.11] show the mean values of the corrected distributions ofΣpT , Nch, and
p̄T , obtained using the spline-based approach for removing thebias due to large bin widths.
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Figure 5.9: The mean values of the correctedΣpT distributions, as functions ofpjet
T , are

compared to Monte Carlo. The error bars indicate the statistical uncertainty; the shaded
area shows the combined statistical and systematic uncertainties.
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The data are compared to PYTHIA (Z1) and PYTHIA (AUET2B). The agreement is
good, but PYTHIA (Z1) reproduces the data distributions better than the AUET2B tune.
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Figure 5.10: The mean values of the correctedNch distributions, as functions ofpjet
T , are

compared to Monte Carlo. The error bars indicate the statistical uncertainty; the shaded
area shows the combined statistical and systematic uncertainties.
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Figure 5.11: The mean values of the corrected ¯pT distributions, as functions ofpjet
T , are

compared to Monte Carlo. The error bars indicate the statistical uncertainty; the shaded
area shows the combined statistical and systematic uncertainties.
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Chapter 6

Uncertainty Analysis

Table 6.1: The systematic uncertainties associated with measurement of the mean values
of ΣpT , Nch and p̄T .

Relative Systematic Uncertainties
source ΣpT Nch p̄T

Track Reconstruction 2.3% 2.1% 0.2%
Unfolding 1.5%-6% 1.5%-4% 1%-4%

Response Matrix 0.5%-1% 0.5%-1% 0.5%-1%
Lead Jet Misidentification ≤ 1% ≤ 1% ≤ 1%

Discretization Effects ≤ 0.5% ≤ 0.5% ≤ 0.5%
Dependence on Number of Iterations ≤ 0.5% ≤ 0.5% ≤ 0.5%

Total 2.9%-6.5% 2.7%-4.6% 1.3%-4.1%

Table 6.1 summarizes the systematic uncertainties associated with the measurement of
the UE distributions. In this section, we discuss each of these sources of uncertainty, which
are

1. Track Reconstruction - the effects of imperfect efficiency and momentum resolution

2. Uncertainty in the Unfolding Procedure - potential bias from the unfolding procedure

3. Sensitivity to the Response Matrix - potential bias due todifferences in distributions
between the data and MC used to build the response matrix

4. Misidentification of the Leading Jet - the leading jet corresponds to a subleading jet

5. Discretization Effects - large bin widths introduce a potential bias in the mean values

6. Dependence on Number of Iterations - the optimal number ofiterations used in the
unfolding procedure
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6.1 Track Reconstruction

6.1.1 Track Momentum Resolution

The momentum resolution uncertainty was studied in detail [37]. We assess the induced
uncertainty in the baseline measurements, due to the uncertainty in track momentum res-
olution, by smearing the track momentum [45]. The momentum resolution for the tracks
in our sample is excellent; the track momentum resolution uncertainty induces a negligible
uncertainty in our measurement (≤ 0.1% for pjet

T ≤ 20 GeV and≤ 0.5% for pjet
T ≥ 20 GeV.)

6.1.2 Tracking Efficiency

Because the ID has substantial material, charged particlescan be lost due to hadronic
interactions. Uncertainties in the ID material budget [37]result in an uncertainty in the
track reconstruction efficiency, which propagate into our measurements. The uncertainties
in the tracking efficiency are approximately 2% for|η| ≤ 1.3, 3% for 1.3≤ |η| ≤ 1.9, 4%
for 1.9≤ |η| ≤ 2.3 and rises to 7% for 2.3≤ |η| ≤ 2.5 [46] for tracks withpT ≥ 0.5GeV
[37, 47].

We propagate the uncertainties in the track reconstructionefficiency into an uncertainty
in the measurement of the underlying event as follows:

1. For each track in theTRANSVERSE regions, generate a uniform random numberx
between 0 and 1.

2. If the track has|η| ≤ 1.3, retain it if 0.98≤ x. Otherwise, the track is discarded.

3. If the track has 1.3≤ |η| ≤ 1.5, retain it if 0.97≤ x. Otherwise, the track is discarded.

4. Perform a measurement of the UE observables using the retained reconstructed tracks
from the previous steps.

5. Unfold the measurement in (4) using the baseline responsematrix.

6. Compare the results of the unfolding procedure in the previous step to the baseline
measurement.

7. The relative deviation from the baseline is taken as the uncertainty in the measure-
ment

The method of discarding tracks to simulate a different tracking efficiency only works
for a lower efficiency; it will not work for a higher efficiency. The propagated uncertainties
are relatively small; we symmetrize the uncertainty due to tracking efficiency.

Fig. [ 6.1] shows the uncertainties inΣpT , Nch and p̄T due to uncertainties in the
tracking efficiency. The uncertainties inΣpT andNch are generally between 2% to 3%; for
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p̄T , the uncertainties are much lower (< 0.5%), as the uncertainties factor out in the ratio
ΣpT / Nch. We assess the final systematic uncertainty by performing a fit to aconstant value
throughout the entirepT range, to compensate for the loss in statistical power at high pjet

T .
The final values assessed for the uncertainties are denoted by the dotted lines.

Figs. [6.9 - 6.14] show the uncertainty for the individual bins of pjet
T andO . We point

out the contribution from the uncertainty in the tracking efficiency to the uncertainty in
the calculation of the mean values of the UE, may be substantially smaller than those of
the individual bins. This effect is due to the high correlation in the uncertainties in the
individual bins; high upward fluctuations in some bins guarantee a downward fluctuation
in others. Fig. [6.2] illustrates the correlation in the uncertainties in the individual bins.
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represent the baseline measurement. The red points represent the measurement, propagat-
ing the uncertainty in the tracking efficiency. The verticallines depict the mean values of
the respective distributions.

6.2 Uncertainty in the Unfolding Procedure

6.2.1 Unfolding Uncertainty for Individual Bins of pjet
T and O

The closure test for a single bin inpT andO , where the valueNtruth is expected, is the
value

Ncorrected

Ntruth
(6.1)

The unfolding process provides an excellent, but not perfect, description of the true
physics distributions. In this section, we describe how accurately we can expect the unfold-
ing to predict the truepjet

T andO distributions. We saw in Section 5.3 that the unfolding
process reproduces the mean values of the UE observables within a few percent, with the
uncertainties on individual bins ofpjet

T andO somewhat higher. To estimate how well the
unfolding procedure works on the data, we should use Monte Carlo control samples that
resemble the data, in both the physics distributions and statistics. Since the MC and data
are not in agreement with respect to the jetpT and UE observables, we reweight the MC to
reproduce the data. We compensate for the the lack of statistics using the bootstrap method
[48] to increase the statistical power of the MC. The definitions of the variables and details
of this process follow:
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1. NMC andNDATA are the numbers of events in the MC and data, respectively.

2. HDATA(pjet
T ,O ) is the unfolded data distribution of trackpjet

T andO , represented by
a 2D-histogram.

3. HMC(pjet
T ,O) is the truth MC distribution of charged truthpjet

T andO , represented by
a 2D-histogram.

4. For each event,ω0 is a random number drawn from a Poisson distribution with mean
µ = NDATA

NMC
.

5. H0(pjet
T ,O)≡ HDATA

HMC

NMC
NDATA

is the weighting 2D-histogram.

6. For each MC event, the leading charged truthpjet
T andO are used to index the weight

ω1 from H0.

7. The same weightω ≡ ω0×ω1 is applied to the event at generator and reconstructed
levels, when constructing newO vs pjet

T histograms.

After reweighting the Monte Carlo control sample to reproduce thepjet
T andO distri-

butions, there may exist residual differences between the data and MC. For example, the
topological distribution of tracks inside theTRANSVERSEregion will differ for the Monte
Carlo and the data. The tracks in the data may be more uniformly distributed in theTRANS-
VERSE region, whereas the Monte Carlo may exhibit ”clumpiness”. Another example is
the subleadingpjet

T distribution. A control sample with a harder subleadingpjet
T distribution

will have a higher likelihood of erroneously promoting the subleading jet to the leading jet,
due to track jetpT resolution. These differences introduce a potential bias in the unfolding
procedure.

In general, as we repeat the closure tests using different MC, with closure testx, we
would obtain a collectionF of closure tests. The mean value (µF ) of F is the bias in the
unfolding procedure. The RMS (σF ) of F is the dispersion in the closure tests. The total
uncertainty in the unfolding procedure is given by

σtot ≡ µF ⊕σF ≡
√

µ2
F +σ2

F (6.2)

The uncertainty is calculated as follows, usingΣpT as an example. The analogous proce-
dures forNch and p̄T are otherwise identical.

• For each MC and (pjet
T , ΣpT ) bin, N0 is the expected (generator-level) value andN

is the corrected value.

• Form the sumω̄ ≡ ∑MC 1/
(

σMC
S

)2
, whereσMC

S is the statistical uncertainty in the
unfolding procedure of each MC.
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• ω is a weight formed from the statistical uncertainty (σMC
S ) in the unfolding proce-

dure.ω ≡ 1/
(

(

σ MC
S

)2 ω̄
)

.

• ρ ≡ N/N0 is the closure test.

• µC is the weighted mean of the closure tests.µC ≡ ∑i ωiρi/∑i ωi

• βC is the bias≡ |µC −1|.

• σC is the weighted RMS of the closure tests.σ2
C ≡ ∑i ωi

(∑i ωi)
2−∑i ω2

i
∑i ωi (ρi −µC)

2.

We have four fully simulated Monte Carlo control samples available - PYTHIA (6) with
MC09, AMBT1 and Perugia2010 tunes, and PYTHIA (8.145) with the 4C tune. To illus-
trate the procedure for evaluation of this uncertainty, Fig. 6.3 compares the unfolded and
generator-level spectra ofΣpT for 11 GeV≤ pjet

T ≤ 14 GeV, obtained by reweighting the
control samples to reproduce the data.

0 2 4 6 8 10 12

N
um

be
r 

O
f E

ve
nt

s 
pe

r 
G

eV

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
generator truth

 (AMBT1)PYTHIA

 (MC09)PYTHIA

 (Perugia2010)PYTHIA

 8.145 (4C)PYTHIA

unfolded
 (AMBT1)PYTHIA

 (MC09)PYTHIA

 (Perugia2010)PYTHIA

 8.145 (4C)PYTHIA

 14 GeV≤ jet
T

p ≤11 GeV 

 [GeV]
T

pΣ
0 2 4 6 8 10 12

C
lo

su
re

 T
es

t

0.8

1

1.2

Figure 6.3: The spectra ofΣpT corresponding to 11 GeV≤ pjet
T ≤ 14 GeV, for different

Monte Carlo control samples. The bottom plot shows the ratioof the unfolded values to
the generator-level (truth) values.

As an example, we will work out the detailed calculation of the uncertainty for one
bin, corresponding to 3 GeV≤ ΣpT ≤ 4 GeV (hatched region in Fig. 6.3). The expected
(generator-level) and corrected (unfolded) values are tabulated in Table [6.2], along with
the numbers of merit used to calculate the uncertainty. The uncertainty for this bin can be
seen as the large red star in Fig. 6.4, along with the uncertainties for the other bins in Fig.
6.3.



6.2 Uncertainty in the Unfolding Procedure 52

Control Sample Expected Unfolded Closure Test Weight
N0 N ±σS x ω

PYTHIA 6 (AMBT1) 20438 20349± 332 0.996 0.151
PYTHIA 6 (MC09) 20701 20548± 180 0.993 0.515

PYTHIA 8 19267 18980± 382 0.985 0.114
PYTHIA 6 (Perugia 2010) 26227 25752± 276 0.982 0.220

Property Value
bias -0.010
RMS 0.006

bias⊕ RMS 0.012

Table 6.2: Example calculation of unfolding uncertainty

We must discuss another important effect before finalizing the calculation of the unfold-
ing uncertainty. The unfolding uncertainty has a statistical component which can be large,
especially in regions with low statistics. The effects of a large statistical component of the
unfolding uncertainty can be seen in Fig. 6.5, where we plot the unfolding uncertainty for
3GeV≤ ΣpT ≤ 4GeV, as a function ofpjet

T . The black points show the uncertainties (with
error bars), as just discussed in the text. The red points arethe statistical uncertainty taken
directly from the unfolding algorithm. We can see that the statistical uncertainty strongly
influences the calculations of the unfolding uncertainty. To avoid overestimation of the sta-
tistical uncertainty in our final measurements, we must properly remove this component.
Assuming the resolution ofΣpT in the TRANSVERSE region is independent ofpjet

T
1 , we

harness the power of high statistics in the lowerpjet
T regions by fitting to a constant value

for the unfolding uncertainty for each bin inΣpT . The results can be seen in Fig. 6.5. The
numbers from the yellow band comprise the curves labelled ”unfolding” in Figs.[ 6.9 -
6.14].

1Whereas the mean values of theΣpT andpjet
T distributions are correlated, the resolution of each variable

is not because they are in different regions of the detector.
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Figure 6.4: The uncertainty in theΣpT spectra corresponding to 24 GeV≤ pjet
T ≤ 31 GeV.

The red star indicates the uncertainty discussed and calculated in the text, as an example.
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We have just prescribed a method for evaluating the uncertainty in the number of events
in any bin for pjet

T andΣpT . For the mean values of theΣpT Nch and p̄T distributions,

as functions ofpjet
T , we take an analogous approach to assessing the uncertaintyin the

unfolding procedure. The number of events in a bin is replaced with the mean value of the
spectrum.

6.2.2 Unfolding Uncertainty in the Mean Values ofO

We calculate the unfolding uncertainty in the mean value calculations much in the same
manner as for the individual bins. Due to a high degree of correlation in the uncertainties
between the individual bins ofpjet

T andO , we obtain a better estimate in the uncertainty in
the mean value by examining it directly, not simply propagating the individual bin uncer-
tainties through Eqn. 5.11.

The uncertainty is calculated as follows, usingΣpT as an example. The analogous
procedures forNch and p̄T are otherwise identical.

• For each control sample and (pjet
T , ΣpT ) bin, µ0 is the expected (generator-level)

value andµ is the corrected value.

• Form the sumω̄ ≡ ∑MC 1/
(

σMC
S

)2
, whereσMC

S is the statistical uncertainty in the
unfolding procedure of each MC.

• ω is a weight formed from the statistical uncertainty (σMC
S ) in the unfolding proce-

dure.ω ≡ 1/
(

(

σ MC
S

)2 ω̄
)

.

• ρ ≡ µ/µ0 is the closure test.

• µC is the weighted mean of the closure tests.µC ≡ ∑i ωiρi/∑i ωi

• βC is the bias≡ |µC −1|.

• σC is the weighted RMS of the closure tests.σ2
C ≡ ∑i ωi

(∑i ωi)
2−∑i ω2

i
∑i ωi (ρi −µC)

2.

6.3 Sensitivity to the Response Matrix

The baseline response matrix was constructed using PYTHIA 6 (AMBT1), which has
different pjet

T andO distributions than the data. These differences lead to a potential bias
in the measurement. We estimate the size of this bias by constructing an alternate response
matrix, formed from PYTHIA 6 (AMBT1) which has been reweighted to reproduce the
corrected distributions from data.

Reweighting the Monte Carlo used to construct the response matrix closes the differ-
ences between it and the data. Residual differences contribute second order effects. Using
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the reweighted response matrix to perform the correction procedure, we calculate the final
distributions we would obtain were the Monte Carlo were in excellent agreement with the
data.

The results from this reweighted unfolding is compared to the baseline measurement,
and the difference is interpreted as the bias. Fig. [6.6] compares the baseline measurements
(black circles) to those made by unfolding theO distributions with the reweighted response
matrix (red circles.) The ratio is shown at the bottom of eachplot; the yellow band denotes
the small assessed uncertainties (O (0.5%) for 5 GeV≤ pjet

T .) The lowestpjet
T = 4 GeV bin

is slightly higher - 1%.
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Figure 6.6: The mean values of the unfolded UE distributions. The baseline measurements
(black points) are compared to the measurements (red circles) made using a response matrix
constructed from PYTHIA 6 (AMBT1) that has been reweighted to reproduce the unfolded
pjet

T andO . The ratio is shown in the bottom plot. The yelllow band indicates the assessed
uncertainty.

6.4 Statistical Uncertainty in the Response Matrix

The response matrix was constructed using PYTHIA 6 (AMBT1) with high statistics.
Since the MC was generated with specific cuts on truth jetpT, the high regimepT (20GeV≤
pjet

T ) has a very high population, much higher than the data. For truth jetpT ' 20GeV, how-
ever, the situation is reversed; the data has a higher population (approximately 2×) than the
MC. We explore the effects of statistical uncertainty in theresponse matrix by using the
bootstrap [48] method to form statistical perturbations of the baseline response matrix. We
compare the baseline measurements to the results of the unfolding procedure using these
alternate response matrices. The RMS width of the resultingspectrum of measurements is
the associated uncertainty, and is negligibly less than 0.1%.
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6.5 Misidentification of the Leading Jet

Due to track jet reconstruction efficiency andpT resolution, the leading track jet may
be matched to a non-leading charged truth jet. As a result, the direction of the UE will be
incorrectly specified, leading to an uncertainty in the measurement of the UE observables.

The rate at which the leading charged truth jet fails reconstruction as the leading track
jet is encoded in thepT distributions of the leading (pjet

T ) and subleading jets (psub
T )

. As an example, assume the leading jet spectrum between two Monte Carlo (MCA and
MCB) samples were identical, but MCA has a harderpsub

T distribution. Because of thepjet
T

transfer function, the subleading jet from MCA is more likely to reconstruct as the leading
jet, potentially confusing the true direction of the underlying event. However, if the leading
and subleading jets were perfectly back-to-back (∆φ = π), then the misidentification would
have no effect on theTRANSVERSEregion because of symmetry. The∆φ spectrum between
the leading and subleading jet captures the effects of leading jet misidentification (jet swap).

In principle, we would consider thepT and∆φ spectrum of all the jets. Due to the avail-
able statistics, we only consider the first subleading jet. The steeply falling jet multiplicity
curve indicates consideration of subsubleading jets wouldprovide 2nd order corrections.

Due to differences in thepjet
T , psub

T and ∆φ distributions between the data and the
PYTHIA 6 (AMBT1) used to construct the response matrix, the correction procedure may
introduce a potential bias. The strategy taken to evaluate the bias due to jet swap is to create
an alternate response matrix, where PYTHIA 6 (AMBT1) has been reweighted to reproduce
the datapjet

T psub
T and∆φ distributions. The baseline measurements are compared to those

obtained using the reweighted response matrix. The relative deviation is taken as the bias
due to jet swap.

The procedure forΣpT is as follows; the treatment ofNch and p̄T is identical.

1. Create a new response matrix to unfold in four variables -pT of the leading and subleading
jets, ∆φ andΣpT . Events with only one jet are assignedpT ≡ 0 for the subleading jet and
∆φ ≡ 0.

2. Unfold data using the new response matrix to obtain truth level distribution of the unfolded

variables≡ F0
DATA

(

pjet
T , psub

T ,∆φ ,ΣpT

)

.

3. Derive the equivalent distributionF0
MC

(

pjet
T , psub

T ,∆φ ,ΣpT

)

from Pythia 6 (AMBT1) truth.

4. NormalizeF0
DATA andF0

MC to unity when integrated over all variables, and form the weight
ω ≡ F0

DATA/F0
MC.

5. Reweight PYTHIA 6 (AMBT1) by ω .

6. Create another (reweighted) response matrix using the reweighted PYTHIA 6 (AMBT1).

7. Use the reweighted response matrix to unfold data to obtain the next approximation to the

correct distribution≡ F1
DATA

(

pjet
T , psub

T ,∆φ ,ΣpT

)

.
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8. UseF1
DATA

(

pjet
T , psub

T ,∆φ ,ΣpT

)

to plot the distributions ofΣpT as functions ofpjet
T .

9. Plot the mean values ofΣpT as a function ofpjet
T .

10. Interpret the ratio of the baseline measurement to the mean values in the previous step, as the
induced bias.

Steps (1) - (2), in principle, provide a central value that can be used to estimate the
bias. Steps (3) - (8) attempt to correct for (a) insufficient MC statistics and (b) technical
complications (memory limitations) using the RooUnfold package and ROOT, forcing us
to use different binning than the baseline measurement in this analysis.

6.6 Discretization Effects

Sec. 5.4.1 discussed the issues of obtaining an unbiased mean value of a distribution,
when calculating the mean values using a histogram with binned contents. ForΣpT and
Nch, a correction for the bias was made using cubic splines. Fig.[ 6.7] indicates the level
of performance of these methods. By sampling various Monte Carlo samples (Pythia 6
with Z1, AMBT1, MC09, Perugia2011 tunes, Pythia 8, and Herwig ++ with UE7-2 tune),
making the spline corrections (to the binned distributions) and comparing the results to
the true (unbinned) mean values, we obtain a distribution ofthe performance index (ratio
of corrected to truth) of the spline-based methods. The solid red lines indicate the mean
values of the distribution (not the baseline measurement of this analysis); the yellow bands
indicate the RMS. We take the RMS value as the uncertainty dueto discretization effects
for ΣpT andNch. The uncertainty is negligible for low track jetpT and rises to 0.3% - 0.5%
at highpT. The splines definitely help to correct the bias due to discretization effects, as can
be seen by comparing Fig. 6.7(a) to Fig. 6.7(b), and comparing Fig. 6.7(c) to Fig. 6.7(d).

For p̄T , no spline-based corrections were made as the binning bias was seen to be
negligible. The binning allows an accurateO (0.1%) calculation of the mean value (See
Fig. [6.7(e)].)
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Figure 6.7: The ratios of calculated (binned or spline-based) mean value to the true mean
value in theTRANSVERSEregion. The results for various Monte Carlo samples and all jet
radii are plotted together to form a scatter plot of the ratios. The red line represents the
mean value of the dispersion of points; the yellow band represents 1 standard deviation.
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6.7 Dependence on Number of Iterations

We use the Bayesian Iterative Unfolding algorithm to calculate the truepjet
T and UE

distributions, from the observed data and the response matrix. Sec. 5.2 discussed using 4
iterations in the algorithm to obtain the central values, a choice motivated by the perfor-
mance of the closure tests andχ2 values between iterations. We have no reliable method of
determining the optimal number(s) of iterations. To determine the size of the uncertainty
associated with this ambiguity, we repeat the analysis using different numbers of iterations,
yielding a spectrum of measurements, We interpret the unweighted2 RMS (cf. Eqn. 6.4)
of these measurements as the uncertainty.

x̄ =
1
N

iter=8

∑
iter=4

xiter (6.3)

σ2 =
1

N −1

iter=8

∑
iter=4

(xiter − x̄)2 (6.4)

where N = 5 (iterations = 4, 5, 6, 7, 8).
Fig. [6.8] shows the mean values of the UE distributions using different numbers of

iterations. The bottom plot shows the (relative) difference between the mean value for
each iteration number and the baseline mean value. the yellow band denotes the RMS
width. We assess the uncertainty due to the choice of number of iterations as 0.5%, a small
contribution.

6.8 Statistical Uncertainties

The statistical uncertainty in the measurement is providedby the RooUnfold package.
This uncertainty is propagated through the unfolding procedure as outlined in [40, 49]. The
statistical uncertainties in the measurements of the individual bins ofO vs pjet

T are shown
in Figs.[ 6.9 - 6.14].

As a cross check of the reported statistical uncertainty in the measurement, we used the
bootstrap method to derive statistical perturbations of the (measured) data distributions, and
unfolded them to give a spectrum of corrected distributions. We compared the dispersion
(width) of the spectrum to the statistical uncertainties reported by RooUnfold. On average,
RooUnfold gave uncertainties approximately 2% higher thanour results. We report the
errors given by RooUnfold.

2Since each point has approximately equal weight, namely itsstatistical uncertainty, the difference be-
tween weighted and unweighted RMS is not important.
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Figure 6.8: The mean values ofΣpT as a function of track jetpT, using different number of
iterations for the unfolding algorithm. The bottom plot shows the ratio of the measurements
to the baseline measurement. The width of the yellow band is the dispersion (RMS) of the
different measurements relative to the baseline.

6.9 Summary of Total Systematic Uncertainties

We have discussed the different sources of the systematic uncertainties and estimated
their sizes. We add each of the sources in quadrature (cf. Eqn. 6.5).

σ2
tot ≡ ∑

k

σ2
k (6.5)

The uncertainties for the individual bins ofO andpjet
T are shown in Figs.[ 6.9-6.12].

6.10 Consistency Checks - Refolding the Distributions

Closure tests on fully simulated Monte Carlo control samples are extremely important.
Knowledge of the truth distributions allows us to calibrateour expectations of the unfolding
procedure. We do not have the luxury of this knowledge for thedata, but we can perform
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some consistency checks that increase confidence in our results. The concept is simple;
we refold (See Eqn. 6.6) the unfolded data with the response matrix, and compare to the
measured distributions.

The refolding procedure is defined as follows:

yreco
k =

Ntrue
bins

∑
j

R jkytrue
j (6.6)

whereyreco andytrue are the observed and corrected data, respectively. Since there exists a
high degree of correlation between the refolded data and observed data, it would be difficult
to gauge the performance of such tests as KS andχ2. Comparison of the refolded data to
the measured data still retain power. These consistency checks cannot tell us that we have
the correct answers; but they do indicate that our results are consistent. To the extent that
all bins in pjet

T andO simultaneously agree, then the corrections we have performed on the
measured distributions are a feasible approximation of thetrue physics distributions.

The refolded data is compared with the observed data (beforecorrections) in Figs. [6.15
- 6.17]. The bottom plots show the ratio of the refolded data to the measured data. A value
of 1 indicates perfect agreement. We see very good agreementbetween the observed and
corrected data in the regions of high statistics. Significant devations from unity occur in
regions of low statistics, where the uncertainties are higher.
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Figure 6.9: The correctedΣpT data and uncertainties.
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Figure 6.10: The correctedΣpT data and uncertainties (cont.)
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T ≤ 19 GeV

Figure 6.11: The correctedNch data and uncertainties
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Figure 6.12: The correctedNch data and uncertainties (cont.)
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Figure 6.13: The corrected ¯pT data and uncertainties
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Figure 6.14: The corrected ¯pT data and uncertainties (cont.)



6.10 Consistency Checks - Refolding the Distributions 68

0 5 10 15 20 25 30

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410

510

610

710

810
 < 5 GeVJET

T
4 GeV <= p

observed data
refolded data

 [GeV]
T

pΣ
0 5 10 15 20 25 30

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(a) 4 GeV≤ pjet
T ≤ 5 GeV

0 5 10 15 20 25 30

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410

510

610

710
 < 6 GeVJET

T
5 GeV <= p

observed data
refolded data

 [GeV]
T

pΣ
0 5 10 15 20 25 30

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(b) 5 GeV≤ pjet
T ≤ 6 GeV
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T ≤ 11 GeV
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T ≤ 14 GeV
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(f) 14 GeV≤ pjet
T ≤ 19 GeV
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T ≤ 31 GeV
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Figure 6.15: The refoldedΣpT distributions are compared to the raw (uncorrected) data.



6.10 Consistency Checks - Refolding the Distributions 69

0 5 10 15 20 25

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410

510

610

710

810
 < 5 GeVJET

T
4 GeV <= p

observed data
refolded data

chN
0 5 10 15 20 25

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(a) 4 GeV≤ pjet
T ≤ 5 GeV

0 5 10 15 20 25 30

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410

510

610

710
 < 6 GeVJET

T
5 GeV <= p

observed data
refolded data

chN
0 5 10 15 20 25 30

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(b) 5 GeV≤ pjet
T ≤ 6 GeV
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(c) 6 GeV≤ pjet
T ≤ 8 GeV
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(d) 8 GeV≤ pjet
T ≤ 11 GeV
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(e) 11 GeV≤ pjet
T ≤ 14 GeV
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Figure 6.16: The refoldedΣpT distributions are compared to the raw (uncorrected) data.
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(b) 5 GeV≤ pjet
T ≤ 6 GeV
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(c) 6 GeV≤ pjet
T ≤ 8 GeV
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(d) 8 GeV≤ pjet
T ≤ 11 GeV
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(e) 11 GeV≤ pjet
T ≤ 14 GeV
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(f) 14 GeV≤ pjet
T ≤ 19 GeV
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(g) 19 GeV≤ pjet
T ≤ 24 GeV
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(h) 24 GeV≤ pjet
T ≤ 31 GeV
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(i) 31 GeV≤ pjet
T ≤ 39 GeV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410

 < 50 GeVJET

T
39 GeV <= p

observed data
refolded data

 [GeV]
T

p
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(j) 39 GeV≤ pjet
T ≤ 50 GeV

0 1 2 3 4 5 6 7 8 9

N
um

be
r 

of
 E

ve
nt

s 
pe

r 
B

in

1

10

210

310

410  < 65 GeVJET

T
50 GeV <= p

observed data
refolded data

 [GeV]
T

p
0 1 2 3 4 5 6 7 8 9

O
B

S
E

R
V

E
D

R
E

F
O

LD
E

D

0

1

2

(k) 50 GeV≤ pjet
T ≤ 65 GeV
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Figure 6.17: The refolded ¯pT distributions are compared to the raw (uncorrected) data.
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Chapter 7

Conclusions

We have measured the full distributions of the UE observables (ΣpT , Nch andp̄T ) in the
TRANSVERSE region, in slices ofpjet

T . Jets were constructed using the anti-kt algorithm,
using a value of 0.6 as the R-parameter, from reconstructed tracks in the ATLAS Inner
Detector. The excellent tracking performance of the Inner Detector allowed us to probe
very low pjet

T ≥ 4 GeV. The relative systematic uncertainties in the mean values were 2.9%
- 6.5% (ΣpT ), 2.7%-4.6% (Nch) and 1.3%-4.1%( ¯pT ). PYTHIA 6 Z1 performed better than
PYTHIA 6 AUET2B, although both gave good agreement with the data. The measurements
presented provide another testing ground for further tuning of Monte Carlo generators.
Future analyses would benefit from larger data samples, which would allow us to probe the
high pjet

T ≥ 50 GeV range.
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Appendix A

Track Quality

The track selection criteria for tracks used in this analysis are plotted in Fig. [A.1-
A.2]. The black curves indicate the tracks which have passedall other selection criteria;
the yellow filled areas depict tracks that also pass the corresponding selection criteria. Out
of a total of 407.9 million tracks that pass all other selection criteria, 3.8 million fail the
B-Layer requirement. The plots that follow are so-called “N-1” plots, where the indicated
variable is shown for tracks that have passed all other selection criteria. The tracks passing
the selection criteria for that variable is shown in yellow.
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Figure A.1: The“N-1” distributions for the ID track selection criteria. Tracks passing all
other selection criteria are plotted in black. The yellow area corresponds to the tracks that
also pass the indicated cut.
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Figure A.2: The “N-1” distributions for thez0 andd0 track selection criteria. Tracks passing
all other selection criteria are plotted in black. The yellow area corresponds to the tracks
that also pass the indicated cut.
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Appendix B

Discretization Effects

For measured (uncorrected) data, it is straightforward calculate the true mean values of
the UE distributions because we have access to the variableson an event-by-event basis.
The correction process, described in Sec. 5.2, requiresdiscretization (binning) of the vari-
ables in question. After the correction procedure, we no longer have access to the variables
on a per-event basis, but rather only to the number of events in bins of the given variables.
This situation prevents a straightforward calculation of the true mean value of the corrected
variables. One can decide to use the bin center as the representative abscissa of the bin.
This choice may be appropriate for distributions that populate the bin uniformly, but this is
not our situation. Most of the distributions in this analysis have an exponential dependence
on the abscissa, which could lead to significant differencesbetween the mean values cal-
culated using different representative abscissae. For example, in Fig. [B.1], we calculate
the mean value using the lower edge of the bin, the bin center,and the upper edge. We see
differencesO (10%) between the different calculations. Using the center of thebin appears
to be the best choice, but we have no guarantee this conditionwill persist with different
distributions. We propose a method to overcome this obstacle using numerical methods
based on cubic splines. Each UE observable (ΣpT , Nch and p̄T ) is treated differently in the
following sections.

B.1 Discretization Effects inΣpT

The binning used to analyzeΣpT , being of finite width, introduces an uncertainty in the
x-value (abscissa) when calculating the mean value. For example, a bin with coordinates
4GeV≤ ΣpT ≤ 5GeV lumps events havingΣpT = 4.1GeV together with events having
ΣpT = 4.9GeV. When calculating abinned mean value, as in Eq. B.1, all the events in that
bin contribute equally to the mean value, although there aremany more events withΣpT =
4.1GeV than there are withΣpT = 4.9GeV. We have lost information, i.e. - introduced
an uncertainty, pertaining to the abscissa of the bin. The uncertainty due to discretization
diminishes as the bins become smaller. Due to lack of statistics, we are not able to make
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sufficiently small bins in the highpT region. Fig. [B.1] indicates the size of the uncertainty
due to discretization, comparing the binned mean value (redgraph) (cf. Eq. B.1) to the
true mean value (black graph). Fig. [B.1] compares the binned and true mean values for
uncorrected data and truth-level Monte Carlo (Pythia 6 withAMBT1 tune) distributions.
The failure (binned vs. unbinned) isO (1%) throughout the track jetpT spectrum.

10 20 30 40 50 60 70 80 90 100

>
 [G

eV
]

T
pΣ<

0

2

4

6

8

10

12

Method
true mean
spline-based mean
binned mean (center)
binned mean (lower)
binned mean (upper)

 [GeV]jet

T
p

10 20 30 40 50 60 70 80 90 100

ca
lc

ul
at

ed
/tr

ut
h

0.99

0.995

1

1.005

1.01

(a) Pythia 6 (Z1) truthΣpT in theXVERSE region

Figure B.1: Comparison of theΣpT mean values to the mean values obtained via binned
calculations and a spline-based calculation, as a functionof track jet pT. The binned cal-
culations are performed using the lower edge, center and upper edge of the bins. The plots
on the bottom are the ratios of the predicted mean values to the known mean values.

µbinned =
∑N

k=2 nkxk

∑N
k=1 nk

(B.1)

σ2
binned =

∑k nk(xk −µ)2

∑k nk
(B.2)

where{nk} and {xk} are the histogram contents and bin centers, respectively. The
reader will notice that the summations in the numerators in Eqs. [B.1-B.2] start at 2, ig-
noring the lowest bin. The first bin, spanning 0≤ ΣpT ≤ 0.5GeV, is populated by events
having no tracks in theTRANSVERSE region, for whichΣpT is identically 0. There is no
uncertainty in the abscissa of this bin. The summations which include a factor ofxk can
safely omit the first bin, as it identically contributes 0. Wewill have more to say on this
subject shortly, referring to this as the ”0-bin” effect.

We now propose a method to compensate for the loss of resolution due to discretization.
The procedure involves fitting a cubic spline to theintegral of ΣpT . Fitting directly to the
variable is not a well-defined procedure because, as was mentioned above, the abscissa of
the bin is not well-defined. Knowledge of the number of eventsare in a bin, however, is
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equivalent to knowledge of the integral of the function, over the bin coordinates. Further-
more, the integral of the function may be a more suitable quantity for calculating the mean
value. To see this, letF(s) be the antiderivative ofN(s), wheres ≡ ΣpT andN(s) is the
number of events withΣpT = s.

dF(s)
ds

= N(s) (B.3)

The rule of integration by parts gives the following formulae for the true mean and
standard deviation:

µT RUE ≡
∫ b

a s N(s) ds
∫ b

a N(s) ds
=

∫ b
a s F ′(s) ds
∫ b

a F ′(s) ds
=

b F(b)−a F(a)−
∫ b

a F(s) ds

F(b)−F(a)
(B.4)

σ2
T RUE ≡

∫ b
a (s−µ)2 N(s) ds

∫ b
a N(s) ds

=

∫ b
a (s−µ)2 F ′(s) ds

∫ b
a F ′(s) ds

=
b2 F(b)−a2 F(a)−2

∫ b
a s F(s) ds

F(b)−F(a)
−µ2 (B.5)

The final results on the right hand side (RHS) depend on F(s) and its integral, but not
on F ′(s) = N(s) itself.

The exact process for the construction of the cubic spline isoutlined next:

1. Given theΣpT histogram withN bins with contentsnk, for k = 1, 2, 3,. . ., N, defineN
pairs of (x, y)-values. As was discussed earlier in this section, the ”0-bin” (covering
ΣpT = 0), is omitted in these calculations. We define:

• x[k] = upper edge ofkth bin (k = 1,. . ., N)

• y[1] = 0

• y[k] = ∑k
i=2 ni (k = 2, . . ., N)

2. Fit a standard cubic spline, with theN (x, y)-pairs asknots. 1

3. The derivative of the cubic spline atxN is specified as the contents of the overflow
bin.

The total number of eventsnTOT must include the contents of the ”0-bin”, retaining
consistency with the definition of the mean value of a distribution.

nTOT ≡
∫ ∞

0
ΣpT dpT =

∫ ∞

0
Nch dpT =

∫ ∞

0
p̄T dpT (B.6)

1In the context of splines, a knot is a point where the value of the function is specified.
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In summary, the mean values of theΣpT and p̄T are calculated in Eqs. [B.7 - B.8],
invoking Eq. B.4. Note the different limits of integration for each variable. The lower
limits are chosen to exclude the ”0-bin” discussed above. The upper limits are practical
limits set by the available data and Monte Carlo statistics.

〈ΣpT 〉 ≡
1

nTOT

∫ 120GeV

0.5GeV
s N(s) ds (B.7)

〈p̄T 〉 ≡
1

nTOT

∫ 9GeV

0.5GeV
p̄T N(p̄T ) d p̄T (B.8)

Fig. [B.1] compares the true mean values (black graph) to themean values obtained via
the spline-based methods (blue graph) described in this section, summarized in Eqs.[B.7
- B.8]. The uncertainties associated with these cubic spline-based methods are almost
negligible, as will be further discussed in Sec. B.4.

B.2 Discretization Effects inNch

The distributions ofNch are treated differently than those ofΣpT andp̄T described in the
previous section.Nch, the number of tracks, is a discrete variable (a non-negative integer),
whereasΣpT and p̄T are continuous variables. For the bins numbered sequentially from
0, incrementing by 1, the abscissae of the bins are exactly known. After a certain point,
it becomes statistically unfeasible to continue to increment the bins by 1. However, the
abscissae of bins spanning two or more integers (such as 8≤ Nch ≤ 11) is not well-defined.
Fig. [B.2] compares the mean values to the binned mean values. The difference is a bias
of O (0.5%) We correct this bias using the spline to evaluateN(n) at each of the integers,
as follows. Just as forΣpT and p̄T , described in Sec. B.1, we fit a cubic splineF(n)
to the integral ofN(n), whereN(n) is the number of events withNch = n. The discrete
”derivative” of the splineF(n+ 1)−F(n) approximatesN(Nch) at each of the integers,
Nch = n = 0,1, · · · . 2 The mean value ofNch is calculated as

〈Nch〉 ≡
1

nTOT
Σ60

k=1k× (F(k+1)−F(k)) (B.9)

The upper limit ofNch = 60 is determined by the available statistics.

2The derivative is identicallyN(Nch) at the knots.
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Figure B.2: Comparison of theNch mean values to the mean values obtained via binned
calculations and a spline-based calculation, as a functionof track jet pT. The binned cal-
culations are performed using the lower edge, center and upper edge of the bins. The plots
on the bottom are the ratios of the predicted mean values to the known mean values.

B.3 Discretization Effects in p̄T

For p̄T , the mean value of the trackpT, has sufficiently fine binning that the difference
between the true and binned mean values is acceptable. See Fig. [6.7(e)]. No further
corrections are performed.

B.4 Validation of the Spline-based Methods

Splines are extremely powerful tools, but must be used with caution to avoid fluctu-
ations in the solutions, associated with the rapidly falling spectra3 we are attempting to
describe. In Fig. [B.3], the distributions obtained using the standard (baseline) binning are
compared to the distributions obtained using a fine binning.For the purpose of evaluating
the performance of the spline-based predictions, we examine both measured (uncorrected)
data distributions and truth-level Monte Carlo distributions. The spline-based predictions
for the contents of the fine bins are compared to the known contents. The predictions for
ΣpT are extremely good (within 0.01%) forΣpT ≤ 40GeV, after which fluctuations cause
the predictions to fail. Similary, forNch ≤ 25, the predictions are extremely good. The
performance diminishes substantially forNch ≥ 25. These bins contribute negligibly to the
mean and standard deviations.

3The errors in polynomial interpolations tend to be proportional to thenth derivative of the approximated
functions.
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Figure B.3: Comparison of the distributions of the UE observables to the predictions made
by the spline-based methods. The standard binning refers tothe bins used to obtain the
central values in this analysis. The plots on the bottom are the ratios of the predicted values
to the known values in the fine bins.


