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Abstract The results of a search for the production of sec-
ond generation scalar leptoquarks are presented for final
states consisting of either two muons and at least two jets or
a muon plus missing transverse momentum and at least two
jets. A total of 1.03 fb−1 integrated luminosity of proton-
proton collision data produced by the Large Hadron Col-
lider at

√
s = 7 TeV and recorded by the ATLAS detector

is used for the search. The event yields in the signal regions
are found to be consistent with the Standard Model back-
ground expectations. The production of second generation
leptoquarks is excluded for a leptoquark mass mLQ < 594
(685) GeV at 95 % confidence level, for a branching ratio of
0.5 (1.0) for leptoquark decay to a muon and a quark.

1 Introduction

The remarkable similarities between quarks and leptons in
the Standard Model (SM) lead to the supposition that there
could be a fundamental relationship between them at a suffi-
ciently high energy scale, manifested by the existence of lep-
toquarks (LQ) [1–8]. LQs are hypothetical particles which
carry both baryon and lepton number and have fractional
electrical charge. The present search is performed within the
minimal Buchmüller-Rückl-Wyler model [9], where LQs
are restricted to couple to quarks and leptons of one gen-
eration. In this model, LQs are required to have pure chi-
ral couplings to SM fermions in order to avoid inducing
four-fermion interactions that would cause flavour-changing
neutral currents and lepton family-number violations. At
the Large Hadron Collider (LHC), scalar LQs can be pro-
duced either in pairs or singly. Single LQ production in-
volves the unknown λLQ−�−q coupling, while pair produc-
tion of scalar LQs occurs mostly via gluon-gluon fusion,
dominant for mLQ � 1 TeV, and qq-annihilation, dominant
at larger masses. Both pair-production modes involve only

� e-mail: atlas.publications@cern.ch

the strong coupling constant, and therefore all model depen-
dence is contained in the assumed LQ mass mLQ and the
branching ratio β for LQ decay to a charged lepton and a
quark.1 LQs can also decay to a neutrino and a quark; in this
case, the branching ratio is 1 − β . Pair production of scalar
LQs at the LHC has been calculated at next-to-leading order
(NLO) [11].

The results presented in this paper are an update of the
previous ATLAS search for second generation LQs [12] and
extend the bounds arising from previous direct searches per-
formed by CMS [13], ATLAS [12], D0 [14] and OPAL [15].
A total integrated luminosity of 1.03 fb−1 of proton-proton
collision data at a centre of mass energy

√
s = 7 TeV, col-

lected with the ATLAS detector from March through July
2011, is used for the search. The final states arising from
leptoquark pairs decaying into two muons and two quarks
(μμjj ), or into a muon, a neutrino and two quarks (μνjj ),
are considered. These result in experimental signatures of
either two high transverse momentum (pT) muons and two
high pT jets, or one high pT muon, missing transverse mo-
mentum, and two high pT jets.

Analyses for both dimuon and single muon final states
start with the selection of event samples with large sig-
nal acceptance. Since background cross sections are several
orders of magnitude larger than the signal cross sections,
these samples are dominated by the major backgrounds:
Z + jets and t t̄ in the μμjj case, and W + jets and t t̄ for the
μνjj case. Further selection requirements are then applied
to these samples to define control regions used to determine
the normalization of the aforementioned backgrounds. The
determination of the multi-jet background is performed in a

1The λLQ−�−q coupling determines the LQ lifetime and width [10].
For LQ masses considered here, 200 GeV ≤ mLQ ≤ 700 GeV, cou-
plings greater than e × 10−6, with e = √

4πα the electron charge, and
α(MZ) = 1/128, correspond to decay lengths less than roughly 1 mm.
In addition, to be insensitive to the coupling, the width cannot be larger
than the experimental resolution of a few GeV. This sets the approxi-
mate sensitivity to the unknown coupling strength.
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fully data-driven approach, and the smaller diboson and sin-
gle top-quark backgrounds are estimated using Monte Carlo
(MC) simulations.

After all background contributions are determined, vari-
ables selected to enhance the discrimination between sig-
nal and background are combined into a log likelihood ra-
tio, which is used to search for an excess of events over the
SM background prediction. The searches are performed in-
dependently for each final state. The results are then com-
bined and interpreted as lower bounds on the LQ mass for
different β hypotheses.

2 The ATLAS detector

The ATLAS detector [16] is a multi-purpose detector with
a forward-backward symmetric cylindrical geometry and
nearly 4π coverage in solid angle.2

The three major sub-components of ATLAS are the track-
ing detectors, the calorimeters and the muon spectrometer.
Charged particle tracks and vertices are reconstructed with
silicon-based tracking detectors that cover |η| < 2.5 and a
transition radiation tracker extending to |η| < 2.0. The inner
tracking system is immersed in a homogeneous 2 T axial
magnetic field provided by a solenoid. Electron, photon, and
jet energies are measured in the calorimeters. The calorime-
ter system is segmented into a central barrel and two end-
caps, collectively covering the pseudorapidity range of |η| <
4.9. A liquid-argon (LAr) electromagnetic calorimeter cov-
ers the range |η| < 3.2 and an iron-scintillator tile hadronic
calorimeter covers the range |η| < 1.7. Endcap and forward
LAr calorimeters provide both electromagnetic and hadronic
measurements and cover the region 1.5 < |η| < 4.9.

Surrounding the calorimeters, a muon spectrometer [16]
with air-core toroids, a system of precision tracking cham-
bers, and detectors with triggering capabilities provides
muon identification and precise momentum measurements.
The muon spectrometer is based on three large supercon-
ducting toroids with coils arranged in an eight-fold sym-
metry around the calorimeters, covering a range of |η| <

2.7. Over most of the η range, precision measurements of
the track coordinates in the principal bending direction of
the magnetic field are provided by Monitored Drift Tubes
(MDTs). At large pseudorapidities (2.0 < |η| < 2.7), Cath-
ode Strip Chambers (CSCs) with higher granularity are used
in the innermost station.

A three-level trigger system selects events to be recorded
for offline analysis. The muon trigger detectors consist of

2ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point and the z-axis along the beam pipe. Cylin-
drical coordinates (r,φ) are used in the transverse plane, with φ the
azimuthal angle around the beam pipe. The pseudorapidity η is defined
in terms of the polar angle θ by η = − ln tan(θ/2).

Resistive Plate Chambers (RPCs) in the barrel (|η| < 1.05)
and Thin Gap Chambers (TGCs) in the end-cap regions
(1.05 < |η| < 2.4), with a small overlap in the |η| = 1.05
region. The data considered in this analysis are selected
from events containing at least one muon with the trans-
verse momentum determined by the trigger system satisfy-
ing pT > 18 GeV.

3 Simulated samples

Simulated event samples are used to determine all signal
and some of the background yields. Signal samples for LQ
masses between 200 GeV and 1000 GeV are simulated with
PYTHIA 6.4.25 [17]. NLO cross sections as determined in
Ref. [11], using CTEQ6.6 [18] parton distribution functions
(PDFs), are used to normalize the samples at each mass
point.

Samples of W and Z/γ � production in association with n

partons (where n can be 0, 1, 2, 3, 4 and 5 or more) are sim-
ulated with the ALPGEN [19] generator interfaced to HER-
WIG [20] and JIMMY [21] to model parton showers and
multiple parton interactions, respectively. The MLM [19]
parton-shower matching scheme is used to form inclusive
W/Z+jets samples. MC@NLO [22, 23] is used to estimate
the production of single top quarks and top quark pairs.
A top quark mass of 172.5 GeV is used in the simulation.
Diboson events are generated using HERWIG, and the cross
sections are scaled to NLO calculations [22–24].

All simulated events are passed through a full detector
simulation based on GEANT4 [25] and then reconstructed
with the same software chain as the data [26]. During the
data-taking period considered in this search, the mean num-
ber of primary proton-proton interactions per bunch crossing
was approximately six. The effect of this pile-up is taken
into account in the analysis by overlaying simulated mini-
mum bias events onto the simulated hard-scattering events.
The MC samples are then reweighted such that the average
number of pile-up interactions matches that seen in the data.

4 Object and event selection

Collision events are identified by requiring at least one re-
constructed primary vertex candidate with at least three as-
sociated tracks with pT,track > 0.4 GeV. If two or more such
vertices are found, the one with the largest sum of p2

T,track
is taken to be the primary vertex. Muons are reconstructed
by matching tracks in the inner detector to track segments in
the muon spectrometers, as described in Ref. [27]. In addi-
tion to the track quality requirements imposed for identifi-
cation, the muon tracks must also satisfy |d0| < 0.1 mm and
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|z0| < 5 mm, where d0 and z0 are the transverse and longi-
tudinal impact parameters measured with respect to the pri-
mary vertex. All selected muons must have pT > 30 GeV
and are restricted to be within |η| < 2.4. Muon candi-
dates must pass the isolation requirement pcone20

T /pT < 0.2,
where pcone20

T is the sum of the pT of the tracks within

ΔR = √
(Δφ)2 + (Δη2) < 0.2 of the muon track, exclud-

ing the muon pT contribution. Selected events must have at
least one muon identified by the trigger system within a cone
ΔR < 0.1 centered on a selected muon.

Jets are reconstructed from calorimeter energy clusters
using the anti-kt algorithm [29, 30] with a radius parameter
R = 0.4. Corrections are applied in order to account for the
effects of the non-compensating calorimeter, upstream ma-
terial and other effects, by using pT and η-dependent cor-
rection factors derived from simulation and validated with
test-beam [31] and collision data studies [32]. After apply-
ing quality requirements based on shower shape and sig-
nal timing with respect to the beam crossing, the selected
jets must satisfy pT > 30 GeV, |η| < 2.8 and must be sepa-
rated from the selected candidate muons by ΔR ≥ 0.4. The
presence of neutrinos is inferred from the missing transverse
momentum Emiss

T , defined as the magnitude of the negative
vector sum of the transverse momenta of reconstructed elec-
trons, muons and jets, as well as calorimeter energy deposits
not associated to reconstructed objects.

Corrections to the muon trigger and reconstruction effi-
ciencies and to the momentum resolution are applied to the
simulated events so that their kinematic distributions match
those observed in data, with an impact on the predicted num-
ber of events of less than 2 %. These corrections are derived
from samples of Z → μμ and W → μν decays [27], tak-
ing into account the effects of multiple scattering and the
intrinsic resolution of the muon spectrometer [28]. In order
to validate the corrections at high pT, the alignment of the
muon spectrometer, which dominates the momentum reso-
lution for pT larger than approximately 200 GeV, is derived
from a sample of straight track data taken in special runs
with the toroids turned off, resulting in agreement within the
considered systematic uncertainties.

Events selected for this search are required to contain
either exactly two muons and at least two jets for the
μμjj final state, or exactly one muon, at least two jets
and Emiss

T > 30 GeV for the μνjj final state. In the μμjj

channel, only events with mμμ > 40 GeV are considered.
In the μνjj channel, events are required to have mT =√

2p
μ
T Emiss

T (1 − cos(Δφ)) > 40 GeV, where Δφ is the an-

gle between the muon and the Emiss
T direction in the plane

perpendicular to the beam. Events with identified electrons
as defined in Ref. [33], with pT > 30 GeV, and |η| < 2.47
are rejected. After all the selection criteria are applied the
acceptance times efficiency ranges from about 60 % (55 %)

for a LQ signal of mLQ = 300 GeV to 65 % (60 %) for a LQ
signal of mLQ = 600 GeV for the μμjj (μνjj ) channel.

5 Background determination

Major backgrounds in this search arise from V + jets (V =
W,Z) and t t̄ processes. The kinematic distributions of these
are determined using MC samples, and their absolute nor-
malization is evaluated from data using control regions,
which are subsets of the selected sample, designed to en-
hance either the V + jets or the top quark contribution. The
multi-jet background is obtained directly from data and prior
to the estimation of the normalization for the two main back-
grounds, while the determination of the remaining back-
grounds (diboson and single top quark production) relies en-
tirely on MC simulations.

Two control regions are used in the μμjj channel. (I) Z+
jets: formed by events within a narrow dimuon invariant
mass mμμ window around the Z boson mass, defined by
81 < mμμ < 101 GeV, and at least two jets, and (II) t t̄ : one
of the muons is replaced by an electron resulting in events
with a muon and an electron, and at least two jets.

Three control regions are used in the μνjj channel.
(I) W +2 jets: events in the vicinity of the W boson Jacobian
peak, selected by requiring 40 < mT < 120 GeV, exactly
two jets and ST < 225 GeV, where ST is the scalar summed
transverse energy ST, defined as ST = p

μ
T + Emiss

T + p
jet1
T +

p
jet2
T , (II) W +3 jets: events passing the 40 < mT < 120 GeV

requirement, with at least three jets and ST < 225 GeV, and
(III) t t̄ : events with at least four jets, with p

jet1
T > 50 GeV

and p
jet2
T > 40 GeV. In all of the control regions the ex-

pected signal yields are negligible.
The normalizations of the V + jets and t t̄ backgrounds

are obtained by comparing data and MC yields in the control
samples defined above. In the μμjj channel, each correc-
tion factor is obtained independently for each background,
on account of the high purity of the two different control re-
gions. In the μνjj channel, there is significant cross-region
contamination and therefore the number of V + jets and t t̄

events is determined by simultaneously minimizing the χ2

formed by the differences between the observed and pre-
dicted SM yields in the three control regions. The resulting
scale factors are of the order of 10 % in the low ST region.

The multi-jet background in the selected sample and in
each control sample is obtained from a fit to the mμμ and
Emiss

T distribution in the μμjj and μνjj channels, respec-
tively. In these fits, the relative fraction of the multi-jet
background is a free parameter, and the sum of the total
predicted events is constrained to be equal to the total ob-
served number of events. The V + jets and t t̄ normaliza-
tions are not fixed. Multi-jet background arises predomi-
nantly from muons from secondary decays. Therefore, tem-
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plates for the multi-jet background distributions are con-
structed from multi-jet enhanced samples of data events in
which the muons fail the requirement on the transverse im-
pact parameter or the isolation selection requirements de-
scribed in Sect. 4. In the μμjj channel, the W + jets contri-
bution is estimated together with the multi-jet background.
During this procedure, the V + jets and t t̄ normalizations
are fitted as well, providing an independent estimate. The
resulting values agree with those obtained from the control
regions, which are the ones used in the analysis.

After analyzing 1.03 fb−1 of data and applying the anal-
ysis requirements described in Sect. 4, good agreement is
observed between the data and the SM expectation. The ob-
served and expected yields in the selected sample are 9254
and 9300 ± 1700 for the μμjj channel, and 97113 and
97000 ± 19000 for the μνjj channel. For a LQ mass of
600 GeV, 8.2±0.4 and 3.9±0.2 events are expected for the
μμjj and the μνjj final states, respectively. The aforemen-
tioned uncertainites fully account for (the dominant) system-
atic and statistical uncertainties.

6 Likelihood analysis

Several kinematic variables, selected to provide the best dis-
crimination between LQ events and SM backgrounds, are
combined in a log likelihood ratio in order to search for a LQ
signal. In the μμjj channel, mμμ, ST = p

μ1
T +p

μ2
T +p

jet1
T +

p
jet2
T and the average reconstructed leptoquark mass m̄LQ are

used. In the μνjj channel, ST, mT, the transverse leptoquark
mass m

LQ
T and the leptoquark mass mLQ are used. The dis-

tributions of these input variables are shown in Fig. 1 and
Fig. 2 for the μμjj and the μνjj final states, respectively.

In the μμjj channel, an average LQ mass m̄LQ is defined
for each event by reconstructing all possible combinations of
lepton-jet pairs, using the two highest pT jets in each event.
Of the four possible combinations in each event, the pair-
ing which provides the smallest difference between the LQ
masses is chosen, and their average is used in the likelihood
analysis. In the μνjj final state, because the longitudinal
component of the neutrino momentum is unknown, only one
mass from the muon and a jet can be reconstructed, and the
Emiss

T and the remaining jet are used to calculate the trans-

Fig. 1 Distributions of the input LLR variables for the μμjj chan-
nel for data and the SM backgrounds. (a) Invariant mass of the two
muons in the event, (b) Average LQ mass resulting from the best muon-
jet combinations in each event, and (c) ST. The stacked distributions

show the various background contributions, and data are indicated by
the points with error bars. The 600 GeV LQ signal is also shown for
β = 1.0. In all figures, the last bin contains the sum of all entries equal
to and above the bin lower boundary



Eur. Phys. J. C (2012) 72:2151 Page 5 of 21

Fig. 2 Distributions of the input LLR variables for the μνjj channel
for data and the SM backgrounds. (a) Transverse mass of the muon and
the Emiss

T in the event, (b) ST, (c) LQ mass, and (d) LQ transverse mass.
The stacked distributions show the various background contributions,

and data are indicated by the points with error bars. The expected sig-
nal for a 600 GeV LQ signal is also shown for β = 0.5. In all figures,
the last bin contains the sum of all entries equal to and above the bin
lower boundary

verse mass of the other LQ. The two masses which provide
the smallest absolute difference are used in the likelihood
analysis. With this algorithm, the probability of picking the
correct pairing is of around 90 % for both channels.

For each event, likelihoods are constructed for the back-
ground (LB ) and the various signal LQ hypothesis (LS ) as
follows: LB ≡ ∏

bi(xij ), LS ≡ ∏
si(xij ), where bi , si are

the probabilities of the i-th input variable from the normal-
ized summed background and signal distributions, respec-
tively, and xij is the value of that variable for the j -th event
in a sample. The log likelihood ratio for each tested signal,
LLR = log(LS/LB), is used as the final variable to search
for the LQ signal.

7 Systematic uncertainties

Systematic uncertainties originating from several sources
are considered. These include uncertainties in lepton mo-
mentum, jet energy and Emiss

T scales and resolutions and
their dependence on the number of pile-up events, the back-
ground estimations, and the LQ production cross section.

For each source of uncertainty considered, the analysis is
repeated with the relevant variable varied within its uncer-
tainty, and a new LLR is built for the systematically varied
sample, enabling the uncertainty in both the predicted yield
and the kinematic distributions to be propagated to the final
result. In this section, systematic uncertainties are described
for each source of systematics, calculated assuming each
source to be 100 % correlated among the different back-
grounds. Uncertainties are given for the region of LLR ≥ 2
and LLR ≥ 7 for the μμjj and the μνjj channels, respec-
tively, although the full LLR distribution is used to search
for the LQ signal.

The jet energy scale (JES) and resolution (JER) are varied
up and down by 1σ [32] for all simulated events. Their im-
pact is estimated independently, and the corresponding vari-
ations are propagated to the Emiss

T in the case of the μνjj

channel. The resulting effect of the JES (JER) uncertainty
is 9 % (8 %) and 15 % (7 %) for the backgrounds in the
μμjj and the μνjj channels, respectively. For a LQ signal
of mLQ = 600 GeV, both are 1 % for the μμjj channel, and
2.4 % and 1 % for the μνjj channel.
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The systematic uncertainties from the muon resolution
and momentum scale are derived by comparing the mμμ

distribution in Z → μμ control samples to Z → μμ MC
samples and are approximately 1 % [28]. These result in un-
certainties of 12 % and 3 % for the total background predic-
tion in the μμjj and the μνjj channels, respectively, and in
uncertainties of 1.4 % for a LQ signal of mLQ = 600 GeV
for the μμjj and the μνjj channels.

Systematic uncertainties due to assumptions in the mod-
elling of the V + jets background are estimated by using
SHERPA [34–36] samples instead of the ALPGEN samples
described in Sect. 3. The resulting uncertainty is 30 % for
the μμjj channel and 60 % for the μνjj channel. Similarly,
systematic uncertainties arising from the modelling of the t t̄

process are obtained by using different parameter values to
simulate alternative samples to the one described in Sect. 3.
These include samples in which the top quark mass is var-
ied up and down by 2.5 GeV, generated with MC@NLO,
samples where the initial and final-state radiation (ISR and
FSR) contributions are varied accordingly to their uncertain-
ties, generated with ACER MC [37], and samples generated
with POWHEG [38] interfaced to PYTHIA and JIMMY.
These impact the total background yields by 12 % (7 %)
for the μμjj (μνjj ) final state. For both V + jets and t t̄

backgrounds, a 10 % uncertainty on the scale factors is con-
sidered, covering the variation of the scale factors in the low
and high pT regions.

Systematic uncertainties in the multi-jet background in
the μμjj channel are determined by comparing results de-
rived from fits to kinematic variables other than the nomi-
nal ones. These include the leading muon pT, the leading
jet pT, the Emiss

T and the scalar sum of the transverse mo-
menta of the two muons in the event. In the μνjj channel,
an alternative loose-tight matrix method [39] with two dif-
ferent multi-jet enhanced samples obtained by inverting the
isolation and the |d0| requirements is used. Since the rel-
evant phase space of the multi-jets in the two channels is
very different, the different control regions have very differ-
ent statistics which leads to a large difference in precision to
which this background can be estimated. The resulting un-
certainties are 90 % in the μμjj channel and 33 % in the
μνjj channel.

A luminosity uncertainty of 3.7 % [40, 41] is assigned to
the LQ signal yields and to the yields of background pro-
cesses determined from simulation: diboson and single top
quark production. Further systematic uncertainties consid-
ered arise from the finite number of events in the simulated
samples, amounting to 4 %–25 % depending on the LQ mass
being considered.

For the signal samples, additional systematic uncertain-
ties originate from ISR and FSR effects, resulting in an un-
certainty of 2 % for both channels. The choice of the renor-
malization and factorization scales, which are varied from

mLQ to 2mLQ and mLQ/2, and the choice of the PDF, de-
termined with the CTEQ eigenvectors errors and by using
the MRST2007LO* PDF set [42], result in an uncertainty in
the signal acceptance of 1 %–6 % for LQ masses between
300 GeV and 700 GeV.

8 Results

Figure 3 shows the LLR for the data, the predicted back-
grounds and a LQ signal of 600 GeV for the μμjj and the
μνjj channels. To ensure sufficient background statistics,
bins with a total background yield less than twice the sta-
tistical uncertainty in that bin are merged into a single bin.
There is no significant excess in data observed at large LLR

values where such a signal would appear, and the data are
found to be consistent with the SM background expectations
(see Table 1). Upper limits are derived at 95 % confidence

Fig. 3 (a) LLR distributions for the μμjj and (b) for the μνjj fi-
nal states for a LQ mass of 600 GeV. The data are indicated with the
points and the filled histograms show the SM background. The mul-
ti-jet background is estimated from data, while the other background
contributions are obtained from simulated samples as described in the
text. The LQ signal corresponding to a LQ mass of 600 GeV is in-
dicated by a solid line, and is normalized assuming β = 1.0 (0.5) in
the μμjj (μνjj ) channel. The lowest bin corresponds to background
events in regions of the phase space for which no signal events are
expected
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Table 1 The predicted and observed yields and the expected yields for
a LQ signal of mLQ = 600 GeV after requiring LLR ≥ 2 for the μμjj

channel and LLR ≥ 7 for the μνjj channel. The μμjj (μνjj ) channel
signal yields are computed assuming β = 1.0 (0.5). Statistical and sys-
tematic uncertainties as described in Sect. 7 are shown. These are cal-
culated assuming a 100 % correlation for the same source between the
different backgrounds. These systematic uncertainties are computed as
the sum of the absolute values of the systematic variation in each bin
and are shown to indicate the scale. This is an approximation to the
standard ensemble method used in the limit setting code

Source μμjj Channel μνjj Channel

V + jets 14.2 ± 6.4 12.9 ± 9.9

Top 3.0 ± 2.2 1.9 ± 1.2

Diboson 0.8 ± 0.6 0.3 ± 0.1

Multi-jet < 0.1 < 0.1

Total 18 ± 8 15 ± 11

Data 16 14

LQ 8.2 ± 0.4 3.2 ± 0.2

level (CL) for the scalar leptoquark production cross section
using a modified frequentist CLs approach [43, 44]. The test
statistic is defined as −2 ln(Q) = −2 ln(Ls+b/Lb), where
the likelihoods Ls+b and Ls follow a Poisson distribution
and are calculated based on the corresponding LLR distri-
butions. Systematic uncertainties as described in Sect. 7 are
treated as nuisance parameters with a Gaussian probability
density function.

The 95 % CL upper bounds on the cross section for lep-
toquark pair production as a function of mass are shown in
Fig. 4 for the μμjj and the μνjj channels at β = 1.0 and
β = 0.5, respectively. The expected and observed limits for
the combined channels are shown in the β vs. mLQ plane in
Fig. 5.

9 Conclusions

The results of a search for the pair production of second
generation scalar leptoquarks using 1.03 fb−1 of proton-
proton collision data produced by the LHC at

√
s = 7 TeV

and recorded by the ATLAS detector are presented. The
data are in good agreement with the expected SM back-
ground, and no evidence of LQ production is observed.
Lower limits on leptoquark masses of mLQ > 685 GeV and
mLQ > 594 GeV for β = 1.0 and β = 0.5 are obtained at
95 % CL, whereas the expected limits are mLQ > 671 GeV
and mLQ > 605 GeV, respectively. These are the most strin-
gent limits to date arising from direct searches for second
generation scalar leptoquarks.
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Fig. 5 95 % CL exclusion region resulting from the combination of the
μμjj and the μνjj channels shown in the β versus leptoquark mass
plane. The shaded area at the left indicates the D0 exclusion limit [14]
and the thick dotted line indicates the CMS exclusion region [13]. The
dotted and dotted-dashed lines indicate the individual limits derived
for the μμjj and μνjj channels, respectively. The combined observed
limit is indicated by the solid black line. The combined expected limit
is indicated by the dashed line, together with the solid band containing
68 % of possible outcomes from pseudo-experiments in which the yield
is Poisson-fluctuated around the background-only expectation
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