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Abstract: W e analyze the wavefunctions for open strings in warped com pacti cations,
and com pute the warped K ahler potential for the light m odes of a probe D brane. This
analysis not only applies to the dynam ics of D branes in warped backgrounds, but also
allow s to deduce warping corrections to the closed string K ahlerm etrics via their couplings
to open strings. W e consider in particular the spectrum ofD 7-branes in warped C alabi¥Yau
orientifolds, which provide a string theory realizations of the R andall-Sundrum scenario.
W e nd that certain background uxes, necessary in the presence of warping, couple to the
ferm jonic w avefunctions and qualitatively change theirbehavior. T hism odi ed dependence
of the wavefuinctions are needed for consistency w ith supersym m etry, though it is present
in non-supersym m etric vacua as well. W e discuss the deviations of our setup from the R S
scenario and, as an application of our results, com pute the warping corrections to Yukawa
couplings in a sin plem odel. O ur analysis is perform ed both w ith and w ithout the presence
of D brane world-volum e ux,as well as for the case of backgrounds w ith varying dilaton.
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1. Introduction

FEREEERE BRERNNERONmommsm =

E]

EEEE

Scenarios w ith warped extra din ensions provide us w ith a rich fram ew ork to address long—

standing puzzles in physics Beyond the Standard M odel. In the presence of warping the
energies of localized states are suppressed by the gravitational redshift and so, as pointed

out In El ], thism ay o er a geom etric explanation of the electrow eakgravity hierarchy.

{1{



W hile this feature hasbeen m ainly exploited in the context of 5D m odels as the original
Randall-Sundrum (R S) scenarios and extensions thereof, it does clearly apply to m ore
generalw arped backgrounds. In particular, it is also m anifest in warped com pacti cations
of string theory E,E,E,E, E,E], especially for those strongly warped regions that can be
asym ptotically described asAdSs X 5 for som e com pactm anifold X 5, and which provide
a naturalextension of theR S scenario to a UV com plete theory. A sa result, these socalled
‘warped throats’ have becom e a pow erful tool to construct phenom enologically attractive
m odels of particle physics and coan ology from string theory, and are now adays an essential
ingredient in explicit constructions of string in ationary m odels [@].

G ven the above, it isnatural to wonder how the dynam ics goveming w arped com pact-
i cations can be understood from a string theory/supergravity perspective. In particular,
in order to draw precise predictions from string warped m odels it isnecessary to understand
the low energy e ective action that arises upon din ensional reduction. T he derivation of
such warped e ective theory has proven to be a subtle problem even if one restricts to the
closed string/gravity sector of the theory E,@, ,,E], although sin ple expressions can
begiven for certain subsectors [14]. W hile these results represent signi cant progress in the
derivation of warped e ective theories, in order to accom m odate constructions w here the
Standard M odel can be realized closed strings are not enough,' and one should inclide D -
branes in the picture. H ence, it is crucial to go beyond the previous analyses and study the
e ective theory for the associated open string degrees of freedom in warped backgrounds.

In thiswork we take an initial foray in thisdirection by studying open string wavefuinc-
tions In warped com pacti cations. In order to extract the 4D e ective action for the open
string degrees of freedom , we 1rst need to com pute their Intemal wavefunctions and then
carry out a din ensionalreduction. A s iswellknow n in phenom enological studies of w arped
extra din ensions |13 ], warping hasthe e ect of localizing m assivem odes to regions of strong
warping because of the gravitational potential. A s we shall see, warped com pacti cations
In string theory have new added features. O ther than the background geom etry which has
been accounted for in the aforem entioned studies, string theory contains background eld
strengths that, due to the equations of m otion, are necessarily non-vanishing in the pres-
ence of warping. Not only do these eld strengths couple to open string ferm ionic degrees
of freedom , but they couple di erently depending on the extra-din ensional chirality of such

elds, which results in di erent warp factor dependence for their Intemal wavefunctions.
For warped backgrounds that preserve supersym m etry, our results allow us to detem ine
the warped corrected K ahlerm etrics for open strings, and to show that thisdi erent warp
factor dependence is crucial for the kinetic term s of 4D  elds in the sam e supem ultiplet
tomatch? We willin addition nd that open string wavefiinctions act as probes of the
warped geom etry; their kinetic term s allow Ing us to deduce the K ahlerm etrics of the closed
strings that couple to them and hence the com bined warped K ahler potential. T he closed
string K ahler m etrics obtained in this way indeed reproduce the recent results of [L7, [L4].

'At Jeast in the context of type II string com pacti cations, w here such developm ents have taken place.

et us stress that our analysis does not directly invoke 4D supersym m etry, since we analyze the open
string wavefunctions for bosonic and ferm ionic elds separately. T herefore, the m ethod of obtaining open
string wavefunctions discussed here can be applied to non-supersym m etric warped backgrounds as well.
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W e however expect our m ethod to have m ore general applicability, including situations
w here the direct closed string derivations have not yet been carried out.

In particular, we w ill focus on deriving the open string wavefunctions of D 7Jbranes in
warped type IIB /F -theory backgrounds. A s pointed out in the literature (seeeg. [E,E D,
this setup provides a string theory realization of those 5D W arped Extra D In ension (W ED )
m odelsw here the SM gauge eldsand ferm ionsare located in the AdSs buk ],and which
have been suggested as a possible solution of the avor puzzle. Indeed, In this 5D scenario
the hierarchy between the various SM m asses and m ixing angles (ie., the avor hierarchy)
results from thedi erent localization of ferm ions in the extra din ensions, since the varying
degrees of overlap of their wavefunctions w ith that of the H iggs eld lead to hierarchical
Yukawa couplings. In the string theory setup that we consider, the D 7dranes and their
intersections give rise to non-A belian gauge sym m etries and chiralm atter. In particular,
in a warped throat background of the form AdSs X5 we can consider a D 7-brane whose
em bedding is locally described as AdSs X 3, and so its open string wavefunctions are
extended along the AdSs warped extra dim ension.

W ith a concrete realization of the buk R andallSundum scenario, one can investigate
w hether the assum ptionsm ade In the phenonom enological studies of warped extra din en—
sions are justi ed orm odi ed,and w hether the pform el strengths in string theory could
lead to new vardations of this basic dea. Furthem ore, the open string wavefinctions ob—
tained here enable us to calculate the physical Y ukaw a couplings for explicit chiralm odels,
as we shalldem onstrate In an explicit exam ple.

M ore generally, the present work can be considered as an initial step towards the
construction of the W arped String Standard M odel’. B esides the phenom enologicalappeals
m entioned above, these warped m odels are interesting because they can be understood , by
way of the AdS/CFT correspondence, as holographic duals of technicolorlke theordes.
C onstructing these warped m odels from a UV com plete theory allow s us to go beyond a
qualitative rephrasing of the strong coupling dynam ics in term s of a putative gravity dual
In addition, em bedding such technicolor m odels in string theory m ay also suggest new
m odel buiding possibilities? N ote that our analysis was carried out w ith all the essential
Ingredients, such as worldvolum e uxes. T herefore, our results can be applied to speci ¢
m odels once concrete constructions of such technicolor duals are found.

T his paper is organized as follows. In Section E, we study the D 7-brane wavefunc-
tions in the situation where the D 7brane worldvolum e m agnetic ux F is absent. W e
begin with the sim plest warped background which is conform ally at space and com pute
the wavefunctions of the bosonic and ferm jonic m odes separately. O ur treatm ent of the
ferm jons follow s from the -symm etric ferm lonic action in ] (see also @]),whjch takes
into account the coupling of ferm ions to the background RR p-form eld strengths in a
m anifested m anner. M any of our results carry over directly to the m ore general case of
a warped CalabiYau space, as discussed in subsection , and to tuming on background
3-orm  uxes in such background, as shown in subsection 4. In addition, in subsection .3
we also consider D 7-branes in backgrounds w ith varying dilaton, which becom e relevant

3See [@] (and also ]) for the realization of this idea In the context of D 3-brane at singularities.
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w hen these constructions are lifted to F-theory. T he open string wavefunctions obtained in
the earlier sections can be used to extract inform ation about the warp factor dependence
of the open string K ahler potential, discussed in subsection , and to analyze a sinpl
chiralm odel in subsection [2.]. Finally, n Section f§ we extend the above analysis to the
m ore generic case of D 7branesw ith a nonvanishingm agnetic ux F ,which isan essential
Ingredient to obtain chirality in generic situations. W e draw our conclusions in Section B,
and our conventions are spelled out in A ppendix E] .

2. U nm agnetized D 7-branes

2.1 W arped backgrounds in string theory

A s discussed In E,ﬂ], one can realize the R andall-Sundrum scenario by considering type
IB string theory on a (string fram e) m etric background of the form

ds?, = =2 dx dx + e Gundy"dy” (21)
w here (y) is a warp factor that only depends on the extra six-din ensional space
X ¢ of metric §. In the lim it where the dibton eld (y) is constant, the equations

of m otion constrain § to describe a CalbiYau metric. On the other hand, when is
non-constant X ¢ will be a non-R icci- at K ahler three-fold m anifold, which nevertheless
serves as a base for an elliptically bered CalbiYau fourfold X g, as usual in F-theory
constructions.

T he above warp factor m ay be sourced by either localized sources like D 3-branes and
O 3planes or by the background el strengthsF 3, H 3 present in the type IIB closed string
sector. In both cases, consistency of the construction dem ands that the background eld
strength Fs is also sourced. M ore precisely, the equations of m otion require that Fg is
related w ith the warp factor and the dilaton as

Fs = (1+ 10)F° FIt = ~d e 22)

where 1 stands for the Hodge star operator in the full 10D m etric ) and " In the
unwarped 6D m etric §. Finally, together w ith a non—trivialdilaton pro l a non-trivialRR
scalar C g must be present, both of them related by the equation

@ =20 (2.3)

where = Cyp+ i istheusualtype IIB axio-dilaton.

In order to Introduce a Standard M odellike sector In this setuip, one neaeds to consider
open string degrees of freedom . T hese can be sin ply added to the above setup via em -
bedding probe D branes In this background. Such D -branes w ill not only give rise to 4D
gauge theories upon din ensional reduction, but also to chiralm atter elds charged under
them . The sin plest exam ple of this is given by a D 3-brane ling R '* and placed at som e
particular point yg 2 X ¢. W hile m ost quantities of the D 3drane gauge theory will be
a ected by the warp factor via the particular value of 1= (v o), the intermal wavefunctions
for the D 3-brane eldswillhave a trivial -function pro le.
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A m ore non-trivial set of wavefunctions is given by the open string eldsofa D 7drane
wrapping a 4<ycle S4 X g.Asnow thewavefinctions can extend along a 4D subspace of
X ¢ they can feelnon-trivially the e ect of the warp factor, reproducing one of the essential
ingredients of theW ED modelsw ith SM  elds localized on the buk [LJ]. Ifwe focuson a
single D 7-brane, then we will start from an 8D U (1) gauge theory whose bosonic degrees
of freedom are described by the socalled D iracB om-Infeld and C hem-Sin ons actions

Spos = gPBL 4 b3 (2.4a)
Z q
sPEI- 4 Q@ e detP[G ]+ F (2.4b)
Z Rl;3 S4
Sy = b7 PC]” & (2 4c)
rR13 Sy
w here D71 = 2 Y@ 9% isthe tension oftheD 7 brarf)e, and where P [:::] indicates that
the 10D metric G and the sum of RR potentials C = é:o C2p are pulled-back onto the

D 7-brane worldvolum e. The sam e applies to the NSNS B — eld, which enters the action
via the generalized twoform eld strength F = P B ]+ 2 Or . In the rem ainder of this
section we w ill sim plify our discussion by setting B = 0 and F to be exact. That is, we
willset F = dA ,where A is the 8D gauge boson of the D 7drane worldvolum e theory. In
practice, this In plies that F = 0 up to uctuations ofA , a situation which w ill be denoted
by hF i= 0. W ith these sin pli cations, one can express the ferm ionic part of the D 7-brane
action as ]
Z g )

s = 5 d® e detPc] P?7 D >0 (2.5)

whereD is the operator appearing in the gravitino variation, its index pulled-back into
the D 7Jorane worldvolum €, and O is the operator of the dilatino variation. T he explicit
expression of these operators are given in A ppendix E, See eq.). A s explined there,
these two operators act in a 10D M a prana-W eyl'bjspjnor

- ! (26)

2
w here both com ponents have positive 10D chirality 10y 1= i. T he form ionic degrees of
freedom contained in ) are tw ice of what we would expect from an 8D supersym m etric
theory, but they are halved by the presence of PP 7, which is a profctor related w ith the
—sym m etry of the form fonic action ! For hF 1= 0 this projctor is given by
1

PD7 = 5 I (8) 2 (2.7)

where g, isthe 8D chirality operator on the D 7-brane worbvolum e, and ; acts on the
bispinor indices.

‘R oughly speaking, @) is Invariant under the transform ation ! +P P77 ,with an arbitrary 10D
MW Dbispinor. O ne can then use this sym m etry to rem ove half of the degrees of freedom in
°In our conventions the chirality m atrix fora D (2k + 2)-brane in R*** 1 is 5, 5, = ¥ 2221 yhere

Lare at -m atrices. For instance,a D 7-brane extended along thedirections 0 :::7 has (5 = 1 2224367,
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In order to din ensionally reduce the above construction to a 4D e ective theory w ith
canonically nom alized kinetic termm s, one rst neads to convert the above quantities from
the string to the Einstein fram e. T his basically am ounts to using, instead of the m etric
Guy In @), therescaled metricGE ;e Gy y . Thatis, in the Einsteln frame we
have the 10D m etric background

ds?y =2 ™ dx dx + 2'7%g, dy" dy" (2.8)

where Z = e is the Einstein fram e warp factor. Note that eqs.) and @) are
unchanged by this rescaling, and that in term s of Z we have ant = "6dZ . W hile the D 7-
brane C S action does not depend on m etric and hence isalso nota ected by such rescaling,
the DB I action does change. T he bosonic action now reads
Z q Z
s = 5, d® e det PGEl+e 2F + 5 PN (29)

where now G® refers to them etric tensor in .4). Fally, the farm jonic D 7dbrane action
also vardes by going to the E Instein fram e (see A ppendix A ) reading

7
q -
1
er d® e detPGE] PP’ DE+§OE (2.10)

S]37 = D7

where 0 ® and D¥ now refer to the dilatino and gravitino variations in the E instein fram e,
asde ned in (A 19). In the rem ainder of this paper we w ill always work w ith E insten
fram e quantities, w ithout indicating so w ith the superscript E .

2.2 W arped at space

T he sin plest case of a w arped background of the form ) is constructed by taking the 6D

m etric § to be at. T his situation is easily obtained in string theory, by sin ply considering
the backreaction of N D 3-branes in 10D at space. W hile in such sin ple solution the
internal space X4 = R® is non-com pact, one may tum to a com pact setup by sin ply
setting Xg = T ¢, and adding the appropriate num ber of D 3-boranes and O 3planes such
that the theory is consistent. In the Jatter construction the global form ofthewarp factor Z

w illbe a com plicated function of the D 3-brane positions, but close to a stack of D 3-branes
it will produce the wellkknown AdSs S° geom etry that m in ics the R andal-Sundrum

scenario E].

In the llow ng we w ill derive the open string wavefunctions of a D 7drane in such
conform ally at background. W e will particularly focus on the warp factor dependence
developed by the wavefiinctions of both ferm ionic and bosonic zero m odes, to be analyzed
separately. T his setup w ill not only be useful to m ake contact with the W ED literature,
but also to em phasize som e sin ple features that rem ain true in the m ore general situations
considered below . Finally, we w ill discuss som e subtle issues that arise when considering
D -brane ferm ionic actions of the form (2.9), as well as an alternative derivation of the
ferm jonic zero m ode wavefunctions m ore suitable for further generalizations.
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2.2.1 Ferm ions

Let us then consider a background of the form @) with § = ¢r, (which in pliesa constant
axiodilaton = Cp+ ie ©°)and a D 7-brane spanning four intemal din ensions of such a
background. In particular, we w ill consider that the intermalw orldvolum e of the D 7-brane
wraps a 4cycle S, = T*? T ®, so that we also have a conform ally at m etric on the
D 7-brane worldvolum e
x4
ds?, =2 ™ dx dx + z'? Gy ¢ )apdy?dy® (2.11)
ap=1
where ¢4 isa atT * metric.

T hen, if in addition we do not consider any background uxesH 3 or F3,we have that
the operators entering the D 7-brane ferm ionic action (R.1() are

0 =0 (212a)
1_mt 1 03

D =r + §F5 i,=d 71 EBZP,; (2.12b)
1 1 1

D, =rm+§?f§tmi2= G + 2@ MZ @Iz nP03 (2.12c)

where we have used the de nitions (B 19) and the relation £ J). Here stands for R*#
coordinates, m labels the intermal T © coordinates and the shsh-notation stands for a con—
traction over buk indices as in (B 14). Finally, we have de ned the projctors

1
PO3 = 5 I (6) 2 (2.13)

where as in (A 3(Q) () is the 6D chirality operator in T ®. These projctors separate
the space of bispinors into two sectors: those modes annihibted by P ©2 and those
annihilated by P°®. Pullingback the above operators® onto the D 7-brane worldvolm e we
obtain that the term in parentheses in ) reads

1 - - 1 1
D + ®D,+ -0 = & +&, + & hz = =p°3 (2.14)
2 8 2
w here a runs over the intemalD 7-brane coordinates, @(ZXt @ and %int #@,. Note

that both of these operators contain a warp factor: %th = 7 ™@z15 and @jft =z er..
Plugging (R.14) into @.1J), one can proceed with the din ensional reduction of the
D 7-brane ferm ionic action. First, we halve the degrees of freedom in @) by considering
a bispinor of the form
|

- (2.15)
0
which is an allowed choice for xing the -symm etry of the action. W e can then express

the D 7Jrane action as 7 7

S = pie? d*x dvok s B (2.16)
R1:3 T4

®T his am ounts to pullingback the index M ofDy ,and not indexless quantities like @ nZ or O .
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where standsfora conventionallOD M W spinor, d\/E)Jqr 1 for the unw arped volum e elem ent
of T * and the warped D irac operator is given by

w

o= e+ ey - & N7 (1+ 2 pxem) (217)

Extra = dvok: being the chirality operator for the intermal dim ensions of the D -brane.
For instance, if we considered a D 7-brane extended along the directions 0:::7 then we
would have gxra = +227,with Zde ned n @ 20).

Second, we split the 10D M a pranaW eyl spinor as

= + B = 4D 6D (2.18)

where 4p are four and ¢p six-dim ensionalW eyl spinors, both of negative chirality, and
B = B, Bg istheM aprana m atrix ().

F inally, one m ust decom pose ) as a sum of elgenstates under the (unwarped) 4D
D irac operator. M ore precisely, we consider the KK ansatz

= Co= ap X))  op (V) + (Ba 4p (%)) Bs ¢p (v)) (219)

and we inpose that (4@ (B4 ;) = m, j, where (4 isthe4D chirlity operator.
T his indeed in plies that each com ponent ‘' ofthe sum above is an eigenvector of ) &1,
with a 4D m ass elgenvalie Jn ; 3/ In posing the 10D on-shell condition "' = Owearrive

at the follow ing 6D equation for the intermalw avefiinction of such eigenvector®
1 ! 1=2 !
(4) @T‘} é @:T4 nz (1+ 2 Extta) 6'D = Z m (B6 6'D ) (2.20)

Tt is then easy to see that the 4D zero m odes of the action (.1J) are given by

o =1z =8 or  Bxwa = (221a)
+ for Extra + — + (2.21b)
w here are constant 6D spinorm odesw ith  chirality in the D 7-Jbrane extra din ensions.

In particular, if we consider a D 7dbrane extended along 01234578, then gyt = 4578 and
the ferm ionic zero m odes w ill have the follow iIng intemal w avefunctions

070 3=8 0; 3=8
W= g B g, (2.22)
and
01 1=8 0;2 1=8
6D Z + + 6D Z + o+ (2-23)
w here the 6D ferm ionic basis £ ; ++ :::ghasbeen de nedjnZ-\ppendij.
"A s recalled in the appendix, we consider the eigenvalues of £ (4)@g1;3; (1)&; «g Instead of £&;1:3 ;& :g

because the form er set of operators do com m ute and can hence be sim ultaneously diagonalized.
®Na vely, this equation looks like it ignores the M a prana-W eyl nature of . However, as discussed In
Sec , this is the equation of m otion that we should use.
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Hence, we nd that the warp factor dependence of the open string fermm ionic wave-
function depends on the chirality of such ferm ion in the D brane extra dim ensions. Note
that this is because of the presence of F5 In the D 7Jbrane D irac action. Indeed, had we
considered an 8D Super Yang-M ills action instead of ), no projctor P would have
appeared In () Nnor any gxim Operator in (). Hence, the zero m ode solution would
have been 8 = 7' regardless of the eigenvalie of under ey, as ound in ].

N ote that () Inplies a speci ¢ warp factor dependence on the 4D kinetic termm s of
the D 7-borane zero m odes. These are obtained by inserting them into (). For (£.214)

we nd 7 Z
S fer _ 0 4 ~ Y
p7 — D7€ d*x 4D @Rl,e 4D dVO]T4 (2.24)
R1;3 T 4
so we have to divide by pye Ov?)l(T 4 to obtaln a canonically nom alized kinetic temm .
Hence, for these zero m odes nothing changes w ith respect to the unwarped case. On the
other hand, for 2.2144) we nd
Z Z
S = pie? d*x 4 815 ap dvok:z ¥ . (225)
R1;3 T 4
w hich Involves the warped volum e vol(T 4y, Tn the ©llow Ing we w ill see that both kinetic
term s are precisely the ones required to m atch those of the bosonic m odes, as required by

supersym m etry.

2.2.2 Bosons

In order to com pute the D 7-brane bosonic wavefunctions in a at warped background,
ket us rst analyze the degrees of freedom contained in the bosonic action (@). First
we have the 8D gauge boson A , that enters the bosonic action via its eld strength
F=dAinF=PBIJ]+2 %.Second,wehave the transverse oscillations of the D 7-brane
wordvolum e, that look like scalars from the 8D point of view , and that enter the bosonic
action vi the pullback of G, B and C. Indeed, lt us consider a D 7-dbrane extended
along the directions 01234578. One can describe a deform ation of this worldvolum e on
the transverse directions 69 via two scalars Y © and Y ?, that depend on the workdvolum e
coordinates x = 0;1;2;3 and y* a = 4;5;7;8. The pulkback of the metric in the
deform ed D 7-brane is given by

PG] =G +G@Y'evi+@vyic; +@ Y6,

. 226
G + k%G 5@ @ ( )

where ; 2 £01234578g are worldvolum e coordinates and i;j 2 £6;9g are transverse
coordinates. In the second line we have used the fact that in our background G; = 0 and
redened Yi= 2 ¢ %= k ! for later convenience. C larly, the sam e expression applies
forany atD 7Jbrane in at space.

In general, a sim ilar expansion applies for the pullback of the B— eld, although as
before we are taking B = 0 and a constantdilaton = (. W ith these sin pli cations the
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DB I action for the D 7-brane reads

Z
gq
sPEI=  ,, d® e detP[Gl+e =2F (2.27)
Z Z
4 ~ 12 i j 15
= D7 d*x dvokse ° 1+ kGG @ @ J+e °-kF F o+ :::
R13 T4 2 4
g z 1 1
= S§7BIO 8 %> ! d*x dvok: —e °G46 @ RCHRE I o - R
R13 T4 2 4

w here we have used the form ula

1 1
det(l+M )= 1+ Tr M )+ 5 Tr ™)’ ETJ:M2 + (2.28)

and dropped the tem s containing m ore than two deriatives. A lso, In the last line of
(227) we have separated between a zero energy contribution to the D 7-brane action and
the contribution com Ing from derivative temm s, the latter being the relevant part when
com puting the open string bosonic wavefiinctions.

Besides the DB I action, the open string bosons enter the CS action of the D 7brane,

w hich for the background at hand reads
Z Z
s5S = D77 P4 F ~F = %(2 K?) b gty et AR E (229)

as all the other RR potentials besides C, are tumed o . W e have also separated C 4 into
intermal and extemal com ponents, w ith Cfth containing Cg123 and Ci“t the com ponent
Capog Whose Indices lie all along the extra din ensions.” Finally, since the term F ~ F
already contains two derivatives, we have neglected any temm of the form @ ' arising from
expanding the pullkback of C4 asin .29).

A sa result one can see that, up to two-dervative tem s, the C hem-Sin ons action does
not contain the D 7drane geom etric deform ations *. The 8D action of such scalar elds

then arises from the DB I expansion (2.27), and am ounts to

Z Z
1 A . . . -
sg=l = 2 g 2 teo d*x  dvok«dy Z @ @ T+ ¢he, ‘e, ]
2 R1:3 T4
(230)
and so we obtain the follow ing 8D equation of m otion
s T4z Lo t=0 (231)
where i3 = @@ and s= @‘;‘E@a@b.PerﬁDm ing a KK expansion
Tyt = P x sy (2.32)
and in posing the 4D K lein-G ordon equation g1 .l = m% .l we arrive at the eigenm ode

equation
T45% = Zm?s'} (233)

°N ote that a background C4; com ponent of the form C ., would break 4D Poincare nvariance.
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that again contains a warp factor dependence. Such warp factor ishow ever rrelevant w hen
settingm , = 0 and so we obtain that zero m odes sé m ay either have a constant or linear
dependence on the T ? coordinates y*. By dem anding that Sé iswellde ned in T 4, that
is by In posing the periodicity conditions on sé y*+ 1) = sé (y*), the lnear solution is
discarded and we are left w ith a constant zero m ode, that describes an overall translation
of the D 7-brane in the i transverse coordinate.

Note that a trivialwarp factor for scalar zero m odes does not contradict our previous
results for ferm ions, wherew e obtained warped wavefunctions. Indeed, In a supersym m etric
setup lke ours, the bosonic and ferm ionic wavefunctions should not necessarily m atch
because of the presence of the (warped) vielbein in the SUSY transform ations. H owever,
the 4D e ective kinetic term s should m atch. T hese are obtained by plugging sé = const:
in 30), after which we cbtain

Z Z
st = Lgae 1eo dixg; @ e ) advoL.zsis] (2.34)
2 Rl;3 T 4
which again involves a warped volum e, like in (2.29). Hence we nd that the geom etric
zero m odes of a D 7-brane are related by supersym m etry w ith ferm ionic zero m odes of the
form @2214).
Fially, by inserting the whole KK expansion ) Into the 8D action ) and
n posing ) one obtains the follow ing 4D e ective action
1 1 x 2 . . -z R o
spSt= = 8% ef d*x gy @ (@ J+m? |/ dvolk: Z sy s}
2 \ R1:3 T4
' (2.35)
w here we have used that those wavefunctions w ith di erent 4D m ass eigenvalue are orthog—
onal, In the sense that
Z
dvok:Z&iysis? = 0 i mi6m? (2.36)
T4
as In plied by the Stum -Liouville problem eq.). O ur prin ary concem is toward the
zero m odes and henceforth, we w ill w ill not consider the KK m odes.
R egarding the 8D gauge boson A , the 8D action up to two derivatives reads

dvo p 1 .
d‘&pﬂ §r:F F > ct F F +Cge™p Fy

Gr 4

1

1
gauge _ 3.2
sp77°= 5 87k

where is a tensor density taking the values 1. Asbefore ; run over all D 7-brane
indices, ; ; ; over the externalR'® indices and a;b;c;d over the intemal T ¢ indices of
the D 7-brane. T hegauge boson can be gplit in term sof4D Lorentz indicesasA = (A ;A;)
w here the com ponents A give a 4D gauge boson while the com ponents A ; give scalars in
4D . The action contains a term thatm ixes the scalars w ith the 4D photon
Z Z

d'x  dvoLs@%A,.@ A (2.37)

R1:3 T4

g 3k2 1
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which com es from theF ,F @ temm after integrating by parts tw ice. In analogy w ith what
is som etin esdone In RS (see eg. @]),thjstenn can be gauged away by the addition of
an R gauge- xing term to the action,
Z Z

4 A 1 a 2

d*x dvo]q;z;z— @A + Q°A, (2.38)

Rl;3 T4

S,,= 8 %% °
The form of this term is chosen to cancel them ixing term w hile preserving Lorentz invari-

ance. W ith this gauge choice, the A and A, com ponents decouple. The action forA in
the R gauge is

dvok . P
gPhoen _ gz b e, ke 2

R13 T4 G ¢

(2.39)

Gr SF F +-—(@A)
T g 2

10— 1 .
+ S O PhEA @A gci“t F F
which results in the equation ofm otion
1 1
R1sA 1 = QRA +2 ' (sA =0 (2.40)

where again, 13 and 1. are the unwarped Laplacians on R'? and T* respectively.
Here we have used that ¢y is constant, that Z ;C4 areR 1;3—jndependent, and that F =
@A @ A isan exact two-formm . Sin ilarly, for the 4D Lorentz scalars A ,,we obtain the
action

dvok: P
d*x —p—JT ’ 2

s¥r= 8 °k?
R13 T4 G ¢

— 1
Gy 4 71FabFabJr 5 Q%A .

1P 1
+ 3 §rs@ A Q@ A" gcf‘t O

(2.41)
from which we get the equation ofm otion in the R gauge
g 1=2
misA%+ 2 T E™ 4 @z PePAL + p— e, 2 Py =0 (2.42)
T4

where we have made use of CJ** = 7 1+ const:, as inplied by our buk supergravity

ansatz, and m ore precisely by @) and 2J).
Let usnow consider the follow ing KK decom position for the 4D gauge boson

A x;y = Al x Y y®) (2.43)

w ith the 4D wavefunction satisfying them assive M axwell equation In the R  gauge

! 1 ! 24!
meAt 1 2 egeA'=m?a‘ (2.44)

So that in an speci cR  gauge, ) am ounts to

re L= zZm? ! (2.45)
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Hence, we recover the sam e spectrum of Intemal KK wavefunctions as for the transverse
scalar 233). I particular, we recover a constant zero mode ° and an e ective kinetic
term given by the realpart of the 4D gauge kinetic function

Z A
dvo b .
PSR TG (0 (2.46)
T* Gr«
w hose holom orphicity has been studied in @]. N otice that the kinetic term s again involve
a warped volum e, so w e conclude that the D 7-brane 4D gaugino isalso given by a ferm ionic

zero m ode of the form (2.214).

Sin ilarly, one can decom pose the R1# scalars arising from A as
X
A, x;y = wlix W)yt (2.47)

a

fr7 = 8 °k°

and inpose the 4D on-shellcondition gisw. = m{w}.Then the8D eom [.43) becom es

. _ _ 1 _
GF '™+ 2 ez etw,! + p— e,z Ty = zmiw '®  (248)
T4

w here we have de ned Fa!b @GW ., QW . = dW '.Note that iff we chose the 4D Lorenz
gauge = 0,in the case ofthe zeromodesm -y = 0 the above equation is equivalent to

!

dz 'a [aF? =0 (2.49)

whereF ¢ = %F;bdyaAdyb is the zero-m ode twoorm . Thisim pliessthat (I  +«)F %= 2 !,,
where !, is a ham onic, antiselfdual twoormm in T *. Because F Y is exact, the integral
of Z !, over any twocycle of T ¢ has to vanish, and so we deduce that ', = 0. Hence
FO = reF 0 is a selfdual form and, again usihg the exactness of F?, we deduce that
F %= 0. This is solved by taking W é? = const:, lke for the previous bosonic wavefunctions.
Finally, inserting such W a? In the 8D bosonic action we obtain the 4D e ective action in
the 4D Lorenz gauge = 0

1
Swl: Z 8 3k2
D7 2

Z Z

d*x¢h e wlew) dvok.w 2w (2.50)
R1;3 T4

1

which only nvolves the unwarped T * volum e. This m atches w ith the 4D kinetic tem s
of their farm ionic superpartners (.214). Note that in in posing the 4D Lorenz gauge,
language there is still a residualgauge sym m etry which in 8D language isA ! A @
where @ = 0. It is easy to see that this residual gauge symm etry is respected by the
entire 4D e ective action and we can use it to set W ? to be constant.

A lthough the equations were solved in the 4D Lorenz gauge, W a? = consttandm g = 0
is a solution to (249) fr any choice of . However, for the KK modes, som e of the
m asses w illdepend on the choice of gauge. T his is related to the fact that, except for the
zero m ode, each of the vectors A' has a m ass and so corresponds to the gauge boson of
a spontaneously broken gauge symm etry in the e ective 4D language. T he m odes w ith

-dependent m asses correspond to G oldstone bosons that are eaten by KK vectors which
then becom e m assive. Sin ilarly, ¢ = const: is a zero m ode of ) for any choice of
Finally, one can again show that the KK m odes are orthogonal w ith the zero m odes as
they were for the position m oduluis.
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RS D7

4D Field P q 4D Field P q
gauge boson 0 124 gauge boson/m odulus 0 1
gaugino 3=8 gaugino/m odulino 3=8

m atter scalar (3 2c)=8 1 o2 W ilson line 0 0
matter ferm ion (2 c¢)=4 W ilsonino 1=8

Table 1: W arp factor dependence for intemalwavefunctions (p) and K ahlerm etric (g) in theR S
scenario and the D orane construction consdered here. In R S, the gauge boson and gaugino com e
from a 5D vector m ultiplet while the m atter scalar and fermm ion com e from a 5D hyperm ultiplet.
The 5D m assof the ferm ion In the hyperm ultiplet iscK with K the AdS curvature. T he additional
degrees of freedom from these supermm ultiplets are pro gcted out by the orbifold action isRS.The
wavefuinctions in SUSY R S are worked out in @] (our conventionsdi er slightly from theirs in that
we take theansatz forthe 5D femm ion tobe 1z (X;y)= 1gr (X) g (v) while @]usesa pow er
of the warp factor in the decom position.)

2.2.3 Summ ary and com parison to R S

In the previous subsections we have analyzed the zero m odes of a D 7 brane w rapping a
4—cycle In a warped com pacti cation. O ne could see this as a step towards a string theory
realization of an extended supersym m etric R S scenario @]. In the standard W ED setup,
4D eldsresult from the din ensional reduction of the zero m odes of 5D elds propagating
in the buk of AdSs 10 Unlke for at space, the supersymm etry alyebra in AdSs in plies
that com ponent edshave di erent 5D m asses [R5[]. In particular, the 4D gauge boson and
gaugino com e from a 5D N = 1 vector superm ultiplet. G auge invariance requires that the
5D vector com ponent ism assless, while SUSY requires that the 5D gaugino hasm ass %K
whereK = 1=R istheAdS curvature. Sin ilarly, them atter eldsresult from the reduction
of a 5D hypem ultiplet, the com ponent elds of which each have a di erentm ass.

T he D 7drane construction here di ers not only because of the existence of additional
spatialdin ensions, but also because of the presence of add itionalbackground elds,nam ely
the RR potentialC 4 that couples to open string m odes via the D 7brane C S and ferm ionic
action. T his results into a di erent behavior of the Intermal w avefiinctions w hen com pared
to the analogousR S zero m odes, as shown in Tablk|[l]. For each eld, the wavefunction can
bewritten as 2P where isa constant function w ith the appropriate Lorentz structure.

T he kinetic term s for each 4D  eld can then be w ritten schem atically as
Z Z

d*x D dvoly 2 @ (2.51)
R1:3 int
where isa 4D el with kinetic operator D,  is the corresponding constant intermal
wavefunction and “nt’ denotes the unwarped intermal space (st=z ; or RS or T 4 here).
Since both the D -brane construction considered here and the extended SUSY RS m odel
are supersym m etric, the 4D eldscan be arranged into supem ultipletsw ith the sam e value
of g for each com ponent eld. These are also given in Table EI

%7 hese buk RS m odels also involve an orbifbld S'=%;. The e ect of the orbibld is how ever to projyct
out certain zero m odes and does not e ect the dependence on the warp factor of the surviving m odes.
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224 M ore on the equation of m otion

W hen deducing the ferm ionic equation of m otion ' = 0 from the - xed action ),
we have apparently gnored the M apranaW eylnature of ' Ideed,theMW condition
In plies that In deriving the equation ofm otion, and cannot be varied independently.
A s a consequence, if given the two actions

Z Z

b, d® @ and  p; d° @ @ Inf (2.52)
with £ an arbitrary function, then the resulting equation ofmotion issmply @ = 0in
both cases, soved by = with aconstantM W sgpinor. This is iIn clear contrast to the
case where iIn ) isa W eyl spinor, since then for the second action the eom solution
isgiven by = f . This could have been anticipated from the fact that the 10D MW
nature of impliesthat & 2 isnon-vanishing only forn = 3;7. Hence, we have that

Enhf) 0 and so, iIn theM W case, both actions In {2.52) are the sam e.

G oing back to the form ionic action @.14), we have that

" e & (2.53)

where =" isgiven by () and are 10D MW gpinorswith 1 elgenvalie under gyir,

Just like those constructed from (). Hence, by analogy w ith ) one could na vely

conclude that the actual zero m ode equation is given by @Znt gD = 0, instead of =" gD = 0.
A m ore carefuil analysis show s that this is not the case. Indeed,

Z 7
s = pre A T B o+ Y = 2p5e0 & B (2.54)
w here we have usaed that
Z Z 1
@z e = a® z ¥ e 28407 (2.55)
and that €& «InZ =  @aZ . Hence, from [25}) we read that the equation of
m otion is indeed =" = 0. Note that we would have obtained the sam e result if we had

treated and as independent elds.

W hile in principle one could apply the sam e kind of com putation to deduce the equation
ofm otion for them ore generalbackgrounds to be discussed below , let us instead follow the
results of ]. T here, using the action presented in [@] (sin ilar to that in ]to quadratic
order In ferm ions) the follow Ing equation of m otion was deduced for an unm agnetized
D 7-brane

1
pP7 DE+50E =0 (2.56)

which is again the equation found from () ifwe na vely gnore theM W nature of
A subtle point in deriving ) is that a particular gauge choice in the ferm ionic
sector m ust be m ade. Indeed, in [@] the background superdi eom orphism s were used to

"W ewould lke to thank D . Sin ic and L .M artucci or discussions related to this subsection .
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choose a supercoordinate systam in which the D 7-brane does not extend in the G rassm ann—

odd directions of superspace. O nem ay then wonder whether such ferm ionic gauge xing

is com patdble w ith the gauge xing choices taken in the bosonic sector. O ne can check this

by com paring the SU SY transform ations in 10D w ith those In 4D . In the absence of N SN S
ux,the - xed SUSY transform ations for the bosonic m odes are (]

yi= 4 (257a)
_ (2570)

where isthe 10D K illing spinor. W e can com pare these against the SU SY transform ations
In 4D fora chiralmultiplet ( ; ) and a vectormultiplet ( ;A ),

w =" (2.58&)
WA= (2.58b)

where " isa constant 4D gpinor and hence independent of thewarp factor. T his In plies that

when we din ensionally reduce (), wew illonly recover the standard 4D transform ations
(2.59) if the warp factor dependence of bosons and ferm ions follow s a particular relation.
Indeed, if we take the zero modes A and Y to have no warp factor dependence as in
subsection 22, and if we notice that * z 4, . z17, 7 178 then it is
easy to see that precisely the fermm ionic wavefunctions of subsection are those needed
to cancel the warp factor dependence in the rh s. of ().

2.2.5 A lternative - xing

W hen analyzing the D 7Jbrane ferm ionic action, the - xing choice ) has the clear
advantage of expressing everything in termm s of a conventional 10D spinor , n contrast to
the less fam iliar bispinor that would appear In general. Taking other choices of - xing
m ay, how ever, provide their own vantage point. Indeed, we w ill show below that taking
a di erent - xing choice not only allow s to rederive the results above, but also to better
understand the structure of D 7drane zero m odes In a warped background.

M ore precisely, let us as before consider the action ) In waped at space, but now

we choose such thatP P7 = 0. The action (£.10) then reads
Z Z

SEL = e d'x  dvoks B (2.59)
Rl;3 T4

where B is now given by ). Follow ing a sin ilar strategy as in subsection ,we
split the 10D M ajpranaW eyl spinors ; in (@) as

i= it B 1= s i (260)

1

where ;4 are 4D and ;5 6D W eyl spinors, all of negative chirality, and B = B4 Bg

is again the M ajprana m atrix ). Because of the condition PP’ = 0 one can set
14= 24= 4p ,0 thatwe have
!
16
= 4D 60 + By ap Bs o 6D = (2.61)

26
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where ¢ satis esPE¥™@ oy = 0,with

PExtra _

(I Extra 2) (262)

N

D ecom posing () as a sum of elgenstates under the (unwarped) 4D D irac opera—
tor, and Im posing  (4,&z15 (B4 le ) = m, le and ' = 0 lads to the 6D bispinor
equation

1 _
@ s T EralZ (142 mxm  2) o = Z27m, Bs 4p) (263)

which is analogous to 2.20). Finally, nstead of (2.21)) we cbtain

b = —pz— ) for  gxtm = W ilsonini (2.64a)
i
1
738 i,
gD = —p? i for  gxtrm + = o+ gaugino + m odulino (2.64b)
+

and so we recover the sam e warp factor dependence In tem s of the extra-din ensional
chirality of the spinor. It is also easy to see that upon inserting such solutions into the
D 7-brane action we recover the sam e 4D kinetic term sas in (2.24) and @.23).

Interestingly, the above set of zero m odes have a sin ple interpretation in the context
of 10D type IIB supergravity. Indeed, note that for this choice of - xing the D 7-brane
zero m odes can be rew ritten as

_ g 18 w ith Pf3 = pb7 =0 (2.65a)
— y 38 . w ith pb3 . = pb7 + =0 (2.65b)

and constant bispnors. T his last expression can be easily deduced from () and the
fact that P° 2 and

e (2.66)

are equivalent when acting on type IIB W eyl spinors. A s explained in the appendix El,
PP 3 is the proctor that has to be fnserted in the D 3brane ferm fonic action, in the sam e
sense that PP 7 is inserted in €.1Q). T his in plies that 10D bispinors satisfying P?3 = 0
w ill enter the D 3-brane action, w hile those satisfying PP ® = 0 willbe profcted out. For
Instance, a D 3-brane In at 10D space w il have precisely four 4D ferm ion zero m odes of
the form = const:;, P 3 = 0. Such a D3brane, which isa 1/2 BPS ob gct, breaks
the am ount of 4D supersymmetry asN = 8! N = 4, so these four zero m odes can be
Interpreted as the four goldstiniof the theory. C onversely, the constant bispinors satisfying
pP 3 = 0 can be denti ed w ith the four generators of the N = 4 superalgebra surviving
the presence of the D 3-brane.
Ifwe now consider a warped background created by a backreacted D 3-brane, we have
fourK illing (bi)spinors generating the corresponding N = 4 SUSY . T hoseK illing bispinors
must satisff O =D = Dy = 0,whereO and Dy are given by (R.17). It is easy
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to see that the solution are of the form = 72 1¥® where is constant and, as argued
above, satis esP P 3 = 0. Introducing a D 7-brane in this background w ill break the buk
supersymmetry asN = 4! N = 2, so the D 7drane should develop two goldstino zero
m odes. Now , by taking the - xing choice P?7 = 0 the D irac action takes the sin ple
form ), and so such godstini am ount to the pulllback of the above K illing spinors
into the D 7-brane'? or, m ore precisely, those which are not profcted out by the condition
PP7 = 0. These are precisely the zero m odes in (§£:65a), whose warp factor dependence
is thus to be expected.

Hence,we again see by supersym m etry argum ents that such m odes could never have a
warp factor dependence of the form 7 =8 which would only beallowed ifwe tumed o the
RR uxFs from ourbackground. Indeed, in that case the background would not satisfy the
equations of m otion, so no supersym m etry would be preserved and the argum ents above
do not apply.

2.3 W arped CalabiYau

Let us now extend the above analysis to Include warped backgrounds ) w ith a non-—

at internal space X . W e will however still consider a constant axio-dilaton eld =
Co+ le °,which constrains X ¢ to be a Calabi¥Yau m anifold. T his basically m eans that
the holonomy group of X ¢ must be contained in SU (3), which In tum guarantees that
there is a globally de ned 6D sphhor ©¥ , nvariant under the SU (3) holonom y group and

satisfying the equation
rct Y =0 (2.67)

where r ¥

is the gpinor covariant derivative constructed from the unwarped, C alabiY au
m etric of X 5, and where we have taken ¢ to be of negative chirality. Iffwe choose X ¢ to
be of proper SU (3) holonom y, m eaning that its holonom y group is contained in SU (3) but
not In any SU (2) subgroup of the latter, then the solution to () isunigue, and the only
other covariantly constant spinor besides ¥ isitsconjugate (¥ = Bg ) .

A sem phasized in the literature, these facts are crucial in specifying the supersym m etry
generators of not only unwarped, but also warped Calbi¥Yau backgrounds. Indeed, it is
easy to see that fora warped CalabiYau the 10D gravitino and dilatino variation operators

are given by

O =0 (2.68a)
_ 1 03
D =@ , &nzp| (2.68b)
cy 1 1 03
D =r;'+ <@ MZ Z8NMZ o] (2 68c)

where PO ? is again de ned by () . In tem s of these operators the background super—
symm etry conditionsread O =D =D, = 0,where a typeIB bjspjnorljke6). It

2R ecallthat " isa linear com bination ofgravitino and dilatino operators, pulled-back into theD 7-brane
worlkdvolum e.
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we now take the ansatz

= i= i+B 1= g0 (X) 40 (V) (269)

2
with ;4p and igp of negative chirality, it is easy to see that D = 0 In poses PP3 =0
and @ = 0,whileD, = 0 i addition sets ;5p proportionalto Z 1=8 ¢¥ That is, our

warped K illing bispinor is of the form

cy : CY

— w Z - B, 2z BT (2.70)
1 +
where 4p isa constant 4D spinor that, upon com pacti cation, w ill be denti ed w ith the
generator of N = 1 supersymm etry in R12 . Note that n ) wehaveset 14p = 24p =
4p because such denti cation is enforced by the condition Pf 3 = 0.0n the other hand,

if we take the unwarped Imit 2 ! 1 then Pf3 = 0 no longer neads to be im posed,
and s0 14p and ,up are ndependent spinors that generate a 4D N = 2 superalgebra.
Thus we recover the fact that any source of warp factor breaks the CalabiYau N = 2
supersymm etry down toN = 1.

Letusnow considera D 7-orane in thisbackground. For sim plicity, wew i1l rst take the
lin it of constant warp factor Z ! 1, while nevertheless in posing the condition P23 = 0
on the background K illing spinor. T he worldvolum e of such a D 7-brane is then of the form
R'?  S,,where S, isa fourcycle side X . Belng a dynam ical ob fct, our D 7-brane w ill
tend to m Inin ize its energy which, since we are assum ing hF' 1 = 0 and constant dilaton,
am ounts to m inin izing the volum e of S, . In the context of C alabi¥ au m anifolds there isa
wellknow n class of volum em inim izing ob fcts, know n as calbbrated subm anifolds, that are
easily characterized in tem s of the globally de ned 2 and 3-fom sJ and present in any
CalabiYau. In particular, for a fourcycle S, the calbration condition reads %P Jg~Jl=
dvols, ,whereP [ ]again stand for the pullback into 3. Finally, this is equivalent to asking
that S4 is a com plex subm anifold of X ¢, which is the assum ption that we w ill take in the
ollow ng L3

G iven this setup,onem ay analyze w hich are the bosonic degrees of freedom ofour D 7-
brane and, in particular, w hich are them asslessbosonicm odes from a 4D pergpective. T he
answ er tums out to be quite sin ple, and only depends on topological quantities of the four-
cycke S, . First, from the 8D gauge boson Ay = (A ;A,) we obtain a 4D gauge boson A
and several4D scalarsA 5 whose Intemalw avefunctionsW 4 can beused to build up a 1-form
W =W,d ®inS,.UsihgthatF" = dW = 0 by assum ption as wellas the gauge freedom

Bm fact, a com plex fourcycle S; satis es either P [Jz} = 2dvok, or P [J2] = 2dvok,, and both
conditions de ne volum em inin izing ob fcts in a CalabiYau. However, given our conventions in the D 7-
braneaction only P [J2 ]= 2dvok, willsurviveasa (generalized ) calibration condition when we reintroduce
a warp factor satisfying F;“t = %¢dZ . This choice of calbration In warped backgrounds m atches the
conventions of @] and EJ, w hile the opposite choice P [J2 ]= 2dvols, is taken in ,@]. Changing from
one choice to the other am ounts to interchange the de nitions of D 7-brane vs. antiD 7-brane or, in term s
of the ferm jonic action, rede ning P ° s 7. Thisalso explains why, in the next section, we consider a
selfdualwordvoluime uxF = s,F foraBPS D 7-brane, instead of the antiselfdual choice taken in @].
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of A ., one can dentify the set of zero m odes w ith the num ber of independent ham onic
l-form sin S;. W e then obtain by (S4) realscalar elds from dinm ensionally reducing Ay , or
in otherwordsh®®) (Sq)= b1 (S4)=2 com plex W ilson lines. T his result applies in particular
toa atD 7-brane in at space, where we have that b, (T ) = 4.

In addition, 4D scalar zerom odesm ay arise from in nitesin algeom etric deform ations
of the D 7-brane intemaldim ensions S, ! S) inside the CalabiYau X ¢. Such deform ations
w ill be zero m odes if the volum e of the 4—cycle does not change, or otherw ise said if Sff is
still a com plex subm anifold. Tt can be shown that, if we describe such deform ation via a
vector @ transverse to S4, then SE is com plex only if & .d P~ d € isa ham onic (2,0)-
form in S;. Thenum ber of com plex scalar geom etric m oduli is then given by the num ber of
independent ham onic (2,0)-fom s of S4, nam ely the topological num ber ho) (Sg). Fora

atD 7-brane we have thath 0 (T 4 )= 1,and that the com plex zerom ode is the transverse
translations of T * inside T °.

R egarding the ferm ionic zero m odes, one should obtain the sam e degrees of freedom
as for bosonic zero m odes, so that the 4D e ective theory can be supersymm etric. This
is because the calbration condition %P [J ~J]= dvol, used above is equivalent to
PP7 = 0,where is taken as in[(2.]0) with Z = 1, and which is the equation that a
D 7-brane needs to satisfy in order to be a supersym m etric, BPS ob fct In a CalbiYau.

Letusdescribe how these zerom odes ook lke,again taking theunwarped Im itZ ! 1.
A s In subsection , to ram ove the spurious degrees of freedom we w ill take the - xing
choice P?7 = 0 (410}, which w ill sin plify our discussion below . T hen, the zero m odes
of this action must satisfy PP’ = 0 and &5 ;= °r¢’ ;= 0,a2 S;. An cbvious
choice for a zero mode would be to take = ' sncer ¢’ ©* = 0. However, the BPS
condition PP7 = 0 isequivalent to PP’ = , and so this would-be farm ionic zero m ode
isprojfcted outby - xing. Instead, follow ing ] we can consider

1 e 1o
= 4o P= By p Pz (2.71)
2 cYy 2 liy

with 4p constant and of negative 4D chirality. T his bispinor is not only a D 7-Jbrane zero
m ode but also an universal one, since it is present for any BP S D 7-brane. A s pointed out
in @], upon dinm ensional reduction we can dentify such zero m ode w ith the 4D gaugino.

T he rest of ferm jonic zero m odes can be constructed from (2.71) (see eg. , @]).
Indeed, by the basic properties of a CalabiYau, the covariantly constant spinor ©* is

annihilated by any holom orphic -matrix de ned on X ¢, namely ,: ¥ = 2l cx _ ,
Since S, is a com plex m anifold, the sam e is also true for the -m atrices living on S4.

cy

Hence all the spinors that can be created from are of the form

W =W, © Y and W= mg, TF e (2.72)

l4StrJ'ctJy speaking, here  stands for the restriction of the spinor , de ned all over R? X to the
8D slice R'7? Ss where the D 7-brane is localized. A s these worldvolum e restrictions for spinors can be
understood from the context, we w ill not indicate them explicitly.
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with a;b2 S,. Finally, one can show that °r j* annihilates these spinors if and only if
W ,dz? and m 4,dz? ~ dzP are ham onic (1,0) and (2,0)<om s in S4, respectively.!’® This
clearly m atches the scalar degrees of freedom obtained above and, in particular, we can
dentify y with intemalwavefunction for theW ilsoniniand , with that for them odulini
of the theory. M ore precisely, since we need to in pose that PP’ = 0, we have that such

ferm ion zero m odes are

= 4 6o + B|4 i Bs e
1 iy , .
Bg ¢ = 19—5 forw ilsonini (2.73a)
W
|
1 in o .
60 = 19—5 form odulini+ gaugino (2.73b)
m

How do these zero m odes change when we Introduce back the warp factor? By taking
the operators ), it is easy to see that the D 7-brane ferm ionic action is again of the
form (2.59), now with

- 11
o= e+ rf 4 & hz - Epj” (2.74)

a

Hence, the warped zero m odes w ill again be given by ) and ), but now m ultiplied
with a certain power of the warp factor which depends on how Pf3 acts of them . In
particular, it is easy to see that for () and () we have that Pf3 = ,so that
the appropriate warp factor is given by Z >~°. O n the other hand, for ) we have that
P°3 = 0,and so W ilsonino zero m odes need to be m ultiplied by a warp factor z 8.
Finally, one can check that if we de ne gypa = dvek, as the chirality operator of S,
then gxta °° = °Y and thatthe same istrue or  ,whilke theW ilsonini  possess the
opposite extra-dm ensional chirality. T hus,we see that the result ) derived for warped

at space rem ains valid in warped C alabi¥au com pacti cations. Thisw illalso In ply that
again both the gaugino and m oduliniw ill have a 4D kinetic term of the form (2.51) w ith
g= 1,whil for the W ilsoninig= 0 and nothing w ill change w ith respect to an unw arped
com pacti cation.

C onsidering the bosons, one can also see that the results from warped at space apply
to a warped CalabiYau, and so the wavefunctions for the gauge boson, W ilson lines and
m odulido not carry the warp factor. Indeed, note that In thisway the 4D kinetic term s of
bosonic and ferm ionic superpartmersw illm atch, which isagain a requirem ent of supersym —
m etry. O ne can also perform an explicit derivation via an explicit din ensional reduction
for the D 7dorane zero m odes, along the lines of [@] for the gauge boson and of @] for the
m oduli.

15N otice that argy & FSA,sjncergY is constructed from them etric in X ¢ and not that in S;. See @]
for their precise relation. In the lJanguage of [@], going from =g, to ar &Y involves ntroducing a tw ist in

the D irac operator.
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2.4 Adding background uxes

Let us now add background uxesH 3, F3 to our warped CalbiYau solution, while still
considering D 7branes with F = 0 in their worldvolum e. W e can do so by follow ing the
discussion in @], adapted to our E instein fram e conventions ofeq.(). Indeed,one rst
In posestheconstraint G3 = F3+ i Hsz= 1 ¢G3,coming form the equations ofm otion
ﬂ].Thjsjmp]jesthattheO]_oeJ:atorsG3 Fs 1 e K 3de ned n @ .19) can be w ritten
asG, = 2¢ K 3P ©3 and so we have that the 10D gravitino and dilatiho variations are

0 =e 7, ;p°° (2.75a)
1 1
D =@ gnzpl° éeTO B, ;P03 (2.75b)
0
1 1 e 7 1
Dp =1l + 58 M2 + 8z 2PO3 4 o E 2PO3+ > 2EP% 5 (275¢)

from which we see that for a bispinor of the form [2.70) we have that 0 = 0 and
D =Dy =0 () By 3 =0 (2.76)

which,asexpected, happens ifand only ifH 5 isa (2;1)+ (1;2)fom @]. W ithout in posing
this latter condition, we can proceed to analyze the eigenm odes of the D 7-brane ferm ionic
action. U sing the sam e conventions as for the warped CalabiYau case, we have that the
D irac operator is now given by

S(E5). B, POP 5 (277)

Y- e rf'+ & hz % %Pf” + —e
and so we nd that the new D irac operator contains a piece which is exactly lke the

uxless D irac operator () plus a new piece proportional to the background ux H 3.
From this piece is where the ux-induced ferm ionic m asses should arise from , follow ing
the m icroscopic analysis of @]. From (2.71]) we see that In general the W ilsoninido not
get any m ass tem , as already expected from the analysis in ]. R egarding the gaugino
and the m odulini, they can get a mass term from 2 (F3); F3, which projcts out the
com ponents ofH 3 that have just one index on the D 7drane worldvolum e. A sa com ponent
of H 3 with all three indices In S4 is incom patible w ith our initial assum ption lFi= 0, we
are left with only those com ponents of H 5 with two indices on S4, which we denote by
H 3(2) , contribute to ferm onic m ass term s. T he D irac operator can then be expressed as

- 1 1 1 -
o= ey '+ & hz 5 PO e =2 PpO3 | (2.78)
and so all those zero m odes not lifted by the presence of the ux m aintain the sam e warp
factor dependence as in the uxless case. T he warp factor dependence of m odes lifted by
the ux ishoweverm ore com plicated, as the operator K §2) also dependson the warp factor.

See @] for a discussion on these issues in term s of bosonic m odes.
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2.5 Extension to F-theory backgrounds

T he results above can be further extended to warped F-theory backgrounds, w ith m etric
) and a nonconstant dilaton eld . Again, the 10D gravitino and dilatino variations
can bededuced from (@ .19). If for sin plicity we assum e no background 3-form  uxes they
read

0 =g e Bii, (2.79a)
_ 1 03
D =@ ; EnzP; (2.79b)
X 1 1 1 03
Dp = rm6 + Ze (') + é@m nZ Z@]nz mP+ (2.79¢)

wherewe have also allowed a non-rivialRR uxF; = Red ,=o that [2}) can be satis ed.
Translating the discussion in @] to our form alism , one can look for K illing bispinors

satisfying D = D, = 0,agalh using the ansatz ). W e obtain a warped bispinor of
the form | !
X6 ng
= p 2z 7. By 2 70 T4, (2.80)

1 +

X6

w here again is a negative chirality 6D spinor, now satisfying'®

1
r¥ey 7° Fi)de “¢=0 (2.81)

instead of ). The fact that *° are no Ionger covariantly constant im plies that the
holonom y group of X ¢ cannot be in SU (3), and so X ¢ cannot be a CalbiYau. However,
from (2.81]) one can see that the holonom y group is contained in U (3), which im plies that
X ¢ is a com plex, K ahler m anifold. Hence, we can still introduce com plex coordinates z*
and holom orphic -m atrices such that, as before, i Xs = 2z X6 _ 0, One can then
check that the last supersymm etry condition O = 0 is equivalent to ).

A s before, the BPS condition for a D 7brane PP’ = 0 will restrict & to be a com -
plex subm anifold of X ¢ and, since X ¢ is K ahler, this willm ean that S; ism Inin izing its
volum e!” Taking the - xing choice P?7 = 0 and the unwarped limitz ! 1,we wil
have again a D 7-brane ferm ionic action of the form (2.59), w here now

w

1 i
o= e+ ° ri“rze (F1)a > B, , iRe (2.82)

Because of the holom orphicity of the dilaton, the zero m odes of this D irac operator w ill
as before be of the form  (€.7]) and €.73), with the obvious replacement ¥ ! *¢,
W hile (2.71]) willbe a universal zero m ode that corresponds to the D 7-brane gaugino, the

YT his is the weak coupling and sm allC, lin it (that is, linearized) version of eq. (2.19) in [@1.

YN otice that for a varying axio-dilaton the physically relevant question is whether the D 7-brane is
m Inin zing its energy, and m ore precisely ts DBI + CS Lagrangian densities, rather than its volume. O £
course, energy m inin ization tums also to be true for such D 7-branes, as expected from their BP Sness.
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W ilsonino and m odulino zero m odes w ill have to solve a di erential equation, that will
again relate them to the ham onic (1,0) and (2,0)-form s of Sy, J:espectiyely.18

Finally, we can restore the warp factor dependence on the D 7-Jbrane ferm ionic action,
which am ounts to add to () a piece of the form

int 1 1 03
& nz ~- =P 283

‘ g 2 (2:53)
exactly like In warped atand Calbi¥Yau spaces. A sa result, we w ill again have that the
D 7-brane gaugino and m odulinidepend on the warp factor as z >=°,while the W ilsoninido
asZ 8. The generalization to F-theory backgrounds w ith uxes is then straightforward.

2.6 E ectson the K ahler potential

Just like for closed strings, one can interpret the e ect of warping in the open string
wavefunctions as a m odi cation of the 4D K ahler potential and gauge kinetic functions.
In order to properly interpret the e ect of warping, we m ust convert our results to the 4D
E instein fram e, which di ers from the 10D E instein fram eby a W eyl transform ation of the
unwarped 4D m etric

VO
! — (2.84)
Vy
where V,, is the warped volum e of the intermal 6D space
Z
Vy, = dvok .z (2.85)
X6

and V? isthe ducialvolm e of the unwarped CalabiYau. ThisW eyl transfom ation gives
a canonical 4D E instein-H ibbert action w ith 4D gravitational constant
1 v

= —— 286
2 2 2, ( )

N

Let us now analyze the di erent open string m etrics. The D 7-brane gauge kinetic
function for the gauge boson was deduced for the toroidalcase In ). From the results
of Sec E, one can easily generalize this result to a D 7-brane wrapping a 4—<ycle S; In a
warped CalabiYau as

Z A
1 dvol, P —
—p:

fp7= 8 ’k? 7 Qs + iCFF (2.87)

S4 gS4

where §s, is the unwarped induced m etrdc on Sy4, and dv6154 the corresponding volum e
elem ent. Since the gauge kinetic function is W eyl invariant, this is not m odi ed when
m oving to the 4D E instein fram e.

T he position m oduliand m odulinicom bine to form N = 1 chiral supem ultiplets, the
K ahler m etric for which can be read from the kinetic term of the m oduli, after converting

¥see [@] for a derivation of this spectrum using tw isted Yang-M ills theory.
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it to the 4D Einsteln framel!® Let us rst consider the case where the D7 is w rapping
T? = Tzi sz T6,whereead1torushasacomp1exs’u:ucturedenedbythe
holom orphic coordinate

=yt Lyt (2.88)

Then, from ([39), the kinetic term in the 4D Einstein fram e for the zero m ode (dropping
the KK index 0 on the 4D elds) In the warped toroidal case is

k2 ° ‘ A
Sgat= = dx e e dvolkse °Zsesy Gra (2.89)
iV RSB T4
wherewe have de ned thecomplex ed = ( 3.x+ x s x) fOrié k6 jand extracted
the zero m odes from the expansion ). The K ahler m etric is then
5 K2 A
K= V_ dvolk s e °Z spsg (Ir ¢ (2.90)
w T4

Ifwe now consider a D 7-brane w rapping a 4<ycle S, In an unwarped Calbi¥Yau, the
D 7-brane m oduli can be expanded in a basis fsp g of com plex deform ations of Sy

A

xjy = x)sa (Y)+ Tsy (y) (2.91)

Follow ing ],the E instein fram e kinetic tem can then be w ritten as

Z
ip7 eLyzd?®” 4,dF (292)
R1;3
w here R
ma " mp
Lyg = 77— (2.93)
X6

and fm » g isa basis ofham onic (2;0)-fom srelated to fsagviama = 5, °* .Aswehave
seen, In the toroidalcase the e ect of warping introduces a warp factor in the integral over
the Intemal wavefunctions and requires a W eyl rescaling w ith the warped volum e rather
than the unwarped one. T he appropriate generalization for the warped CalbiYau case
am ounts then to R

Zma " m
w _ p Sa B
Lag ! Lyg =F Z Y A oY (2.94)
X6
Let usnow try to com bine these open string K ahler m etrics w ith the kinetic term s in
the closed string sector, studied in ,B,]. For the axio-dilaton, the result from lis

Z

d*xK 4@ te t (2.95)

R1;3

w here t is the axio-dilaton zero-m ode, and the K ahler m etric is given by
Z
1

—— d%zYs (2.96)
8 (m )2Vw X6

Kg=

Y¥The sam e philosophy has been applied In [@] to com pute (unwarped) open string K ahler m etrics in
the 10D SYM lim it of type I theory, using the fram ew ork developed in [@].
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where Yy is the intemal wavefunction for the zero m ode. Since the eguation of m otion
adm its a constant zero m ode, the integral is proportional to the warped volum e which is
canceled by the factor of V,, appearing in the denom inator. T hat is, the kinetic term for
the zero m ode of the axiodilaton isuna ected by the presence of warping. In the presence
of D 7 branes, the D 7 geom etric m oduliand the axio-dilaton com bine nto a single K ahler
coordinate S. In the unwarped Calabi¥Y au this com bination is given by [E]

S=t Zp7Lpg * P (297)
and so the appropriate part of the K ahler potential is
K3nh iS S 2i%p9L,s * ° (2.98)

T he kinetic term for t is not m odi ed by warping, which suggests that in the presence of
warping we should dentify
s"=t FpisLi, *°® (2.99)

and that the K ahler potential should bem odi ed accordingly,
K3h 1is" s" 2i§p,LY, *° (2.100)

T his correctly reproduces the quadraticorder kinetic term s for the axio-dilaton and D7
deform ation m oduli.

Tuming now to theW ilson line and W ilsonini, their K ahler m etric can be found from
the W ilson line action. In the Sy = T f T ? case, the com ponents of the 1-form potential
A iIn com plex coordinates are

A, = ! A A (2.101)
a—zm(a) afra+3 a+ 6 -
for a = i;j. Converting () to the Einstein frame, we nd that the action for the

m assless m odes is
Z Z

k? A
oL a'xgh @ wal w, _AvOL 4 Oy © (2.102)
4Vw R/ T

53 =
which nally gives the K ahlerm etric
K2 2
A 0
Kop= o~ dvdkaW W, Ve (2.103)
w T4
w here the indices a and b are not summ ed over.
In the CalabiYau case, the W ilson lines ofa D 7 w rapping S4 can be expanded as

T _ —1

A dAT = wi (X)W ~(y)+ Wi (X)W~ (y) (2.104)

where W ! is a basis of ham onic (1;0)-fom s on S4. The kinetic term for the W ilson
lines In the unwarped case is [@]

Z
2 pak?
1
\ R1:3

CVv dwy” 4dw, (2.105)
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where V is the (unwarped) CalabiYau volum e. If we now expand the Kahler form in a
basis f! g of ham onic 2-form s

J =v ! (2.106)
we can express CV as 7

cV= P ]rwlirw’ (2.107)

Syq
In the warped toroidal case, the e ect of the warping on the W ilson line kinetic term s is
to sin ply replace the volum e w ith the warped volum e. Again, from Sec E, this result is
independent of the shape of unw arped intermalgeom etry so that In the warped CalabiYau
case, the kinetic term for the W ilson lines is

Z
2 pok?
1-

CYv dwi” 4dw; (2.108)
Vu R1:3

where now the warped volum e V,, appears in the denom inator.

Onemay again wonder how these open string m odes com bine w ith the closed string
ones in the fullK ahler potential. In analogy w ith the results for the unwarped Calbi¥Yau
case,wewould now expect thatW ilson lines com bine w ith the K ahlerm oduli. H owever, as
pointed out in ] it isnot an easy problam to derive the K ahlerm etrics from the general
form of the K ahler potential. Let us instead consider the particular case of X4 = T 9,
Sa= T? 5 T? . In the unwarped case, the K ahler potential can be w ritten as

K3 InT +7T InT;+ Ty 615 pok*CHlwiw, (2.109)
N Ty+ T4 617 psk’Cilwiwg
where T are a combination ofK ahlerm oduliand D 7's W ilson lines. Indeed,
T +T = gK + 61 5 pok*CMw o, (2.110)
where K control the the volum e of the 4—cycles of the com pacti cation. M ore precisely, if

we express an unw arped CalabiYau volum e in term s of the v de ned In (£.109),

1
V = EI vV V (2.111)
then we have that, In general,
K =1 vv (2.112)
and in particular this expression applies for the K ahlerm oduliof T °.
Expanding () up to second order in the D 7-brane W ilson linesw?® we obtain that
their unwarped K ahler m etrics are given by

2 2X 3jCIJ
a p7k —— WIWy, (2113)
T +T

C om paring to our result (2.10§), it is easy to see that a sin ple generalization that would
reproduce the W ilson line warped m etric is to replace

— 3
T +T ! T"+T = SIY v o+ 6l 7 pokiCHw W, (2.114)
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in 2.109). Here we have de ned the warped intersection product?’
IV = z ! ~roA (2.115)
that de nes the warped volum e as

Vy=—=-1I" vvv (2.116)

Onemay then wonder whether this way of writing the warped K ahler potential is a
particular feature of toroidaldike com pacti cations. A possible caveat is that the m odi -
cation () is clearly di erent from them odi cation of the gauge kinetic function (R.87)
and that both quantities, T" and fp7, should have a sin ple dependence on the K ahler
m oduli of the com pacti cation.?! Indeed, the warp factor of the gauge kinetic fiinction is
Integrated only over S4,while the warp factor in thede nition of T" is integrated over the
entire intemal gpace. In fact, both de nitions of warped volum e can be put in the sam e
form 1 Z

vol' (S4) = = ~J N g (2117)
2 x.
where [ ]is Poincare dualto [S;],and J = Z172J°Y is the warped K ahler form . Because
J? is not closd, ) depends on the representative 2 [ ]. In particular, for T is
the ham onic representative, while for fp7  should have -—function supporton S.

D egpite this discrepancy there is not necessarily a contradiction between ) and
ourde nition of T" . For instance, if one takes thede nition of K ahlerm oduligiven in [@],
that In the present context translates nto theshiftJ~J ! JAJ+t [! L, [! 12 H??(Xg),
we see that T" and fp 5 have exactly the sam e dependence on t , which suggest that they
could di er by a holom orphic function of the com pacti cation m oduli. Indeed, for the case
of a single K ahler m odulus the results in @] (see also ]) show that one can express the

warped volum e of 5S4 as
Z

vy, = Zdvoly, = T" + T  + [/ + 7] (2.118)
Sa
where ’ is a holom orphic function of D brane position m oduli. Hence, the real part of ’
is precisely the di erence between both choices of in ). It would be interesting to
try to extend ) to com pacti cations w ith severalK ahler m oduli.
In fact, com pacti cations w ith one K ahlerm odulus provide a further test to the above
de nition of warped K ahler potential. T here, the unwarped K ahler potential reads [@]

3nT + T  6iy4pok’CHwiw, (2.119)

w here the single four<cycle S is w rapped by the D 7 brane. A ccording to our prescription
(2.114), in the warped case this should bem odi ed to

3n T + T 614 pok’CPwiw, (2.120)

%A n altermative possbility would have been to set I = (V,=V)I , although this would mply a
very m ild m odi cation of the K ahler potential w ith respect to the unwarped case.

21 et us stress out that we are not dentifying T" with the K ahlerm oduli of a warped com pacti cation,
but rather w ith the quantities that encode their appearance in the K ahler potential.
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and, In the absence of a D 7 brane where w1 = 0, this becom es
3n T" + T (2.121)

N ote that this reproduces is the results of [@ ]. Indeed, from our de nition of T" we have
that, in the absence of D 7-branes,

3
=1 v z (2.122)

where t¥ is the real part of T" . This real part of the universal K ahler m odulis can be
denti ed as an R '”-dependent shift ¢ in the warp factor [{,[[3,[L4F*

Z (xX;y)=Z2p0y +CX (2.123)
Integrating this equation over X ¢ gives an expression for the uctuating warped volum e

Ve x)=V2+cxV (2.124)

A s shown in [@ ], the universal K ahler m odulus is orthogonal to the other m etric uctua-
tions so we can freeze the value of V to the ducilvalie VO. W ith this denti cation,

" =1I"0 4 I (2.125)

w here Z

"0 = Zgl! ~1 ~ (2.126)
X6

W hile In general the warp factor m ay provide signi cant corrections to I , In the case
of a single K ahlerm odulus the correction is sin ply a rescaling w ith the warped volum e
Va

W0 _ _w
I =1 70

(2.127)

where V0 isagain the ducialvolum e of the unwarped CalabiYau. Thisallow s us to w rite

V‘S 3 2
& e+ — ZI v (2.128)

so that the w arping correction to the single K ahlerm odulus is an additive shift proportional
to

Va

Vo
And so, up to a multiplicative constant, we recover the result of ], where all warping
corrections to the K ahler potential for the universalK ahler m odulus were sum m arized in
an additive shift for the latter. W e nd it quite am using that, at least in the case of a
single K ahler m odulus, such result can be reproduced by means of a DBI analysis. It
would be interesting to see if the sam e philosophy can be applied to com pacti cations w ith
several K ahler m oduli, as well as to K ahler potentials that involve K ahler m oduli beyond
the universal one.

(2.129)

*pns explained in E,@,], com pensators are need to be added for consistency w ith the equations of
m otion for the closed string uctuations. T hese are however unin portant for the discussion here since to
quadratic order In uctuations, the open string kinetic term s depend only on the background valies of the
closed string m oduli.
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2.7 A sin ple warped m odel

Let usnow apply the above results to a m odel based on D 7-branes which, besides a non-
trivial warp factor, allow s for sem irealistic features lke 4D chiral ferm ons and Yukawa
couplings. Thiswillnot only allow usto show the e ects that warping can have on the 4D
e ective theory, but also to check that our results for the K ahler potential are com patible
w ith the com putation of physical quantities lke Yukawa coupling. A sin ple way of con—
structing such m odel is to consider unm agnetized D 7doranes in toroidal orbifolds. T hat is,
we consider an intermalm anifold of the form X ¢ = T °= ,where isa discrete symm etry
group of T ©, and place a stack of N D 7-branes wrapping a T # in the covering space. For
trivial warp factor the phenom enological features of such m odels have been analyzed in
. W ewould now lke to see how 4D quantities change after introducing a warp factor.

Let us then illustrate the warping e ects by focusing in a particular toroidal m odel,
nam ely thePatiSalam 7, toroidalorbifold m odelconsidered in @], Sec 9.1. In thism odel,
the intemal space is Jocally X ¢ = T °=Z4 where the Z4 action is

s ziz0izy T & Tz e Flzie 7, (2.130)

and the T © has been factorized into three T f T he gauge group and m atter arise from a
stack of eight D 7-branes w rapping (T 2 N (T 2 )2 and located at an orbifold xed point
on the third torus. T he orbifold action on the gauge degrees of freedom break the initial
gaugegroup U (8) ! U (4) U (2), U (2)k,producing at the sam e tim e two quark/Jepton
generations FLl = (4;2;1), FRj = (4;1;2) i;7= 1;2,aHiggsmultiplet H = (1;2;2), and
Yukawa couplings i;H FLIFRj . The Jatter can be understood as arising from orbifolding and

din ensionally reducing of the 8D SYM term

Z

P35 m ;o (2131)

present In the initialU (8) D 7-brane theory.23

W hen Introducing the warp factor Z , the open string wavefuinctions of thism odelw ill
no longer be constant but develop a warp factor dependence follow ing the analysis of Sec
. In particular, F g arise from (orbibded) U (8) W ilson line m ultiplets, whereas H
arises from the transverse m odulus + m odulino. By Tablk[], we have that the warp factor
dependence of their Interal wavefunctions is given by

H=(; gl ! 2%2%%); F=(; plp ! 2%z ) (2132)

T hesewavefunctionsm ust be nserted in the D 7-brane ferm ionic action , w here an analogous
tem to (2.131]) gives
Z

sg¥ = p; d®Tge’y w Al J o+ 4 Al ] +he (2.133)

**1n fact, not allY ukawa couplings can be understood like this. In unwarped backgroundsw ithout uxes,
a way to guess the m issing Yukawas is to start from a 10D SYM action and reduce it to 8D in order to
produce couplings beyond (), as in [@J. W e w ill how ever not discuss such approach, as () willbe
enough for the purposes of this subsection.
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and where both -m atrices contain a factor of Z ™%, It is then easy to see that the full
warp factor dependence cancels in the integral, perform ed upon dim ensional reduction, and

that one is left with an 4D e ective action of the form
Z Z
®%

Yuk _ 0 (all \1=2 4 i j o
Sp7 = p1=z¢e "(Gr%) d'xf] g Fr i3 dvok s W,
Vs R13 T4

%{’ Fe + o1t (2134)
where sand are constant bosonic and ferm ionic intemalw avefunctions, respectively, and
where we have converted all quantities to the 4D Einstein fram e. From Sec P34 we know
that the nom alization constants of such wavefunctions are

Z 1-2

N, = eo? @2y 32 4dv6]T4Z (2.135)
7 1=2

N, = e PPy, T4dv6]q;4 (2.136)
Z 1=2

Ny, = k* ®v, 'gr 4dv€)]T4 (2.137)

T

and so, by In posing that our 4D elds are canonically nom alized, we obtain the physical

Yukawa coupling

2

YHFLFr = R R 1-2 9p 7 (2.138)
radvol s Z

that should be com pared to the standard supergravity form ula

_ 1=2
yix = €7 K K 55K gy W ik (2.139)

and the results from subsection . Indeed,we see that by setting W g r, 7, = 1 and using
eqs.) and ),aswe]lasK = (.10(Q) + R.109), we can derive ).

A'semphasized in [§,[13,[13], com pensators are needed for consistency of the equations
ofm otion for the closed string uctuations, and thus the eld space m etrics for the closed
string sector are in generalhighly com plex. How ever, in com paring .139) and £.139),we
do not nead to evaluate derivatives of the K ahler potential K w ith respect to closed string
m oduliand so the issue of com pensators do not concem us here.

In this particular m odel, the H iggs el propagates throughout the worldvolum e of
the D 7. In contrast, in the Randall-Sundrum scenario the H iggs is con ned to or near the
IR end of the geom etry. A s discussed in section , the 5D m asses of the buk ferm ions
(except for the gaugino) is a free param eter, though is related to the m asses of the buk
scalars. Themassm = K controls the pro le of the ferm ion in the buk, w ith m odes
forc> % being localized toward the IR and m odes w ith ¢ < % being localized towards the
uv [@]. T his localization controls the overlap w ith the H iggs and hence the 4D Yukawa
couplings depend sensitively on ¢ so that thism echanism provides a m odel of the ferm ion
m ass hierarchy. H ow ever, the bosonic and ferm ionic actions for D branes do not have such
m ass term s. Instead, the localization can be controlled by either using gauge instantons
(as suggested in @]) or by localizing the m atter ferm ions on intersections of D 7 branes
(as used for exam ple in @]).

{311



3. M agnetized D 7-oranes

3.1 A llow ing a worldvolum e ux

A swe have seen, D 7-boranes In warped backgrounds of the form (@) provide a wealth of
gauge theoriesw ith w arped intermalw avefunctions. T his ishow ever far from being them ost
general possibility when producing such theories. Indeed, as discussed before the D 7-brane
action depends on a generalized eld strength F = PB ]+ 2 % living on the D 7-orane
worldvolim eR'#? S,,which contains the 8D gauge boson degrees of freedom via the usual
relation F = dA . Now , Instead of consider a vanishing vev for F' as in the previous section,
onem ay allow a nontrivial vev for such worldvolum e ux. C learly this does not spoil 4D
Poincare invariance if we choose the indices of iF 1 to be along S4 and, in fact, this is an
essential Ingredient to obtain 4D chiral ferm jons via D 7-dorane intersections. Finally, such
\m agnetized" D 7-brane w ill be a stable BP S ob gct if, in addition to dem anding that S,
is volum e m Inin izing we in pose that [4,[29]

F = S4F (3.1)

w here here and henceforth we om it the brackets to refer to the vev ofF' . T hat is,m agnetized
D 7-branes in warped backgrounds of the form (@) are BPS if F is a selfdual 2-form of
their nternal din ensions S, 24
It is easy to see that adding a non-trivial ¥ w ill change the zero m ode equations for
both ferm ions and bosons. In particular, the E Instein fram e ferm ionic action is not longer
of the form (2.10), but rather (see Q]and A ppendix (])
z q

si¥ = p; d® e detMm PP7E) D + M )P

1
a Dp+t 3 1O (3.2)

where as before  stands fra R'? index and a;b for indices n S,. The wordvolm e ux

dependence enters via the operators™

=PG]+e °F (3.3a)
—PGl+e °F ;4 (3.3b)
1
PD7(F)=E TR, (3.3c)
s -
- detP [G ] _ 3 2
® = ©®  gam I e B 3+ e B (3.3d)

that clearly reduce to those in ) when taking F ! 0. Note that tem s that do not
appear w ith a tensor product in plicitly act as the dentity on the bigpinor space. F nally,
one can chow that PP7(F ) are still pro fctors, and that (@) is equivalent to in pose the
usualBPS condition PP7(F) = 0,with given by theK illing spinor[(2.40)[[d4[ d8[ J71.

24M ore precisely, F = s, F if2dvok, = P [J2 ] (see footnote B), and the choice taken in @]was
such thata BPS D 7-brane should host an antiselfdual ux F . O ur conventionsm atch those of [E], w here
the derivation of the D 7 BP S conditions were also carried out for m ore general supergravity backgrounds.

The operatorM corresponds toM” In @J and, while the de nition here and In @J slightly di er, they
are equivalent. For an expression of the ferm ionic action closer to that in @] see the appendix.
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3.2 W arped at space

Paralleling our previous discussion for unm agnetized D 7-doranes, let us rst consider the
case where our D 7-brane wraps a conform ally at fourcycle S, = T inside the warped
intermalm anifold X 4 = T ° which is also conform ally at, and so that the m etric on the
D 7-brane worldvolum e is of the form () . Let us further sin plify this situation by taking
a factorizable setup where Sq = (T?); (T ?); and

P [J]= dvols 2y, dvolr 2 ) (34a)
by dvolr 2 ), + bydvolrz), (3.4b)

F

where as beforedvol, 2 = Z lzzdvE)JT 2 stand for warped and unw arped volum e elam ents. It
is then easy to see that w ith the choice dvol, = dvolr:z), * dvolrz), the BPS condition
(3.0) is equivalent to F ~" P J]= 0, which is solved forb= b = by. If n addition we
consider a vanishing background B— eld,then F = 2 % ,wheref isaU (1) eHd strength
of the form R .

foom O, e A
volrz), VOl 2),
and w here, because of D irac’s charge quantization, m ;;m 2 Z . The BP S conditions above
then translate into the m ore fam iliar condition m i=v€)]1T 2y, + M j=v€)]1T 2), = O usd n the
m agnetized D 7drane literature.

(3.5)

3.2.1 Ferm ions

Follow ing the steps taken in subsection , we have that the dilatino and gravitino
operators entering the ferm ionic action are again given by ). Hence, plugging them
in (@) and taking the - xing gauge ), one ndsa D irac action of the form (.14),
W Islere now

detgr s t 1 1
detMTTz;]}w =8 M & S@&IZ 4 (F) pana® )7 oG NZ
1 1 ab
E 1 Z(MT4) a b gnz
1 1 1\ba
+ 5 ( F) Extra 1 Z(MT4) a b &7 (3.6)
w here
s
det _ 3 B
F)= — ' Tie PR+ e B Mp:=gre+ 2 % 972 (3)
detM 14 2

and gra = Z l:qu4 stands for the warped T ¢ m etric.
U sing now the factorized ansatz T % = (T2)i (T2)j and @),jtiseasy to see that
|

MT? 0
MT4 = . (3.8a)
0 Mq2
" ’ ! ! #
_ 1 Re ; _ 0 m;y
Mo, =420 z17R? S, +e 072 * (38b)
i Re ; Jif m; 0
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In term s of the com plex coordinates z° = y**3+ v *° this reads
|

1 0 1+ iB;

Moz = —(4 2% 9z'?R? with B;= 2 TP ™ 39
T? 2( ) i B 0 i by ( )
Then, also in this com plex basis™®
1 I JB 2 I JBJ T?
M D L e — (3.10)
21 1+ iB:F 1+ iB4F
where (.= idvely:, Iisthe chirality m atrix ﬁ)rTf.Sjijarly,wehave

I+ Bj 72 I+ By 12 iy i
(F) = — - L = e i e j (3.11)
jd+ iBij J+ iB4j

wherewehavede ned ; arctanB ;. Notice that, unlke in the usualm agnetized D brane
literature, ; isnot a constant angle, having a non-trivial dependence on the warp factor.
Finally we can express gxum = dvelk, = T2 72

W e can now in plem ent the din ensional reduction schem e of subsection [2.2.], taking
again the ansatze (2.1§) and ). In order to nd the eigenm odes of the D irac operator,
one rst notices that given the setup above the zst line of () can be written as

1
8 Mo 2 8 C@NZ 1+ 2 (F) pxm) (312)

In addition, considering the case w here theworldvolum e ux F satis esthe BP S conditions
Bi= By () i+ 5= 0, itiseasy to see that the second plus third ]jnesof(@) vanish
dentically. Hence, we nd a 6D intemal eigenm ode equation sim ilar to () w here the
m ain di erences com e from the substitution QT} ' M T41 and the insertion of ( F ). In
particular, the zero m ode equation am ounts to?’

1
@ S@NZ 1+ 2 (F) pxua) » =0 (313)
whose solutions are
. g 1-8
= — for = W ilsonini 3.14a
6D 1+ B o Extra ( )
=20, Br pxmm + = gaugino + m odulino (3.14b)

w here are again constant 6D spinor m odes w ith chirality in the D 7-brane extra
din ensions. In particular, for a D 7-orane extended along 01234578, we have that S4 =
(Tz)l (T2)2 (T2)1 (T2)2 (T2)3= X ¢ and so the farm jonic zero m odes w ill have
the follow ing intermal w avefunctions

00 = 0;3 —
238 238

6D = 6D + + (3.15)

2°H ere i;j denote particular T %15 and so there are no sum s in plicit in this kind of expressions.
*TT he sam e discussion in Sec applies here as well.
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and
0a @ 1=8 0o @ 1=8
1 B 7 T 1+ B
whereB = B; = Bj,and again using the 6D ferm ionic basis de ned In A ppendix E]
N otice that the new W ilsonini wavefunctions do not am ount to a sim ple constant

rescaling, as the density of wordvolum e ux’B depends nontrivially on the warp factor.

.. (3.16)

T his dependence is however the one needed to cancel all warp factor dependence in the
W ilsonini 4D kinetic temm s. Indeed, by inserting (8.14d) into the - xed ferm fonic action
(2.14) we obtain again
Z Z
SE = e d*x 4p Bris ap dvolys Y (3.17)
Rl;3 T 4
where we have taken Into account the new volum e factor appearing In the rh s of (@),
which in the BPS case reads s
detgr «

. 2
= + 1B 3.18
detM 14 i J ( )

and w here we are again expressing everything in term s of com plex coordinates, as in (@ ).
R egarding the gaugino and them odulino, the above factor does not cancel and so we have

a kinetic term of the form
Z Z

S = qe0 d*x 4p @1s ap Avoks 12+ e pf Y, (3.19)
Rl;3 T 4

that generalizes that obtained in (). Aswewillnow see, such results can be rederived

by analyzing the D 7-Jrane bosonic wavefunctions.

3.2.2 Bosons

In the presence of a worldvolum e ux, the 8D gauge boson A enters into the D 7-brane
action through the ed strength F = P B ]+ 2 %+ 2 % where f = Wi is the
background el strength and F = dA . The transverse oscillations again enter through
the pullback of them etric as in (). In the case of B = 0 and constant dilaton = 0r
the action for the D 7dorane up to quadratic in uctuations order becom es

bos _
SD7 -

Sp7 o+ ST+ SEL" (320a)
w here the action for the position m oduli is

Z

1

S o
sxal- g 2 d’ " Feth e Gy M Ll g (3.20D)

and the action for the 8d gauge boson is
Z

1 1 P T s 1 [ 2
535" = 8 3x2 d®  HetM i oMt F "+ M ' M ! FF
1
> c e F F o+ C&teMpry
1 abaod
RC 0 fabfcd FOF (3.20c)
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w here we have again used ) and have separated the action between a zero energy part
and a part w ith derivatives. In general, there are three m ore contributions to the action
up to quadratic order Including a term that is linear in the eld strength,

Z
1 1

Z g 32 1 [b
2

_ pP— 1
a® ez U fetM ga9M } TkE+ > abdo ety b (321)

an interaction between the position m oduli and the 8D gauge boson,

Z
1 1

1g 32 fod ]
2

- P—- k .
d® @ie Pz ' fletM,:jM .. +3 @CSt *HE L Py T (322)
and a potential term for the position m oduli
Z

p
lds 1

1 —_— 1
8 k2 @it S 1 500y e 0z HetM 14 gc;*t abdf f (323)
However, when the world-volum e ux is selfdual, all three of these contributions vanish
up to surface term s. T his ism ost easily seen by nserting the uxes explicitly.
Expanding out the action for the position m oduli,

Z

1 P . . o
sgt= S 8 %K et @® " getM gy z @ ‘e J+zi?wy ! g, g, !
(3.24)
we obtain the 8D equation ofm otion
) _ [P S .
pis b getM pa3TPe 2 TP getM pagM L e, =0 (3.25)

A's In the unm agnetized case ), perform ing a KK expansion gives the eigenm ode
equation

(ab)

p—— - P 2
ez 7 Fetm oM Post = FetM g it (3.26)

T his depends on the warp factor and the m agnetic ux, but for the m assless m odes, the
only wellde ned solution is sé = const. The resulting 4D kinetic term for the zero m ode
is

Z Z
1 2 4

1 - ; A _ _ ;
sS@l= g 32 d*xgy @ o@ ¢ dvok:e " Z2'7%+ie °b sis] (327)
2 R13 T4
which again m atches w ith kinetic term for the m odulino (3.19).
A 150 as In the unm agnetized case, the action contains an interaction piece between the
4D photon A and the 4D W ilson lines A, which, after iIntegrating by parts tw ice, is
Z

1 —p.i. b
® &z 7 fHetM iy L P

8 k? ALQ A (3.28)
In analogy w ith the unm agnetized case, this can be gauged away by considering the class
of R gauges w ith gauge- xing term

Z

r—-—
Syo= 8 %% ' d®  HetM $ A (329)
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w here we take

1 (ab)
T 4

2
_ 1 1=2 _ . 1=2 P 1=2
G A =— @A + Z™HetM ;45 Q@ HetM 4352 M Ay (3.30)

2
The form ofthegauge xing ischosen so that the equations ofm otion forA  decouple from
the equations of m otion for A, for any value of and so that it reduces to gauge- xing
term in the unm agnetized case ). For A ,the equation ofm otion In theR gauge is

1 _ [P
RisA 1 = RE@A + HletMyij 2@ 2 12 getMyaiM ! “Pea =0
(3.31)
while for A 5, the equation is
12P ————— 1 @b
Z HetM M r13Ap
P— 1
+ 6 2 L HetM g M EPE > VI I
1:2p . . 1 (ab) , . 1=2 1=2p . . 1 (cd)
+ Z HetM 1M @y HetM 147 Q. Z HetM 1M Ay
(3.32)
w here we have de ned
1 1
MabcdziMlabMICd EMlaCMlbd (3.33)

N ote that the presence of warping and background world-=volum e ux together hasm ade
the equation of m otion rather com plex, even in the case of at space. W ith this gauge
choice, the KK m odes for the 4D gauge boson satisfy

1 (ab)
T4

p . 1=2 P T i . 2 |
@a HetM :4F M @a” = HetM rafnia (3.34)

so that the zero m ode a° has a constant pro k on the intemal din ensions. T his gives a
gauge kinetic function

Z A
1 dVO]T 4
P

- g k2 . 22+ de PpPiicPt cp 07 (3.35)
T4 T 4

o7

T he realpartm atches the kinetic term  for the gaugino ) and in the absence ofwarping
agrees w ith that found in,eg., @, @].
T he equation of m otion for the W ilson lines sin plify further in the 4D Lorenz gauge
= 0 though even then the equation ofm otion is di cult to solve in general. H ow ever, if
we focus on the zero-m odes w hich satisfy

R1;3W2= 0 (336)
then the equation of m otion for the intemal pro les becom es

p.i. 1 cd b
@ Z 1 FletM ;.j M SPIRY EMTj[ Tu P EPRO 4w e,z RO =0 337)
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In the unm agnetized case, we deduced that the solution satis ed Fé?b = 0 and this is clearly
a solution in the m agnetized case aswell. T his again determ ines the solution to be of the

form wg= const: up to the resdualgauge freedom A, ! A, @, where@ = 0.This
residual freedom w illnot e ect the 4D e ective action,
Z Z
wl 1 3,2 1 4 0 0 ~ 1=2, . =2, 2, 1=2 1 @) 0., 0
Sp7= = 8 7k d'x Q@ w_ @ wy dvoks Z 7T +ie b7 M. W Wy
2 R1;3 T4
(3.38)

For 6 0,there isan additionalterm in the equation ofm otion for the intermalw avefunc-
tion W 0 that depends on

p— _ I
z 2 et oM b Ve, HetM 103 PR 2 1P getM agM Ay
(339)
However, when the word-volum e ux is selfdual or antiselfdual, the com bination
P
z 2 fetM gagm b (3.40)

isconstant In plying that A 5 = const:isstilla solution for arbitrary . A fter com plexifying
the W ilson lines (2.10]]) the kinetic term m atches the kinetic tem for the W ilsonini 3.17)
for any choice ofR  gauge.

3.3 M ore generalwarped backgrounds

Let us now consider m agnetized D 7-branes in m ore general warped backgrounds. Just as
In the unm agnetized case, it proves useful to com pute the D 7-drane wavefunctions via an
altemative choice of - xing. Let us rst do so for warped at space. In this case, and
before any - xing, the operator in @) between and isgiven by

PPT(F) €7+ M 1) . @+ Ghz 1 1p03

T 8 (341)

PP7(F) 1 ;M ifP L &hZPO?

just like the last two lines of (@), the second line of () vanishes when we in pose the
BPS condition on the worldvolime ux F . As a result, for BPS D 7dranes such termm
can be discarded independently of the - xing choice. Let us in particular take the choice

PP7(F) = 0,as i subsection §25] Thisallowsto remove P P 7(F ) from (4]), and =0
we nd an ferm onic action of the form (),wjthaDjracoperator
s
w detM 1 ext 1 .ab 1 1 o3
B = — & + M @+ @yInZ — -P 3.42
deth4 4 ( T4) a b b 8 2 + ( )

Hence, them ain di erence on B with respect to the unm agnetized case () com es from
substitutingg *'!' M '.AsM ! isobviously ivertble, one would na vely say that the
zero m ode Internal wavefunctions are the sam e as In the unm agnetized case.

N ote however that the - xing condition P PTFy =0 dependson F ,and so will the
set of 10D bispinors that enter our ferm ionic action. Indeed, follow ing [ one can w rite

i
F E(ir?+ sz) 3
, = e i 3

(L e
®) 262( ri ”?) ’ (343)

(8)
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w here we have used the explicit form of (F ) in (B.11). Hence, the bispinors surviving the
profction PP7(F ) = 0 are given by

- e 5(”? jT%) 0 where PP7 09— g (3.44)

and where PP 7 stands for the unm agnetized D 7-pro fctor @). W e thus need to consider
a basis of bispinors “rotated’ w ith respect to the one used for unm agnetized D 7-brane.
A's the rotation only acts on the intemal D 7-Jbrane coordinates, one can still m ake the
decom position (), with the 4D spinor 4p Intact and the 6D bispinor 4p rotated as
in ). In particular, if we in pose the BPS condition ;+ 4= 0, 4p takes the form

6D ; = P=¢€ ‘ i . for Extra = (345a)
2 1
!
+ iy
6D ;+ = 'p_z for Extra + = + (3.45b)
+

and so the bispinors 4p ; with positive extra-din ensional chirality are exactly those of
the unm agnetized case, while those of negative chirality 4p; are rotated by a (warping
dependent) phase.

From the above, it is easy to see that the zero modes com ing from  ¢p ;+ have as
w avefunction E = 738, jast like In the unm agnetized case. O n the other hand, plugging
) into (349) we obtain a zero m ode equation quite sin ilar to that found W ilsonini
in subsection [3.2.1], and so we nd that 0 =7 1:8:|1+ iB ;] 1. Asa result, the zero m ode

wavefunctions are given by

z =2
0 . .
, = for = W ilsonini 346a
6D ; 1+ B . A Extra ( )
i
0 23:8 i N
6D = —]_9? for Extra + = + gaugino + m odulino (3.46b)
+

where, via m atching of the 4D kinetic functions, we have denti ed the ferm ionic 4D zero
m odes that they correspond to. Note that again the W ilsoninihave an extra warp factor
dependence w ith respect to the unm agnetized case, which is contained in B ;.
O n can then proceed to generalize the above com putation to the case ofa D 7-brane in
a warped CalabiYau. In posing the - xing choice PP7(F ) = 0 and the BPS condition
s,F = F , the D irac operator reads

S

detM 11
v TET T et LEe L rfY 4 @z Zpo? (3.47)

detgr «
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w here we have ram oved the term com ing from the second line of ), using the fact that
it vanishes for a BPS worldvolm e ux F .28

In addition to the D irac operator, one needs to know how the worldvolum e ferm ions
satisfying PP 7(F ) = 0 look like. From our discussion above we know that this - xing
choice selects bigpinors of the fom

Fl:2
- UF) gy 0w BT =0 (3.49)

where again P27 stands for @). In general, the rotation (F ) will be an elem ent of
Spin(4) = SU (2); SU(2),. Ifwe dentify SU (2); with the SU (2) inside the holonomy
group U (2) of S4, then follow ing ] we can classify our ferm jonic m odes in term s of
Spin (4) representations as

po3 0= ¢ 0 transform s as (1;2)

3.50
PSB 0_ 0 transform s as (2;1) ( )

In addition, if we inpose the BPS condition s,F = F then (F) 2 SU (2);, and s0
bispinors projcted out by P2 are kft variant by the rotation in (). In particular,
this applies to the bispinor ), that descrbes the D 7drane gaugino for the unwarped
CalabiYau case. As discussed in section E, this sam e ferm ionic wavefunction w ill be
a solution of the unm agnetized, warped D irac operator () ifwe multiply it by z3°.
Finally, since 2.7]) satis esP®’7 = 0 and (£.74) and ($47) inply the sam e zero m ode
equation, it follow s that the wavefunction of the D 7dbrane gaugino is also of the form
" ! D #
e i cY 1 cy

1 . +
= 7 4D 19_5 oy B, ap 19—5 i oy (3.51)

as already pointed out in ].

On the other hand, bispinors of the form  [.73d) are projcted out by PP * and so are
non-trivially rotated by ( F ) even assum ing the BPS condition for ¥ . O ne can then see
that the corresponding zero m odes, which correspond to the D 7drane W ilsonini, should
have as wavefunction

" ! g

a b B4 4D P= igp ?_E (3.52)

*®Tndeed, even fwe are no Ionger in at space, there is locally always a choice of worldvolum e vielbein
w here [@]

i

§+ I By 3
¥ J+ B4F

I N
1+ iB
3)

where % 3 L L, § L 3 L and § L L 3 act on the 6D spinor basis ). In
thisbasis s,F = F isequivalentto i+ 5= 0,and so allthe algebraic m anipulations carried out for at
space also apply. In particular, the second line of ) dentically vanishes.
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which is the obvious generalization of the warped at space solution (). Again, the
warp factor dependence of this solution is contained in both z =8 541 ,and both
canceloutwith detM g,=detgs, when com puting the W ilsonini4D kinetic term .
Finally, one m ay consider ferm ionic wavefiinctions of the form (), also invariant
under the rotation ), and whose zero m odes give rise to D 7-brane m odulini. The
analogy with at space, suggests that to any zero m ode of the unwarped case a factor of
7. 378 shouHd be added to obtain thew arped zerom ode. Let us how ever point out that, by
the results of @,] one would expect thatm any of these would-bem oduliand m odulini
are lifted due to the presence of the wordvolum e ux F and to global properties of S4.
T hus, the question of which are the zero m ode pro le of m odulini is a tricky one even in

and in M

the unwarped case, and so we w ill refrain from analyzing them in detail.

34 W arped K ahler m etrics

Let usnow proceed to com pute the warped K ahler m etrics for open strings on m agnetized
D 7-branes, follow iIng the sam e approach taken in Sec for unm agnetized D 7-branes. O ne
rst realizes that the gauge kinetic function is given by
Z L. D
VO _ .
for= 8 %k* ' Pt HetMg,j UCIT4 Cofn£) (3.53)
Sy Sa

where again £ = hF i. This can be written as a holom orphic finction by using the BP S
cond ition

A P—— 1
dvol, jietMs4j=5 PUg"Jdl+e °F"F (354)

and the dentity (11§). Note thatJ = Z172J°" is the warped K ahler form , and that the
only dependence of fp- in the warp factor is contained in J?. Hence, the extra piece In
fp7 that com es from them agnetic ux is precisely as in the unwarped case.

R egarding the position m odulus and m odulino, they again combine nto an N = 1
superm ultiplet. In the toroidal case, assum ing the setup of ) and the BP S condition
b= b= Dbj,wehave a the K ahlerm etric of the form

Z
2 K’ ~ 0 5 1=2 .. o0=21, 2
K= V_ dvolse ° Z + e b "sosy (B¢ ik (3.55)
w T4

that can be read from the corresponding kinetic termm . N ote that
e?z22+4e b= ez + (3.56)

and so we again have a warp-factor independent extra termm . In order to nd out how this

generalizes to D 7-branes In warped C alabi¥Y au backgrounds, let us rst recall the results

for the unwarped C alabiY au. Follow ing @ ], one can see that the presence of them agnetic
ux F modi es the kinetic term  (R.92)) to

Z

v
b7 L,z e°+ 4G _,B°BP 5 Q¢ d*~ ,dB (3.57)
R1;3
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Here the background world-volum e ux hasbeen split as
f==££K,+f-= f§6P[!a]+f” (3.58)

where !, is a basis of (1,1)-om s of X ¢2° to be pulleddback into the D 7-Jbrane 4—<ycle Sy,
and £’ is the com ponent of £ that cannot be seen as a pullloack. O ne then de nes

B = U kf§‘6 B =DD1!, (359)
where B is the bulk B— eld aswell as 7
1
Gap = — 127" ¢! 3.60
ab W, a” 6'b ( )
where V is the volum e of the unwarped Calabi¥Yau, and
Z
Q. =k f£°F (3.61)
Sa

Finally, recall that v isde ned by (), ! corresponding to the Calabi¥au ham onic
2-form Poincare dualto S;. Then, from the explicit com putation of the kinetic term in
the toroidal case, it is easy to see that the natural generalization of () to warped
com pacti cations is

Z
. [PV v A
D7 LY e+ iV GB°BP Qs d Bayd?® (3.62)
Rl;3 w
in agreem ent w ith the (string fram e) K ahlerm etric derived in [@].Asbeﬁ)re,wehavethat
R
Zma " m
w _ p Sa B
Lag = ‘X 7z CY A CY (363)
6
while we have also de ned R
ma ~mpg
~W _ p_ Su
Lap = % 7z CY A~ CY (3.64)
X6

N ote that both temm s involve the warped intermalvolum e which com es from m oving to the
4D Einstein fram e while the st term has an additional power of the warp factor in the
integral over the intemal pro les,as we found in the toroidal case.

Finally, theW ilson lnesand W ilsoninialso com bine nto N = 1 chiral supem ultiplets.
For the factorizable torus, the kinetic term for the com plexi ed W ilson lines de ned in
1ol i 2 7

2
;Vw o d'x¢7% @ wal w, y dvol «W 0w
T he presence of the m agnetic ux cancels out, as found for the W ilsoniniin BI7) and in
the warped CalabiYau case. T his gives the K ahler m etric for the W ilson superm ultiplets
2 k2 A (0)ab
K= o dvok W, O (3.66)

w T4

(0)

wl _
SD7_ b

(3.65)

W e thus nd that kinetic term for the W ilsonini is then unchanged w ith the addition of
m agnetic ux, and so the kinetic term s are the sam e as those found in Sec P.g.

%M ore precisely, as the analysis of J takes place in the context of ordentifold com pacti cations, !, 2
H " (X 6;R), that is to those (1,1)<om s that are odd under the orientifold involition.
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4. Conclusions and O utlook

In this paper we have analyzed the wavefunctions for open string degrees of freedom in
warped com pacti cations. In particular, we have focused on type IIB supergravity back—
groundsw ith O 3/0 7-planes, and explicitly com puted the zero m ode w avefunctions for open
strings w ith both ends on a probe D 7-brane. Such analysis has been perform ed for both
the bosonic and ferm ionic D 7dorane degrees of freedom , in the case of warped at space,
warped C alabi¥Y au and warped F-theory backgrounds,and nally in the case of D 7-branes
w ith and w ithout Intemalworldvolim e uxes.

O ne clear m otivation to carry out such com putation is the fact that m odels of D 7-
branes In warped backgrounds provide a string theory realization of the R andall-Sundrum
scenario. In particular, they reproduce the basic features of 5D W ED m odels w here gauge
bosons and chiral ferm ions are allow ed to propagate in the bulk. O n the other hand, since
by considering D 7-branes we are em bedding such W ED scenarios in a UV com plete theory,
onem ay naturally wonder ifnew featuiresm ay also arise. Indeed, string theory/supergravity
contains a sector of RR antisymm etric elds which is not present in the RS 5D construc-
tion, and whose eld strengths are required to be non-trivial in warped backgrounds by
consistency of the equations of m otion. W e found that such background RR  uxes couple
non-trivially to the ferm ionic wavefunctions, leading to qualitatively di erent behavior de—
pending on their extra-dim ensional chirality. W e have show n that these di erent behaviors
are not accidental, but are necessary in order to provide a sensible description of SUSY
or spontaneously broken SUSY 4D theories upon din ensional reduction, and in particular
to produce m odels w here the kinetic term s for bosons and ferm ions can be understood in
term s of a 4D K ahler potential.

In fact, com puting the open string K ahler potential tums out to be a very fruitfiil
excercise since, as we have shown, it suggests a general m ethod of extracting the closed
string K ahler potential from (an often sin pler) open string com putation. Indeed, from
this point of view the open strings serve as probes of the background geom etry, as the
consistency of their couplings to the closed string degrees of freedom enable us to use
their K ahler m etrics to deduce their closed string counterparts. W e have shown that this
sin ple procedure reproduces the recently derived closed string results of L3, [4], which
were obtained in a highly com plicated way. M oreover, we expect our open—<losed string
m ethod to be useful n probing the structure of K ahler potentials in m ore general cases.

Retuming to the W ED perspective, the present work can be viewed as an initial step
In the studies of the W arped String Standard M odel. Such studies should nvolve the
com putation of phenom enologically relevant quantities lke Yukawa couplings and avor
m xing. Even if we have illustrated such kind of com putations in a very sim ple class of
m odels, nam ely D 7-branes at singularities, our results are also relevant for m ore realistic
constructions lke those in ], that involve backgrounds uxesand m agnetized intersecting
D 7-branes. N ote, how ever, that the chiral sector in this Jatter kind of constructions arises
from the intersection of D 7-branes, forwhich a worldvolum e action is still lacking. Ttwould
then be very interesting to extend our analysis to describe the degrees of freedom at the
intersection of D 7dranes In the presence of buk uxes.
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Finally, ket uspoint out that we have focussed our discussions to supersym m etric back—
grounds for the sake of sin plicity, but that our analysis is applicable to non-supersym m etric
m odels as well. In such non-SU SY m odels, warping provides an altemative m echanism of
generating the electrow eak hierarchy [l ], which by way of the gauge/gravity duality can
be understood as a dualdescription of technicolor theories. T he above wavefinctions and
their overlaps allow s us to com pute via a weakly coupled theory Interactions in the strongly
coupled dual, and m ay then o er insights into technicolor m odel buiding. Hence, other
than realizing the Standard M odel, constructing chiral gauge theories in warped back-
groundsm ay also help in understanding the physics of strongly coupled hidden sectors, an
elam ent in m any SUSY breaking scenarios. For instance, recent work [@] has shown that
the strongly coupled hidden sector in general gauge m ediation E] can be holographically
described in term s of the dualwarped geom etries. T he open string w avefunctions obtained
here can thus play an In portant role in determ ining the soft term s in such supersym m etry
breaking scenarios.
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A . Conventions

A 1 Bulk supergravity action

T he bosonic sector of type IIB supergravity consists of them etric Gy y , 2-form By y and
dilaton in the NSNS sector and the pfom potentialsC ¢,C,,and C4 in the RR sector.
T he string fram e action for these elds is

SIIB:SNS+ Sg + SCS (A.la)
Z 9
1 10 2 2
Sns =7 dxe detG R + 4@y @y —H 3 (A 1b)
2 1o 7 g
Se = —— %% detG FP4Fi4 2F2 A lc)
R 77 X e ] 3 SFs c
10 o
1
Scs= —5 Ca H3 F; @ 1d)
4 %
where 2 %0= 2 Y 04 and
F,=dC (A 2a)
F3=dC, Hs (A 2b)
1 1
Fg=dCy, ECZAHB'*' EBZAFB (A 2c)
and Hs = dB,.Here rany pfom ! wedene!?=! ! ,where isgiven by
1 ..
o o= g, R @ 3)

Finally, R is theR icci scalar built from themetric G .

A .2 D brane ferm ionic action

T he ferm ionic action for a single D pbrane, up to quadratic order in the ferm ions and in
the string fram e, was com puted in @]. Iwas shown in ] that one can express it as

Z
g9
1
SE = pp ' e detPGI+F PUPE) M ! D 0 @A 4)
+1
w here D;: 2 P 0= is the tension of the D pbrane, P [:::] indicates a pulllback into

the D p-brane worldvolum e, and isa 10D M aprana-W eylbispinor,

with ;; » 10D MW spiors. Gamm a m atrices act on such bispinor as
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T hisaction involves the generalized el strengthF = PB 1+ 2 O (whereF istheword-
volum e eld strength of the U (1) gauge theory) through several quantities. A n obvious one
is the iIntegration m easure det(P [G ]+ F ) that substitutes the m ore conventional volum e
elem ent. A m ore crucialquantity for the analysis of SecE isM =G +F (10) 3,
that encodes the D -brane world-volum e naturalm etric In the presence of a non-trivial F .
Finally, F also appears in the profction operators

1
P"P=-1 @ 7)
2
where p, can bewritten as @]
!
O 1
Dp = e @ 8)
Dp 0
w ith
q_
detP G ] X 11 og
_ :p 2) 3) (0O)
Dp = 1P (P ppS o F - 2glF 2q A .9)
det®PGI1+F) g
and o R
Dp = p——"t @ 10)
(p+ 1)! JdetP [G I

Then,forp= 2k + 1,

(e 2)p 3) 0) _ .p 1)=2
lp P Dp — lp (p+ 1) (A .11)

with (1) asde ned in footmote E Hence, for D3 and D 7-branes with F = 0 we have
that 1

D3 = = @ 2 and pg= @) 2 (A 12)

so that egs.(2.]) and €69) ollow from @ ]).

The operatorsO and D arede ned from the dilatino and gravitino SU SY vardations

" ! #
5 N 1(H: ) N 1 0 = @ 13a)
= = r — —e a
M M M 4 3 /M 3 16 (?) O M (10)
" ! #
0 & + lI—'I= + ! M o F (& 13b)
= = - —e .
27277 16 ®)o M @0
w here )
Fp = BIFM 1 pMM ! pM (A .14)

indicates a contraction over bulk indices and  indicates that the order of indices in the
contraction is reversed,

1

B =5FM R @ 15)
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In type IIB theory one then has that
1 . int,
DM =TIy +Z(H:3)M 3+ ée F]_:LZ"— ?3 1+ F5 1 M (A.16a)

o

1 1
& + 51:1:3 3 e Fli 2+ 5?3 1 (A .16b)

For converting @) to the E instein fram e we have to do the follow Ing ferm ion rede -
nitions

E_ o -8
0F = e™0 @ 17)
Dlsjl = e =8 D %MO
A frer which we obtain
Z
fer +1 (u)q E5Dp 1 E 1 E E
Spp= pp d¥° e det G + F P°PF) M D + 0 -0
’ +1 0 (B) K EDp E 1 mn E 1 E
= pp d° e ¢ det G + F P " (F) D" + M an"'émO

where In the second line we have taken into account that we are reducing to 4D , and w here
the ’sand M are converted to the Einstein fram e. In the unm agnetized case F = O we

have
z 1 ,
3 =
sE= o, ! d%) detp] 7 EpPP DE+p8 OF E @ 18)

m atching ) for the case p = 7. Finally, the gravitino and dilatino operators in the
E instein fram e are

1 _ 1 1 1_;
DS =Iry + ge =2 Gg M T E M G; + Z e Fi)v + EF?t M i 2 (A 19a)
E 1 =2 .
o~ =@ Ee Gy e Fii, (A 19)

where we have de ned G 4 Fy 1 e K3 3.

A 3 Ferm ion conventions

In order to describe explicitly ferm ionic wavefunctions w e take the follow iIng representation
for -matrices in at 10D sgpace

— = IZ IZ IZ o= (4) ~ 3 (A -20)
where = 0;:::;3, labels the 4D M inkow ski coordinates, whose gam m a m atrices are
| |
0 I ; 0
0 _ 2 i_ 1 A 21)
IZ 0 i 0

~T o= 1 I I ~= 2 L I
~= 1 b ~ = g 2 I (A 22)
~ =y 3 1 ~6 =g 3 2
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and ; indicate the usualPaulim atrices. The 4D chirality operator is then given by
@w= @ L I DI @ 23)

where 4, =1 0 1 23 and the 10D chirality operator by

L, 0
(10) = (@) © = L 3 3 3 (A 24)
with (g = it ~2n3080508 Finglly, in this choice of representation a M a prana m atrix
is given by |
p- 2789 O 2 > i1 2= Bs B (a 25)
2 O
which indeed satis es the conditions BB = Iand B Y B = Y | Notice that the 4D
and 6D M ajprana m atrices B4 2 @) and Bg ~4~5+% satisfy analogous conditions
B4B, = B¢B,=Tand By B, = ,Bg "By= ™ .
In the text wem ainly work with 10D M ajpranaW eyl spinors, m eaning those spinors
satisfying = 40y = B . In the conventions above thism eans that we have spinors
of the form ' '
o_ o O TORD I (B 26a)
1 0 1
1 1 0 o1 2
= v+ 10 7) 0 + (A 26Db)
1 1
2 2 0 o2 2
- T 0 + (& 26c)
1 1
3 3 0 .3 2
- O . (@ 26d)

where 73 isthe sphnorwavefunction, (0 )t isa 4D spinor of negative chirality and

123
is a basis of 6D spinors of such that
| | | | | |

0 0 0 1 1 1 & 27)
1 1 1 T 0 0 0

etc. Note that these basis elam ents are eigenstates of the 6D chirality operator (¢, with
eigenvalues 1 , 3.

In fact, that enters into the femm ionic D 7-brane action is a bigpinor of the formm
24), where each of 1, , is given by (B 2§) or a linear combinations thereof. Both
com ponents of the bispinor are how ever not independent, but rather related by the choice of

— xing. Indeed, note that the ferm ionic action @) is Invariant under the transform ation
! +p PP ,with an arbitrary 10D M W bispinor. Thism eans that half of the degrees
of freedom in  are not physical and can be gauged away. In practice, this am ounts to

mmposson =P °F + pr a condition that xesP °F .
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Let us for instance consider a D 7-brane with F = 0. Takihg the -gauge P?’ = 0,
we have that ! ! !
= =i = i (A 28)
2 @ 1 T ®
where isa spinor of the form ). If In addition the D 7-brane spans the coordinates
01234578 w ith positive orientation, then the 8D chirality operator is (5 = 1 01234578 |
and so the wavefunctions 3 of both spinors are related as

1 2
1 1

N w
w

9= i} F=1 2=1 = ij @ 29)
so that there are only four independent spinorsw avefunctions after In posing this constraint.

Ifwe now de ne the pro gctors

1
= - I (4) 2 PO3 = —= I (6) 2 (A 30)

= ) and = ) A 31)

0 _ | and 3 = . (A 32)

Finalky, let us recall that to din ensionally reduce a D 7-brane ferm ionic action, one
has to sin ultaneously diagonalize two D irac operators: &, and F" ,built from — and o,
respectively. H ow ever, as these two set of -m atrices do not com m ute, nor w ill &, and =" ,

and so we need instead to construct these D irac operators from the altemative -m atrices

~ ~ 3
- = (4) —i1= (4) L L DI I (4) L= ~ (A 33)

R eferences

[l] L.Randalland R . Sundrum , \A largem ass hierarchy from a an all extra dim ension," Phys.
Rev.Lett. 83,3370 (1999) [axX jyhepfph/990522]| 1 \An altemative to com pacti cation,"
Phys.Rev.Lett. 83,4690 (1999) [arX ivhep—th/9906064 1.

[2] For recent review s, see, eg.,
M .R.Douglsand S.K achru, \F lux com pacti cation," Rev.M od.Phys. 79, 733 (2007)
[arX i fhep-th/0610104].
R .Blum enhagen, B .K ors,D . Lust and S. Stigberger, \Four-dim ensional String
Com pacti cations with D Branes, O rientifolds and F luxes," Phys.Rept. 445,1 (2007)
[arX i jhep-th/0610327 1.

[3] H.L.Verlinde, \H olography and com pacti cation," NuclL Phys.B 580,264 (2000)
[arxX i jhep-th/9906184 1.

{49 {


http://xxx.lanl.gov/abs/hep-ph/9905221
http://xxx.lanl.gov/abs/hep-th/9906064
http://xxx.lanl.gov/abs/hep-th/0610102
http://xxx.lanl.gov/abs/hep-th/0610327
http://xxx.lanl.gov/abs/hep-th/9906182

[4] K .Dasgupta,G .Rapsh and S. Sethi, \M theory, orientifolds and G — ux," JHEP 9908, 023
(1999) [arx iv jhep—th/9908084].

[5] B.R.Greene,K .Schalm and G . Shiu, \W arped com pacti cations in M and F theory," Nucl.
Phys.B 584,480 (2000) [arX ivhep—th/0004103].

[6] K .Becker and M . Becker, \C om pactifying M -theory to four din ensions," JHEP 0011, 029
(2000) [arX i fhep—-th/0010284], \M -T heory on EightM anifods,"” Nucl. Phys.B 477,155
(1996) [arX v jhhep-th/9605053].

[7] S.B .G ddings, S.K achru and J.Polchinski, \H ierarchies from uxes in string
oom pacti cations,” Phys.Rev.D 66 (2002) 106006 [arX i hep—th/0105097].

[8] For recent review s, see, eg.,
A .Linde, \In ation and string coan olgy," eConfC 040802,1L.024 (2004) [J.Phys.Conf.
Ser.24,151 (2005 PTPSA ,163,295-322.2006)] [arX iv fhep—th/0503199 J;
S.H .Henry Tye, \Brane in ation: String theory viewed from the coan os,"
arX v hep-th/0610221;
J.M .C line, \String cosm olgy," arX ivjhep-th/0612129;
R .Kallbsh,\On In ation in String Theory," arX i hep-th/0702059)|;
C.P.Burgess, \Lectures on Cogn ic In ation and its Potentdal Stringy Realizations," P oS
P 2G C , 008 (2006) [Class.Quant.G rav. 24,5795 (2007)] farXiv:0708.286% hep-thj;
L.M cA llister and E . Silverstein, \String C oam olgy: A Review ," hrXiv:0710.2951 hep-th].

O] S.B.G ddings and A .M aharana, \D ynam ics of warped com pacti cations and the shape of
the warped landscape," Phys.Rev.D 73, 126003 (2006) [axX 'N[hep—th/0507158| 1.

[L0] A.R.Frey and A .M aharana, \W arped spectroscopy: Localization of frozen buk m odes,"
JHEP 0608,021 (2006) [arX i frep-th/06032331.

[l1]C.P.Buwess,P.G.Camara,S.P.deA Wwis, S.B .G iddings, A .M aharana, F . Q uevedo and
K . Suruliz, \W arped supersym m etry breaking," JHEP 0804, 053 (2008)
[arX iv fhep-th/0610259 1.

[12] G .Shau,G . Torroba,B .Underwood and M .R .Douglas, \D ynam ics of W arped F lux
Com pact cations," JHEP 0806, 024 (2008) [arxiv:0803.306d hep-th]l.

[13] M .R.Douglasand G . Torroba, \K inetic term s in warped com pacti cations,"
larxiv:0805.370( hep-th].

[l14] A .R.Frey,G .Torroba,B.Underwood and M .R .Douglas, \The UniversalK achler M odulus
in W arped Com pacti cations," prxiv:0810.5768| hep-th].

[L5] For recent review s see
C .Csaki, \TA ST kectures on extra din ensions and branes," [arX i jhep—ph/04040947;
R .Sundrum , \To the fth dim ension and back. (TA ST 2004)," [arX & hep—th/0508134;
R .Rattazzi, \C argese lectures on extra din ensions," [arX ivhep-ph/0607053 J;
T .G herghetta, \W arped m odels and holography," [arX i hep-ph/0601213]
and references therein.

[16] T .G herghetta and J.G iedt, \Buk eHds in AdSs from proke D 7 branes," Phys.Rev.D 74,
066007 (2006) [arX ivfhep—th/0605217 1.

[17] B.S.Acharya,F.Benihiand R .Valandro, \W arped m odels in string theory,"
arX v hep-th/0612197.

{ 50 {


http://xxx.lanl.gov/abs/hep-th/9908088
http://xxx.lanl.gov/abs/hep-th/0004103
http://xxx.lanl.gov/abs/hep-th/0010282
http://xxx.lanl.gov/abs/hep-th/9605053
http://xxx.lanl.gov/abs/hep-th/0105097
http://xxx.lanl.gov/abs/hep-th/0503195
http://xxx.lanl.gov/abs/hep-th/0610221
http://xxx.lanl.gov/abs/hep-th/0612129
http://xxx.lanl.gov/abs/hep-th/0702059
http://arxiv.org/abs/0708.2865
http://arxiv.org/abs/0710.2951
http://xxx.lanl.gov/abs/hep-th/0507158
http://xxx.lanl.gov/abs/hep-th/0603233
http://xxx.lanl.gov/abs/hep-th/0610255
http://arxiv.org/abs/0803.3068
http://arxiv.org/abs/0805.3700
http://arxiv.org/abs/0810.5768
http://xxx.lanl.gov/abs/hep-ph/0404096
http://xxx.lanl.gov/abs/hep-th/0508134
http://xxx.lanl.gov/abs/hep-ph/0607055
http://xxx.lanl.gov/abs/hep-ph/0601213
http://xxx.lanl.gov/abs/hep-th/0605212
http://xxx.lanl.gov/abs/hep-th/0612192

[18] J.F.G .Cascalks,F.Saad and A .M .U ranga, \H olographic dual of the standard m odel on the
throat," JHEP 0511, 047 (2005) [arX ivhep-th/0503079 1.

[19] S.Franco,D .Rodr guez-G om ez and H . Verlinde, \N i cation of Forces: A H olographic
Perspective on D -brane M odel Building," prXiv:0804.1129 hep-th].

[20] L .M artucci, J.Rosseel, D . Van den B Jlecken and A .Van Proeyen, \D irac actions for D tranes
on hackgrounds with uxes," Class.Quant.G rav.22 (2005) 2745 [arX jy:hep—th/050404l|].

[21] I.Bandos and D . Sorokin, \A spects of D Jorane dynam ics in supergravity backgrounds w ith
uxes, kappa-sym m etry and equations of m otion. IIB ," Nucl. Phys.B 759, 399 (2006)
[arX iv jhep-th/0607167 1.

[22] L.Randalland M .D .Schwartz, \Quantum el theory and uni cation in AdS5," JHEP
0111,003 (2001) [arX iv hep-th/0108114 1.

[23]1 D.Baumann,A .Dymarsky, I.R .K banov,J.M .M aldacena, L .P.M cA llister and
A .M urugan, \On D 3-brane potentials in com pacti cations with uxes and wrapped
D -branes," JHEP 0611, 031 (2006) [arX i fhep-th/06070501.

[24] T .G herghetta and A . Pom arol, \Buk elds and supersymm etry in a slice of AdS," Nucl
Phys.B 586,141 (2000) [arX ivhep-ph/0003129 1.

[25] E . Shuster, \K illing spinors and supersymm etry on AdS," NuclL Phys.B 554,198 (1999)
[arX v fhep-th/99021291.

[26] I.A .Bandos,D . P. Sorokin and M . Tonin, \G eneralized action principle and super ed
equations of m otion for D = 10 D pdranes," Nucl Phys.B 497,275 (1997)
[arX i jhep-th/9701127 1.

[27] L .M artucciand P. Sm yth, \Supersym m etric D ‘ranes and calibrations on generalN = 1
kackgrounds,” JHEP 0511, 048 (2005) [arX i hep—th/0507099].

[28] J.Gom is, F .M archesano and D .M ateos, \An open string landscape," JHEP 0511, 021
(2005) [arX iv jhep-th/05061791.

[29] H . Jockers, \The e ective action of D -branes in Cakbi-Yau orientifold com pacti cations,"
Fortsch. Phys. 53, 1087 (2005) [arX i hep-th/0507047 1.

[30] D.Lust,F .M archesano, L .M artucciand D . T sin pis, \G eneralized non-supersym m etric ux
vacua," JHEP 0811,021 (2008) farXiv:0807.454( hep-th]l.

[31] C.Beasky,J.J.Heckman and C .Vafa, \GUT s and E xceptional Branes in F-theory — I,"
rXiv:0802.339] hep-th].

[32] M .G rana and J.Polchinski, \Supersym m etric three-form  ux perturiations on AdS(5),"
Phys.Rev.D 63, 026001 (2001) [arX ivfhep—th/00092171.

[33] P.G .Camara,L.E.Ibanez and A .M .U ranga, \F lux—induced SU SY Joreaking soft term s on
D 7-D 3 brane systam s," Nucl Phys.B 708,268 (2005) [arX 'Nhep—th/0408036|1.

[34] M .G rana and J.Polhinski, \G auge / gravity duals w ith holom orphic dilaton," Phys.Rev.D
65,126005 (2002) [arX ivhep-th/0106014].

[35] P.DiVecchia, A . Liccardo,R .M arotta and F . Pezzella, \K ahler M etrics and Yukawa
Couplings in M agnetized Brane M odels," farXiv:0810.5509 hep-th].

[36]1 D.Cremades,L.E. Ibanez and F .M archesano, \C om puting Y ukawa couplings from
m agnetized extra dim ensions," JHEP 0405, 079 (2004) [arX jyhep—th/0404229|1.

{51 {


http://xxx.lanl.gov/abs/hep-th/0503079
http://arxiv.org/abs/0804.1125
http://xxx.lanl.gov/abs/hep-th/0504041
http://xxx.lanl.gov/abs/hep-th/0607163
http://xxx.lanl.gov/abs/hep-th/0108114
http://xxx.lanl.gov/abs/hep-th/0607050
http://xxx.lanl.gov/abs/hep-ph/0003129
http://xxx.lanl.gov/abs/hep-th/9902129
http://xxx.lanl.gov/abs/hep-th/9701127
http://xxx.lanl.gov/abs/hep-th/0507099
http://xxx.lanl.gov/abs/hep-th/0506179
http://xxx.lanl.gov/abs/hep-th/0507042
http://arxiv.org/abs/0807.4540
http://arxiv.org/abs/0802.3391
http://xxx.lanl.gov/abs/hep-th/0009211
http://xxx.lanl.gov/abs/hep-th/0408036
http://xxx.lanl.gov/abs/hep-th/0106014
http://arxiv.org/abs/0810.5509
http://xxx.lanl.gov/abs/hep-th/0404229

[37] H .Jockers and J. Louis, \The e ective action of D 7-branes in N = 1 Cakbi-Yau
orientifods," Nucl Phys.B 705,167 (2005) [arX jy]hep—th/04090981].

[38] L .M artucci, \On m oduli and e ective theory of N=1 warped ux com pacti cations,"
larxiv:0902.4031 hep-thl.

[39] M .Berg,M .Haack and B .K ors, \Loop corrections to volum e m oduli and in ation in string
theory," Phys.Rev.D 71, 026005 (2005) [arX ivfhep—th/0404087]. \String Ioop corrections to
K ahler potentials in ordentifolds,"” JHEP 0511, 030 (2005) [arX i fhep—th/05080471.

[40] L.E. Ibanez,C .M unoz and S.R igolin, \A spects of type I string phenom enolgy," Nucl
Phys.B 553,43 (1999) [arxX & hep-ph/9812397 1.

[41] J.P.Conln, A .M aharana and F.Q uevedo, \W ave Functions and Y ukawa C ouplings in
Local String C om pactl cations," JHEP 0809, 104 (2008) []arXiv: 0807. O789| thep-th]l.

[42] Y .Grosam an and M . N eubert, \N eutrino m asses and m ixings in non-factorizablk geom etry,"
Phys.Lett.B 474,361 (2000) [arX ivhep—ph/9912409].

[43] F.Benini, A .Dymarsky, S.Franco,S.K achru,D . Sin ic and H . Verlinde, \H olographic G auge
M ediation," prXiv:0903.0619 hep—th].

[44]1M .M arino,R .M inasian,G .W .M oore and A . Strom inger, \N onlinear instantons from
supersym m etric pbranes," JHEP 0001, 005 (2000) [arX ivfhep-th/99112041.

[45] D .Lust,P.M ayr,R .R ichter and S. Stieberger, \Scattering of gauge, m atter, and m oduli
elds from intersecting branes," Nucl. Phys.B 696, 205 (2004) [arX jy:hep—th/0404l34].

[46] A .Fontand L.E . Ioanez, \SU SY “breaking soft term s in a M SSM m agnetized D 7-brane
model," JHEP 0503, 040 (2005) [arxX ivhep-th/041215(].

[47] E.Bergshoe ,R.Kallosh, T .Ort n and G . Papadopoulos, \kappa-sym m etry, supersym m etry
and intersecting branes," NucL Phys.B 502,149 (1997) [arX iv hep—th/970504( 1.

[48] D .G alotto,M .Guica,L.Huang,A .Simons, A . Strom inger and X .Y in, \D 4-D 0 Branes on
the Q uintic," JHEP 0603, 019 (2006) [arX v hep—th/0509164].

[49] P.K oerber and L .M artucci, \D eform ations of calibrated D “oranes in  ux generalized com plex
m anibds," JHEP 0612, 062 (2006) [arX iv jhep—-th/0610044].

[50] H . Jockers and J. Louis, \D erm s and F-term s from D 7-4rane uxes," Nucl Phys.B 718,
203 (2005) [arx iv hep-th/05020591.

[51] L .M artucci, \D -branes on generalN = 1 kackgrounds: Superpotentials and D <erm s," JHEP
0606, 033 (2006) [arX ivhep-th/0602129 1.

[52] F .M archesano and G . Shiu, \M SSM vacua from ux com pacti cations," Phys.Rev.D 71,
011701 (2005) [arX ivhep-th/0408059]; \Buiding M SSM ux vacua," JHEP 0411, 041 (2004)
[arX I hep-th/0409132].

53] P.M eade, N . Seibberg and D . Shih, \G eneral G auge M ediation," larXiv:0801.327§ hepohl.

[54] D .M arolf, L..M artucciand P.J. Silva, \Femm ions, T -duality and e ective actions for
D -branes in bosonic backgrounds," JHEP 0304, 051 (2003) [arX ivihep-th/0303209];
\A ctions and ferm ionic sym m etries for D ‘branes in bosonic kackgrounds," JHEP 0307, 019
(2003) [arX i fhep-th/03060641.

[55] R .K allosh, \C ovariant quantization of D “oranes," Phys.Rev.D 56,3515 (1997)
[arx i jhep-th/9705054 1.

{ 52 {


http://xxx.lanl.gov/abs/hep-th/0409098
http://arxiv.org/abs/0902.4031
http://xxx.lanl.gov/abs/hep-th/0404087
http://xxx.lanl.gov/abs/hep-th/0508043
http://xxx.lanl.gov/abs/hep-ph/9812397
http://arxiv.org/abs/0807.0789
http://xxx.lanl.gov/abs/hep-ph/9912408
http://arxiv.org/abs/0903.0619
http://xxx.lanl.gov/abs/hep-th/9911206
http://xxx.lanl.gov/abs/hep-th/0404134
http://xxx.lanl.gov/abs/hep-th/0412150
http://xxx.lanl.gov/abs/hep-th/9705040
http://xxx.lanl.gov/abs/hep-th/0509168
http://xxx.lanl.gov/abs/hep-th/0610044
http://xxx.lanl.gov/abs/hep-th/0502059
http://xxx.lanl.gov/abs/hep-th/0602129
http://arxiv.org/abs/0801.3278
http://xxx.lanl.gov/abs/hep-th/0303209
http://xxx.lanl.gov/abs/hep-th/0306066
http://xxx.lanl.gov/abs/hep-th/9705056

