

VELO Vertexing and Tracking Algorithms of the LHCb Trigger System

Juan P. Palacios University of Liverpool

- The challenge at LHCb
- LHCb trigger overview
- L0
 - Overview
 - Algorithms
- L1
 - Overview
 - Algorithms
 - Timing
- Conclusions

The challenge at LHCb

- pp interactions at s^{1/2} = 14TeV
- 40MHz bunch crossing
- Average luminosity "modest" 2*10³²cm⁻²s⁻¹
- Visible interactions at 10MHz
 - 100kHz bb events
 - 15% with all decay products of at least one B contained in detector
 - Branching ratio of interesting channels 10⁻³ to 10⁻⁷
- Write events at 200Hz
 - Not just any old events but very interesting b ones of course!

Meeting the challenge

LIKE LOOKING FOR A NEEDLE IN A SHARK-INFESTED OCEAN FULL OF HAYSTACKS

- Fortunately B events have
 - Displaced vertices
 - High p_T particles from B decays
- Exploit this in a three-level trigger system
 - LO hardware
 - <u>L1</u>, HLT software on dedicated PC farm

This talk will concentrate on the L0 and L1 vertexing and tracking algorithms

Detectors in Trigger

L0: pile-up system

For CP studies, multiple collisions aren't favored (potential issues with tagging or primary vertex association)
Cut out events with multiple vertices

Two planes of R-measuring sensors
Identical to VELO sensors
Places up-stream from interaction point
Strips ORed in groups of 4

Determines R resolution

Pile-Up Veto: principle

- Calculate vertex for all combinations of 2 points a and b.
- Find highest peak (= prim.vtx)
- Remove the hits and find 2nd peak
- Veto if peak>threshold
- σ(Z_{vtx}) ≈ 2.8 mm, σ(beam) ≈ 53 mm

2nd peak mult. cut tunable parameter

Pile-up Veto performance

L0*L1 efficiency for different channels as a function of PU cut on 2nd peak multiplicity.

All other L0 cuts are modified to fill the allowed bandwidth

Vertex 2004, Como, 5/14/2012

J.P. Palacios, Liverpool

Expected annual yield for $B \Rightarrow D_s K$ as a function of luminosity for different PU cuts

Vertex 2004, Como, 5/14/2012

L0 decision

J.P. Palacios, Liverpool

L1 2D VELO tracking / 1

rz tracking motivated by speed

- Tracks from beam line form straight lines in *rz*
- This is the reason VELO has *r\phi* geometry

- Project *rz* track to next sensor and look for hits in 3.5*pitch window
 - Allow for off-axis tracks, not straight in rz
 - Flag good hits as used
- Fit straight line to rz points and continue
- After all extensions done
 - Non-extended triplets discarded and hits flagged as unused
 - All hits in extended tracks flagged as used
 - Go back to triplet search with remaining unused hits, moving towards the interaction point

2D tracking performance: Efficiency: 98.2% Ghost rate 6.5%

Reconstruct ~58 2D tracks/event

L1 primary vertex search

of LIVERPOOL

Track pairs in perpendicular sub-sectors treated as independent measurements in 2 rotated Cartesian coordinate systems PV is then constructed as with XYZ geometry

PV performance

- With 2D tracks + limited φ information
 - Fast reconstruction: 0.33ms on 1GHz PIII
 - Good resolution
- 30 to 40 PV 2D tracks/event contain enough info to "saturate" the resolution
 - Half as many effective 3D tracks
 - At some point the PV resolution does not vary drastically with number of tracks
- Remember: no momentum information. Errors due to multiple scattering not known.

• 2D matching

- For selection of 2D tracks to be reconstructed in 3D
- Compare dr/dz slopes
 - Construct χ^2 using uncertainties in *rz* slopes of tracks and L0 objects, ϕ information from VELO sectors, B-field kick
- 3D matching
 - Rejection of 2D mismatches
 - Improvement of VELO track p_T estimate
 - Construct χ^2 using uncertainties in **xz**, **yz** slopes of tracks and L0 objects, B-field kick

	χ ² max	Purity	Efficiency	σ _p /p
2D	16	21.0%	96.5%	37%
3D	16	51.2%	94.7%	6%

VELO 3D tracking algorithm

- Sort 2D tracks by length and start with longest
- Work in 45° sectors independently
- Search inwards from sensor furthest from PV
- Look for compatible hits in neighbouring ϕ sensor
 - Calculate r of track in ϕ sensor, check sector, look for hit
 - Build list for each compatible ϕ hit
- Search in following φ sensors
 - Project 3D lines with rz from track and ϕ from each hit in list
 - Build new lists for each good ϕ hit found near projection
- Select best 3D track for given 2D one
 - Scan through tree of lists, select track with most clusters or best χ^2
- Mask all hits used and start again with next 2D track

Combined 2D and 3D *Efficiency: 94.8%, 96.4% for B tracks Ghost rate 5.0%*

Reconstruct ~8.5 3D tracks/event

VELO-TT matching

Get an estimate of **p** for good IP tracks!

- Project 3D VELO tracks into TT for pattern recognition
- Use as seeds to form TT track segments with 4 or 3 planes
- Pick one with best χ²
 - $-\chi^2$ based on slopes and B field kick
- Re-fit VELO and TT tracks allowing slopes to vary
 - Demand both meet at nominal place in centre of fringe field
 - L1 optimised: good purity for high p_T tracks
- Momentum obtained from re-fitted slopes and integrated bending field

For pT > 1GeV: 79% efficiency 98.7% purity σ(p_T) ~ 20-30%

Vertex 2004, Como, 5/14/2012

Good p_T resolution at low p_T means we are unlikely to mistake low p_T tracks for high p_T ones

L1 decision

- Use Σln(p_T) of 2 tracks with highest p_T and 0.15mm < 3D IP < 3mm
- Information highest di-muon invariant mass, highst ${\rm E_T}$ γ and electron above 3GeV
 - Give weight to specific decay modes
- tuned for retention of 4% of minimum bias L0 triggers (40kHz L1 output rate)

L1 timing

• Timing of L1 algorithms crucial

- Balance between quality of reconstructed information available to make L1 decision and complexity of L1 algorithm process
- But algorithms can be slow for reasons other than complexity
- Separate L1 s/w algorithm implementations benchmarked in search for inefficiencies
 - Technical changes
 - Information caching
 - Look-up tables
 - Static memory allocation where necessary

Remember: L1 trigger implementation in off-line style S/W environment. In general quality and conceptual speed of algorithms was of essence. Actual fine tuning of timing performance wrt technical s/w implementation details comes after validation... still, gains in speed can allow changes in conceptual approach...

L1 Timing performance

L1 phase	Time [ms 1GHz PIII]
VELO initialisation	0.46
2D tracking	0.82
PV search/fit	0.33
2D track selection	0.21
3D tracking	1.1
L0 3D track matching	0.01
VELO-TT matching	1.49
3D track preparation	0.16
L1 variables calculation	0.04
Decision	0.02
Total	4.64

L1 algorithms can provide fast efficient background rejection and signal retention with reasonably complex reconstruction in 1ms (2007) Time measured between start and stop of each algorithm
Minimise number of calculations needed to reject event
Granularity 1μs
Time for min. bias L0 accepted events

- The three-level LHCb trigger reduces rate from 40MHz (10MHz visible) to 200Hz
- L0*L1 efficiency between 20% and 70%
- L1 efficiency between 60% and 80%
- Within tight time and CPU budget
- System is highly flexible and scalable, allowing to change retained event composition at all three levels
 - Possibility of adjusting thresholds in L0
 - Possibility of adjusting logic in L1
 - Possibility of bringing other detectors into L1
 - At a cost! More network, but same CPU power
 - Possibility of doing pretty much anything in HLT, except using RICH information... so far at least
- L1 performs high quality reconstruction within 1ms time budget

Aknowledgements

Many thanks in particular to the following :

Mariusz Witek Hans Dijkstra Ivan Kisel Olivier Callot Thomas Schietinger

BACKUP SLIDES

Vertex 2004, Como, 5/14/2012

J.P. Palacios, Liverpool

The LHCb experiment

LHCb Trigger Overview

• L0

- Reduce rate from ~10MHz visible interactions to 1MHz accept rate to L1
- Use global varialbes
 - Charged track multiplicity
 - Number of interactions
 - Hadronic E_T to reject empty events
- Use B signatures
 - Large E_T lepton, hadron or γ
- Latency $4\mu s$ ($2\mu s$ for data processing)
- L1
 - Maximum accept rate ~40kHz
 - High p_T , E_T
 - Impact parameter information
 - Electron, hadron E_T , di-muon invariant mass
- HLT
 - Accept rate ~200Hz, use CPU power not used by L1
 - High P_T , E_T
 - Displaced vertex
 - B candidate invariant mass

Shall concentrate on these. Emphasis on tracking/vertexing

> Close to offline quality data No RICH PID Use of full LHCb tracking system Large S/W commonality with L1 algorithms

Vertex 2004, Como, 5/14/2012

J.P. Palacios, Liverpool

rbitrary units

L0 high $E_T e, \gamma$ and h

- SPD: e/γ separation
- PreShower: 2.5 X0 pb. Identify EM particles
- ECAL: shaslik, EM shower energy
- HCAL: Fe scintillator tiles, hadronic shower energy

: 8 bits LVDS multiplexed link

J.P. Palacios, Liverpool

L0 Decision Unit (L0DU)

Information for L0DU:

- Calorimeters:
 - $E_{\rm T}$ of all candidates (hadron, electron, γ , etc.)
 - ΣE_{T} (to avoid no collision + μ from LHC bg)
 - SPD hit multiplicity
- Muon trigger:
 - 4×2 largest P_{T} muons
- Pile-up detector:
 - z and number of tracks in 1st and 2nd vertex
 - total hit multiplicity

L0DU performs simple arithmetic, with adjustable thresholds, downscaling, etc.

•Variables used to find a B-meson signature

Typical thresholds (GeV):

- Electron ~ 2.6
- Photon ~ 3
- Hadron ~ 3.5
- Σ*E*_T ~ 5
- Muon ~ 1.2

•Global variables used to enrich the triggered sample with "clean" events and avoid triggers due to *e.g.* large combinatorics

L0 decision

Global variable	Cut
Tracks in 2 nd vertex	3
Pile-up veto multiplicity	112
SPD multiplicity	280
ΣE _T	5 GeV

E _T threshold	Value/GeV	M.B. rate/kHz
hadron	3.6	705
electron	2.8	103
photon	2.6	126
π ⁰ local	4.5	110
π ⁰ global	4.0	145
Muon	1.1	110
Σ ρ_τ(μ)	1.3	145

Global variable cuts. Reject events that are busy, empty or having multiple interactions

> Pass all global cuts AND at least one E_T threshold

Thresholds for different L0 inputs after combined optimisation

OR Pass $\Sigma p_T(\mu)$ cut (two highest p_T muons)

- Reconstruct 2D VELO tracks (rφ) ~58/event
- Select 2D tracks for 3D reconstruction
 - Search for PV ⇒select if 0.1 < 2D IP < 3mm</p>
 - Match 2D tracks to L0µ track segments ⇒ select if good match
- 3D track reconstruction
- Match 3D tracks to L0 objects confirmation
 - Get estimate of track **p** and **p**_T
- Match 3D matched VELO tracks to TT track segments
 - Make so-called VTT tracks
 - Get first estimate of track \mathbf{p} and \mathbf{p}_{T}

- Successfully reconstructed VTT 3D or Velo-L0μ tracks used for decision
- Use two highest p_T tracks
 - $-P_T$ of tracks as discriminator
- Combine with global variables
 - Highest L0 invariant di-muon mass
 - Highest L0 photon E_T if > 3GeV
 - Highest L0 electron E_T if >3GeV

L1 2D VELO tracking

- Histogram 2D z coord in preparation for PV search
- Efficiency 97% for p > 1 GeV (get newest numbers!)
- Purity 92% (get newest numbers!!!)

Compare dr/dz slopes

- Use azimuthal information
 - 2D tracks constrained to 45°
- Construct χ^2 using uncertainties in dr/dz of tracks and L0 objects, and ϕ
 - Ignore 2D track dr/dz uncertainty: small c.f. L0
 - Track ϕ uncertainty 45° 12⁻²

• Cut on χ^2 values to select matchings

	χ^2 max	Purity	Efficiency	σ _p /p
Muons	16	21.0%	96.5%	37%
Electrons	4	11.7%	98.4%	36%
Hadrons	4	16.2%	98.7%	37%

Vertex 2004, Como, 5/14/2012

J.P. Palacios, Liverpool

p_T: 3D VELO track matching to L0 μ

- In practice, only use L0 muon objects
- Construct χ^2 from xz, yz slopes of 3D track and L0 object
 - Ignore 3D track errors as negligible compared to L0 object slope errors
- Use μ track segment + VELO track and B kick to get accurate estimate of p_T
- Performance:

p _T ~ 4°	%
----------------------------	---

	χ^2 max	Purity	Efficiency	σ _p /p
Muons	16	51.2%	94.7%	6%
Electrons	4	32.9%	95.8%	12%
Hadrons	4	26.9%	92.8%	15%

• Project VELO tracks into TT

- Straight line fit
- Point errors
 - Detector resolution + 3GeV for MS
 - Propagate downstream errors to upstreamVELO points to give most weight to last point on track
- Use as seeds to form TT track segments with 4 or 3 planes
 - Fit straight line parametrised in xz, yz
 - x slope parametrised in terms of B field
 - Choose candidate with lowest χ^2
- Re-fit VELO and TT tracks allowing slopes to vary
 - Demand both meet at nominal place in centre of magnet
- Momentum obtained from re-fitted slopes and integrated bending field

Vertex 2004, Como, 5/14/2012

TT

Histogram

plane

VX

XU

144 cm

0°

VELO-TT matching

Matching tuned to optimise L1 performance:

- need good purity for high **p_T** tracks!
- $-\chi^2$ for matching favours high **p**
 - p dependent
 - *r* dependent (multiplicity)
- For **p**_T > 1 GeV
 - 79% efficiency
 - 98.7% purity
 - σ_{pT} ~ 20-30% for **p_T** > 1GeV

But this is all software, the trigger configuration For the VELO-TT matching can be changed for optimisation according to other criteria. Eg higher efficiency in HLT...

VELO-TT matching efficiency and p_T significance

L1 decision / 1

~6.5/event

• Use 2 tracks with

- highest p_T
- 0.15mm < 3D IP < 3mm

Construct discriminant:

- Δ = distance to cut in $\Sigma \ln(p_T)$ space

• Construct other "bonus" discriminators β from

- Highest di-muon invariant mass $\mathbf{m}_{\mu\mu}$
 - $J/\psi \Rightarrow \mu^+\mu^- \text{ or } B \Rightarrow \mu^+\mu^-(X)$
 - Variable $\beta_{\mu\mu}$ dominates if $m_{\mu\mu}$ within 500MeV of J/ψ or B mass, otherwise linear with $m_{\mu\mu}$
- Highest γE_T above 3 GeV from L0 $E_{T\gamma max}$
 - B ⇔ K*γ
 - Variable β_{γ} linear with $E_{T\gamma max}$ from 3 GeV
- Highest electron E_T above 3 GeV from L0 E_{Temax}
 - J/ψ ⇔ e⁺e⁻
 - Variable β_{γ} linear with E_{Temax} from 3 GeV

Vertex 2004, Como, 5/14/2012

J.P. Palacios, Liverpool

- Reject events not compatible with interesting b
 decay
- Confirm L1 decision

σ(p)/p from ~20-30% to 0.6%

- Add T1-T3 information to improve p resolution of VELO-TT
- Fast execution, reduces rate from 40 kHz to 20 kHz
- Full pattern recognition + limited PID
 - Better VELO cluster resolution
 - Use full LHCb tracking system close to offline quality
 - Identify electrons, muons (RICH PID to CPU demanding)
- Exlusive selection
 - Very flexible, offline-like algorithms, relaxed cuts
- Assuming 1ms per L1 event, have ~10ms per event in HLT (2007 CPU)