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Problems have been encountered with the AGS program1) in finding closed orbits 

for large momentum deviations on certain machines. An alternative search method was 

proposed (see Appendix I), which made it possible to find the closed orbits in almost 

all cases (this method has recently been added as option "VE" inside the AGS program) . 

However, with this new tool, a second type of problem was revealed. Particularly on 

the ISR machine with ELSA type working lines (Qh � 8.9), the calculated closed orbits 

went locally to infinity for a certain negative value of the momentum deviation. 

This was in contradiction with the fact that protons with this momentum deviation 

were observed to circulate in the ISR. 

As aperture calculation and collimation studies for future low-S insertions 

required reliable calculations of the off-momentum orbits, an analysis of the AGS 

calculation was made. 

It was found that errors existed in the calculation of the off-momentum trans­

fer matrices due to an incomplete treatment of the edge effect for those multipole 

magnets, whose magnetic length depends on the radial position. Although the effect 

of the radial length variation of the dipole field was included in the program, the 

edge focusing due to higher order multipoles was not taken into account. Off central 

orbit, these higher order effects are not at all negligible and their absence results 

in appreciable errors in the calculated chromaticity. An example is given in 

paragraph 5. 1 which explains the above-mentioned orbit anomaly. 

In this report a new version of the AGS routine MATRIX (calculation of the 

transfer matrices) is proposed, which takes into account the edge effects due to 

multipole components up to the octupole. Equally the momentum dependence of the 

bending radius has been added which influences considerably the momentum dependence 

of gannna transition and gives a better agreement with measured values. Some tests 

of the consistency of the new computation are presented as well as the consequences 

of its use to compute the properties of the present ISR and of the future super­

conducting low-S insertion. 
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2. TREATMENT OF EDGE EFFECTS IN THE AGS PROGRAM 

2. 1 Use of the transfer matrices in AGS 

The MATRIX routine in AGS prepares the transfer matrices of magnet units and 

drift spaces for use in two cases : 

i) To calculate betatron parameters on the centre line, or (if 6p/p # 0) on an 

off momentum closed orbit. The quantities used for the computation of the 

matrix elements are magnetic normalised gradients K. (K is equal to the 

gradient divided by the magnetic rigidity of the particles
3); in order to 

simplify, K will be referred to as gradient.) 

ii) To calculate trajectories which are to be used in the closed orbit search for 

6p/p # 0. In this case the routine switches over from gradient to field. 

This procedure is approximate (see Appendix II) for a non-linear machine, 

since the transfer matrices express the solution of the linear equation of 

motion and do not in any case give the solution of the non-linear equation 

of motion. 

2. 2 Differences between the present and the proposed version of the MATRIX routine 

In the following, the existing routine will be referred to as MATRIX 1, and the 

proposed modified version as MATRIX 2. 

The difficulties in calculating trajectories and focusing with combined function 

magnets originate from two sources : 

i) Their length L may be large, (i.e. the S function may vary strongly across 

the magnets). 

ii) L can vary across the aperture of the magnet, i.e. the derivatives of L with 

respect to the radial position x, L' and L" may be non-zero. 

In MATRIX 1 these complications are treated together (p. 12 of ref. 1). In 

MATRIX 2 the two complications are separated as follows : 

a) For long magnets with gradient K and gradient derivatives with respect to the 

radial position x, K' and K", the transfer matrix is calculated according to 

ref. 1, but using rectangular magnets with length L equal to the magnetic 

length on central orbit (L' = L" = 0). 

b) The edge effects resulting from the difference between the real and the 

rectangular magnet are built in by adding thin lenses at the extremities of 

the long magnet. 
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The edge effect due to the length variation of the dipole field is treated as 

in MATRIX 1. The edge effects of the remaining multipole field (only on off momentum 

orbits) are treated as follows 

The radial length variation is described by : 

L (x) 

The value of the magnetic field is 

F (x) x L K(m) . x
m

/ (m+l) ! 
m 

with n = 1, 2 

with m o, 1, 2 

The integrated field, which is used to calculate trajectories, may then be 

written as : 

L (x) • F (x) X • 

n, m 

L (n) K(m) n+m 
X 

n! (m+l) ! 
(1) 

and the integrated gradient, used to calculate the focusing along a given trajectory, 

may be written as : 

where 

d 
dx [L(x) . F (x) ] 

In MATRIX 2 this 

L (n) K(m) 

n, m 

is written 

(n+m) 
X 

n+m 
X 

n! (m+l)! 

in the Fortran 

(n+m+l). 

code as 

f 
(n+m) (n+m+l), 

f. 1 for focusing calculation, 
1 

f. 1/ ( i+l) for trajectory calculation. 
1 

(2) 

(3) 

At this point the new version differs considerably from the old version. 

In MATRIX 1 the £-coefficients are placed in a different way, which would be written 

in the thin lens approximation as : 

(n) (m) (n+m) 
•••• L . K  . x  .f . (m+l) . (4) 

m 

In the trajectory calculation, equations (3) and (4) are identical. However, in 

the case of focusing calculation, (4) is different from (3), and corresponds to : 

L (x) 
dF(x) 

dx 
d rather than 
dx 

[L(x) . F (x) ]; i.e. the terms 

dL ( ) K' x2 K"x 3 

dx
x 

F (x) = (L' + L" x) (Kx + -2- + -6-) are missing. 
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The equation of horizontal motion for large momentum deviations has been esta­

blished in ref. 2 (equation 2.52 a). It is : 

where 

x" - [K - _l] x 
p p2 

p 

K 
K 

p 
1 +� 

p 

In MATRIX 1 K 
p 

is 

and p (1 + �) p 

used, but p (value at the centre orbit) is used instead of p • 
p 

The consequence is an incorrect dependance of the position of the closed orbit, 

and hence gamma transition, on �p/p (see fig. 1). 

In MATRIX 2 p has been replaced by� . p 

4. COMPARISON BETWEEN THE RESULTS OBTAINED USING THE PRESENT AND THE PROPOSED VERSION 

OF THE MATRIX ROUTINE 

4. 1 Agreement between "trajectory" and 11focusing" Qh 

Once a linear machine has been computed, it is common practice to introduce 

non-linear field components in certain magnets (e.g. main magnets of the ISR) in 

order to obtain specified variations of the betatro_n parameters with the momentum 

deviation. 

In this process an incorrect focusing calculation on off-momentum orbits 

results in wrong calculated values of the non-linear field components, which has 

two consequences 

i) The positions of the off-momentum closed orbits are incorrect; 

ii) The values of Qh obtained from the closed orbit calculation as shown in 

appendix I ("trajectory Q
h

" computed from the Twiss matrix which is obtained 

in the course of the orbit computation) are different from those computed 

by the focusing calculation ("focusing Q ") which is not consistent. h 

For example for the ISR with the steel low-B insertion, when the chromaticity 

correction is made by means of MATRIX 1, the trajectory Qh is very different from 

the focusing Qh 
(see 5.1.1). 

Using MATRIX 2 on this machine, the two methods of computing Qh produce values 

which differ by less than 0.001 for �p/p as large as ± 0.02. 

,.,,.,., ,,.,,.. ''"""I "''"''"'"'""'" ,.,,,' "'"'""" '" """" 1'1' , .... ,,.,,.,. ., .. ,,.,•�••""'"�'l•on,110•'11'" '" tllll• 1'1 1'111' 11111 I"" 1 1 1 1 1  
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For machines in which the multipole components do not have radially variable 

lengths, MATRIX 1 and MATRIX 2 obviously give the same results. In this case, 

the values of Qh computed by the two methods differ by less than 10-5 in the useful 

range of momentum deviation, in machines as different as LEP and ISR. 

4. 2 Correction of the chromaticity to the first order 

In the case of a machine consisting of combined function magnets only� the 

sextupole component K ' needed to cancel the chromaticity to the first order in 

6p/p is, neglecting J.:.. with respect to K :  
p' 

K' K I cip (5) 

K is the quadrupole component and ap the average value of the dispersion function 

in the elements which have the same K and K '. 

If the quadrupole component has a radially variable length with derivative L ', 

it introduces an integrated sextupole component equal to 

2 KL'. 

Assuming that cip is not very different from the mean value between the entrance and 

the exit value of ap, the sextupole component needed to cancel the chromaticity is 

now 

K ' = K '  - 2 K L' / L 
C (6) 

where K '  is given by (5) and Lis the magnetic length of the element on the central 

orbit. Table 1 gives the values of the different terms in (6), in the case of a 

4-fold symmetric ISR which only contains combined function magnets. 

Table 1 

Cancellation of the linear chromaticity in the ISR, ap is computed for the 

two first magnets of the superperiod. 

Magnet type K '  = K/ap K '  AGS compu- K ' - 2K L' /L K '  computed 
ted L '= 0 AGS C 

by AGS2 

D 0. 02550 0. 025336 0. 013186 0. 012690 

F - o. 01914 - o. 018906 - 0.03118 - 0.03111 

The agreement between the two values of K 'c is satisfactory since there are 

approximations both in formula (6) and in the AGS formalism. 
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4.3 Comparison between field components calculated by AGS and measured values 

At the ISR the working lines are operationally corrected, if necessary, by 

adjusting the current in the pole face windings in the main magnet units. The 

working line is then measured with a circulating beam, by means of a high precision 

Q-meter. This procedure is iterated until the absolute difference between measured 

and theoretical working line is smaller than 3. 10-3 • 

The multipole field components of the main magnets of the ISR are measured on 

reference units and processed to produce the equivalent of K' in equation (6), 

i.e. the edge effects are included. 

The values of K and its derivatives are given in table 2 for the main magnets 

of the present ISR (ring 2) with the steel low-S insertion ( LBAC machine). 

Since AGS computes K '  (eq. 6) the K '  have been obtained by means of eq. (6) and 
C 

the K" have been computed by the same formula, replacing K and K' by K' and K11 • 

The K' calculated by means of MATRIX 2 are closer to the measured values than 

those calculated by means of MATRIX 1. 

Table 2 

Field components in the main magnets for the ring 2 of the ISR on the LBAC machine 

K
F 

K' 
F 

K" 
F � KiJ � 

MATRIX 1 - 0.039702 - 0. 0095464 0. 03195 0. 038568 0.031856 - 0. 056626 

MATRIX 2 - 0. 039702 - 0.01420 0.00064 0.038568 0.02600 0.0082 

measured - 0. 039893 - 0.01506 0. 00394 0. 038734 0.023907 0. 022367 

The discrepancy between the measured values of K' and the MATRIX 2 computed 

ones represent a relative difference smaller than 10-4 of the field of the main 

magnet over its useful aperture. This is about the limit of the accuracy of the 

field measurements. 

The computed octupole components K11 are very different from the measured ones 

because the second order expansion of the trajectories is inaccurate in AGS as shown 

in appendix II, and because the field associated with those components is within 

the uncertainty of the measurement. 
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CONSEQUEN CES OF THE USE OF THE NEW VERSION OF MATRIX 

The new version MATRIX 2 has made it possible essentially to assign the correct 

horizontal betatron wavenumber to the off-momentum closed orbits for machines with 

L' I 0. The consequences of the use of MATRIX 2 are summarised below for the ISR 

machine with and without the existing low-B insertion, and with the future super­

conducting low-B insertion. 

5.1 ISR with steel low-S insertion ("ELSA " line) 

5. 1.1 Calculation_of machine_2arameters 

The working line ELSA (Q
h 

= 8.902, Qh = + 2.5) is shown in fig. 2, as calcula­

ted with MATRIX 1. If the magnetic parameters resulting from the chromaticity 

correction performed with MATRIX 1 are used as input in the new version MATRIX 2, 

the result is a working line with Q '  = - 4.1 (see fig. 2). 

With MATRIX 1 orbit problems occurred at �p/p a - 0.020. The calculation 

using MATRIX 2 shows that the 11trajectory Q
h

" is equal to 9.0 for l:.i.p/p = - 0.0185, 

which can explain why the injection orbit (6p/p = - 0.021) could not be calculated 

using MATRIX 1. 

5.1. 2 Conseguences_for_machine_o2eration 

The absence of sextupole components in the low-S quadrupoles creates a mismatch 

of the orbits of the second order in !::.p/p. Therefore the positions of the closed 

orbits for 6p/p = - 0.021 and for + 0.021 are quite different from apx(6p/p). 

Before MATRIX 2 was written, no betatron parameters were available for the 

injection orbit. Instead, the values of the central orbit were used, or a linear 

extrapolation between the central orbit data and the (available, but incorrect) 

data for the outside orbit at 6p/p = + 0.021. 

This resulted in inaccuracies in the calculated operational positions of 

collimators, and made it impossible to perform precise aperture calculations. 

With MATRIX 2 reliable data for the injection orbit have become available, 

which considerably speeds up the setting up of the collimator system, the scrapers 

and the injection kicker position. 

5.2 Application to the variation of yt with �p/p in the ISR 

The variation of yt with IJ.p/p was rneasured4) on the 118 C11 working line 

(QH 8.614, Q� = + 1.6), without low-S insertion. 
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h 4) d' T e  y values are calculated accor ing to t 

with R 

p 

1 = .I'. dR 
y 2 R dp ' 

t 

average machine radius of the orbit, 

momentum; 

rather than : 
(R - R ) 

C 

(p - p ) 
C 

R and 
Pc 

are radius and momentum on central orbit. The latter definition is used 

in the AGS program. The values of yt calculated by means of the first formula with 

MATRIX 2 agree well with the measurements (fig. 1) , whereas with MATRIX 

of the curve which represents Yt(�p/p) is too large by a factor of 3. 

5. 3 ISR with the future superconducting low-S insertion 

1 the slope 

The predictions which could be affected by the modification of AGS are those 

associated with non-linear elements; they concern the useful aperture, the feasibility 

of the bare machine and the sextupole components in the insertion. 

5.3. 1 The usef�!
-�perture 

The above is determined by comparison to the useful aperture of a known machine, 

assuming that it is proportional to the momentum bite of the stacked beam. The 

aperture reduction induced by the superconducting scheme computed by MATRIX 2 differs 

by about 1 ° /00 from that computed by MATRIX 1 because great care has always been 

taken with the matching of the off-momentum orbits : this means that the aperture 

reduction only results from the increase of the amplitudes of the horizontal betatron 

oscillations due to their bad matching and this phenomenon is equally well described 

using MATRIX 1 or MATRIX 2. 

5.3.2 Feasibilitz_of_the_"bare machine� (i.e. insertion off) 

Once the ELSA working line has been built for the machine with the insertion, 

the insertion is switched off and the remaining bare machine has to be built with 

the present ISR in order to check the feasibility of the scheme. The bare machines 

obtained according to this procedure, either using MATRIX 1 or MATRIX 2 are very 

similar and thus the feasibility established previously remains valid. 

5.3.3 Sextu2ole_comEonents_in_the insertion 

With MATRIX 1 the value of Qh associated with the orbit at the top of the stack 

was about 8.7 and the matching of the orbit to the second order in 6p/p was not 
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critical, so that the optimisation of the sextupole components was achieved by 

acting more on the value of S
h 

than on the position of the orbit in order to maximize 

the useful aperture. 

With MATRIX 2 the value of Qh for the orbit is correct (Qh = 8. 947) and the 

matching of the orbit to the second order in �p/p is important. Thus one sextupole 

component had to be strongly modified in order to satisfy this latter procedure and 

this is the most important consequence of the use of MATRIX 2 to analyse the super­

conducting scheme. 

The importance of the introduction of sextupole components in the scheme was 

also established : with MATRIX 1 the suppression of the sextupoles led to a loss 

of luminosity of about 4 %, since the off-momentum orbits were not sensitive to a 

mismatch; with MATRIX 2 the loss becomes 10 %. 

6. CON CLUSION 

It is important that the wave number associated with a given off-momentum 

closed orbit be the same as the wave number calculated from the gradients along 

this orbit since the common practice is to specify the latter wave number in the 

process of chromaticity correction. It has been shown that a discrepancy between 

the two wave numbers may indeed lead to a bad description of the off-momentum 

closed orbits and cause problems in machine design and operation. 

Therefore it is proposed that the modified version MATRIX 2 of MATRIX is used 

in AGS for the calculations of the ISR beam optics. The binary version of MATRIX 2 

can be found in the permanent file : NEWAGS, ID=IS170RISS in the CD C computer MFA. 

The predictions concerning the performance of the superconducting low-S scheme 

are not dramatically different when they are remade by means of MATRIX 2. The 

major change concerns the value of one of the sextupole components in the scheme. 

For machines in which the magnetic length of the multipole components do not 

depend on the radial position, the new calculation does not change the values of 

Q but substantially changes the values of yt on off-momentum orbits. 
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APP E N D I X  I 

Computation of the coordinates of the closed orbit 

and the Twiss matrix around it 

The principle of the method is to track a sufficiently large number of trajec­

tories in the vicinity of the closed orbit for computing the unknowns which are the 

coordinates of the closed orbit and the Twiss parameters. 

The position of a particle with respect to the closed orbit around which it 

oscillates is described by the vector 

If the initial position is X , the position after one machine period is osc,o 

X 
osc,1 

T X osc,o 

where T is the Twiss matrix, according to the linear theory of the betatron 

' 11 ' J) 
osc1 ation . 

Now let X be the position of the particle with respect to an arbitrary system 

of coordinates and X 
b be the position of the closed orbit with respect to this or 

system : 

X = X + X 
orb osc 

After one period we have 

X1 = X + X 
orb osc, 1 

X - X  + T X  
0 osc,o osc,o 

where the vectors indexed o are the initial vectors. 

After i periods, if we put D. 
l 

D ,  
1 (T

i - I) X 
osc,o 

X. - X ,  we see that 
l 0 

which gives a set of equations which do not contain X 
b

" 
or 

(1) 

(2) 
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We now eliminate X by subtracting D from the previous equation 
osc,o 

D. - D 
i l 

(Ti - I) X - (T - I) X 

= T (T 
i-1 

Which leads to the 

D - D 2 l 

o, - D
l 

D - Dl n 

osc,o osc,o 

I) - X T D . osc i-l 

system 

TD 
l 

TD
2 

TD 
n-l 

(3) 

in which the D. 's may be obtained from the trajectory tracking and the unknowns are 
i 

the coefficients of the Twiss matrix T. If the motion in the two oscillation planes 

with coupling is considered, there are 16 elements in the Twiss matrix; since each 

equality in (3) is equivalent to 4 equations, 4 equalities are needed and n must be 

equal to 5. Once the Twiss matrix is determined, the coordinates of the oscillation 

are computed by means of system (2). Then equation (1) makes it possible to compute 

the coordinates of the closed orbit. 

If we only consider the closed orbit in the horizontal plane, there are only 

4 elements in the Twiss matrix, which only need n = 3 in (3) (a tracking of trajec­

tories over 3 periods of the machine). 

The latter procedure has been implemented in AGS as option "VE". 

The presentation of the computation in terms of matrix equations (3) was proposed 

by B. Autin (private communication). 

"' .............. ,,, .. ,-, . ., ..... . ,_.,,. , ..... , .. � ........ ' ., ..... ,,,.,,.,.,.,. -�_,. ... ,.,�, .. ,, '""'""'""'"""'"' ... ''"'""'� '""'"' '"" "'""'"' '" ''" """ ""''' ,,,.,,,., .. " ' '., . , .... ' 
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AP P E NDI X II 

Verification of the computation of the trajectories 

by AGS up to the second order 

This verification is based upon an analytical calculation of the solution of the 

non-linear equations of motion up to the second order in amplitude for combined 

function magnets (the terms associated with the expression in power series of 6p/p 

are not considered). This calculation is made by the perturbation method. 

1. Properties of the solutions of the linear equation of motion 

(The formalism below has been used in ref. 2 and some of the results below are 

also in this reference.) 

The equation of motion is x" + Kx = 0 (1) 

where K is constant and x is a function of the abscissa s. It is convenient for the 

following computations to have general properties of the particular solutions C(s) 

and S(s) which satisfy the initial conditions 

C(o) = S ' (o) = 1 C' (o) = S(o) = O, 

since the general solution of (1) will be : 

X(s) = x C(s) + x' S(s) 
0 0 

x and x '  being the initial conditions of the motion. 
0 0 

Integrating (1) we obtain : 

Js Xds = - .!_ (X' - x ' ). 
o K o 

Multiplying (1) by 2X ' and integrating 

X' 2 - x' 2 + K (X2 - x2) 
0 0 

0 

Dividing the latter by X
n 

and integrating by part : 

(x ' 2 + Kx2) 
0 0 ls 

From (2) we can deduce : 

C' 2 + K ( C2 - 1) = 0 

x '  
0 

n-l (n-i)x 
0 

_ __:X::..' __ 
+ 

K(n-2) 
n-1 

(n-1)X n-1 

S'2 - 1 + K S2 0. 

ds 
n-2 X 

(2) 

(3) 
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Writing (1) for S and C and eliminating K we obtain 

SC" - CS " = 0 CS' - SC' = 1 

Dividing the latter by C2
, integrating and comparing with (3) gives 

C' = - KS hence S' = C 

which leads to C2 + KS2 = 1 

Many other integral relationships can be obtained for S and C irrespective to 

the sign of K. Those established above are sufficient for the subsequent calculations. 

Finally the expression of the derivatives of C and S makes it possible to obtain 

the expression of the Taylor series of S and C 

2. 

C (s) 

S(s) 

(s - so)2 (s - so) 3 

C(so) - (s - so)KS(so) - 2 KC(so) + 
3: 

K2S(so) + •• • 

(s - so)2 (s 
S(so) - Cs - so)C(so) - 2 

KS(so) - - so) 3 

3: 
KC(so) + •• • 

Computation of the trajectories up to the 2nd order in amplitude for 

a combined function magnet 

Let us consider a magnet with a quadrupole and a sextupole component. Taking 

into account the quadrupole only, the trajectory of a particle is described by the 

function X(s) which has been defined in paragraph 1. 

If we now introduce the sextupole component, equation (1) becomes 

x2 
x" + K x + K' 

2 
0 

This new equation will be solved by the perturbation method putting 

(4) 

x = X(s) [1 + y (s)], where y (s) is small with respect to 1. Introducing this function 

in (4) and only keeping the first order terms in y and K' , we obtain : 

K' 
2 

x' 

X3 
can be integrated by parts, using (2) and the integral of (1). 

This gives 

y' can be integrated easily thanks to the formuls (3), we thus obtain : 

K' 
[ y 

= 6K X - x + 2(Kx2 

0 0 

(X - x )  
+ x' 2) o 

o KXx Kx X(Kx2 + x '  2 ) 
0 0 0 
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the approximate solution of the non-linear equation (4) is then : 

2 + -­
Xx 

0 

x' (3x2k + x' 2) (Kx2 + x' 2)

] (X - x  ) (Kx'+x' ') - o o o o o 
o o o Kx (Kx.2 + x' 2) 

0 0 0 

This solution can be expressed in a simpler form by substituting X Cxo + Sx' 
0 

X X K' (C- 1) + 6K 
[ (C + 2)x� + 2Sx x' - (C - 1) __9__ 

x' 2] 
o o K (6) 

If IK£ is small with respect to 1 (£ being the length of the magnet considered), 

this function becomes 
K' £ 2 2 1 £2 

x (O=X(O- --(x2 + -x x ' £ +-x' 2 ) 
4 0 3 0 0  6 0 ' 

which can be obtained directly by integrating (4) with K 0. 

3. Expansion of the transfer matrices for the trajectories in AGS 

In AGS the coordinates of the trajectories at the exit of an element of length 

£. are : 

x = x C- (£) + x' S
K- (£) 

o K o 

Where CK means that this function is the solution of (1) with K K, 

K K + K' x 

2 with x 
x + x x' - x' 
___ o_ + o £ 

2 12 

(4) 

The latter formula comes for the description of the trajectory x(s) by a 3rd degree 

polynom. CK and SK
- can be expressed once we have noticed that the relevant variable 

in ( 1) is lie"£ : 

K'x Q. 
(£ + �) 

From the expansion of C (s) and S(s) in power of s (see end of paragraph 1) we have 

K'x9. C- (£) a C(£) - -- S(£) 
K 4 

K'i,Q, 
a S(£) + C(£) 4K 
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Putting back those expansions in (4) we obtain 

+ x� ( S 

CK'x£) +--- + 
4K 

+---
CK'x£) 

4K 

Using the notations of paragraph (1) this can be written 

X'K' Q, 
x = X +--­

SK 

x' X '  _ XK'R.. 
8 

X + 
0 

X + 
0 

which is a linear system with 2 unknowns x and x'. The solution is 

X 
K'£ X + SK KSx2 

0 

KS£ z KS£ CSK£ l (l+C+--) + x x' ( C +C-KS2 ------) 6 0 0 6 6 

ct c2 i + x'2(SC+- - - -) o 6 6 

x' K'£ X' -
8 [ex� (l+C+KS) + X x' 

0 0 
(S+2SC+KS 2 --+- -) + x' 2S(S+---) 

ct c2 i £ ct] . 6 6 o 6 6 

4. Comparison between the analytical expansion and that of AGS 

It is sufficient to know the values of K and Q, to compute the coefficients of 

the above 2nd order polynoms. For the F main magnets of the ISR (where the position 

of the orbit x is the largest) K is about 0.04 m-2 and Q, is about 2.5 m: the 

coefficients of the expansion of x associated with those two numerical values are 

given in table 3: 

2nd order 
terms 

K' - xz 

K o 

K' 
X x' K 0 0 

K' 1 2 - x  K o 

Table 3 

Expansion of x to the second order in x and x' 

coefficients 

analytical numerical 
calculation value 

(C-l)(C+ 2)/6 -0.0578 

S(C-1)/3 -0.0978m 

- (C-1)2/6K -0.0624 m 2 

of the 

0 0 

second order 

AGS 

terms 

KS£ lK£(C + 1 + -6- )/8 

KS£ KSC£ HC2 + C-KS 2 --+--)/8 6 3 

C C2£ Hsc+---)/8 
6 6 

numerical 
value 

- 0.0575 

+ 0.453 m 

+ 0.671 m 2 
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The coefficient of x2 is almost exact in AGS but not the other ones. However, 
0 

if we consider the F magnets of the ISR and the orbit at the top of the stack, we 

have : x � 45 mm, x '  = 36 mrad, K' = 0.02 m-3 • In those conditions the second order 
0 0 

contribution to the position of the horizontal trajectory at the exit of a F magnet 

of the ISR is - 0.068 mm for the analytical expansion and - 0.017 nnn for AGS. 

The consequences of the error made by AGS are the following : there exists the 

equivalent of a field error on the off-momentum orbits. The associated closed orbit 

distorsion can be evaluated as follows : if 6x is the trajectory deviation at the end 

of the magnet considered, the associated deflection error is: 
2/\x 6 = -
£

-. 

The closed orbit distorsion induced by n identical kickers at places separated by the phase 

advance µ is : 
C 

X 
2 sin 11 Q i=l 

!e.'ocos(TTQ - Iµ - µ.I) 
1 1 

with µ. = µ + iµ 
1 0 

C 

The sum of the cosine functions is of the type : 

n 

cos (0 + 

i=l 

An upper limit of X 

s /Ix X= max 
X -

sin TIQ £ 

n 

cos (0 
iµ) 

C 

is then 

n - 1 

+-- µ ) 
2 C 

µc sin-2 

n sin 2 µc 

when considering a machine made from n identical cells, in which nµ = 2TTQ. 

ISR Qh 
= 8.95 at the top of the stack and n = 44, then X = 0. 7 mm for /Ix = 

For the 

0.05 nnn. 

It is useless to describe the position of the closed orbit inside the magnets by a 

polynom of the 3rd degree since this does not make the 2nd order expansion more 

accurate (if the factor 1/6 in the AGS expansion (see table 3) is replaced by zero 

the expansion is as accurate). 

It is useless to compare the experimental and theoretical octupole components since 

the 2nd order effects are too approximate in AGS. 
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9.3 

9.2 
MATRIX 1 
( corrected ) 

9.1 

9.0 

8.9 
measured 

MATRIX 2 
( corrected 

8.6 

8.5 

8.4 

8.3 

- 0.02 -0.01 0 0.01 

Fig. 1 Variation of  y across the aperture of the ISR. 

0.02 Ap/p 

For the injection orbit 6p/p is about - 0 . 02 ;  for the top 
of the stack 6p/p is about + 0 . 021 . 



working line obtained 
by MATRIX 2 

Q' = - 4.1 

-0.02 - 0.01 0 

9.0 -

8.8 

ELSA working line 

Q'  = 2.5 

0.01 0.02 /1p/p 

Fig. 2 Working line computed by MATRIX 2 ,  with the magnetic parameters 
computed by MATRIX 1 in order to obtain the ELSA line. 
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