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INTERPRETATION OF THE HIGHER MODE, HEAD
TAIL MOTION OBSERVED ON ISIS
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The higher mode, coherent vertical oscillations observed on the ISIS proton synchrotron do not conform to the
usual interpretation of head-tail motion. A modified explanation is both required and attempted for the motions
that are observed.
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INTRODUCTION

Observations on the 50 Hz, ISIS synchrotron show that the two proton bunches develop
some coherent vertical growth during a 2 ms interval of each 10 ms acceleration period.
The growth is suppressed almost entirely when operating at the natural negative chro­
maticity by ramping. the vertical tune over the interval, away from the nearby integer
value.

Beam behaviour patterns characterise the coherent motion as a resistive wall, head-tail,
m = 1 mode, with a single vertical displacement node at each bunch centre. The motion
does not conform, however, to the usual picture presented for head-tail oscillations. The
head-tail chromatic phase shift, over the interval concerned, corresponds to a maximum
of the Sacherer1 form factor for the m =2 and not the m = 1 mode and yet it is only the
latter that is observed on ISIS.

To interpret the anomaly, the experimental observations are first analysed; then, the
Sacherer head-tail theory is re-examined and, finally, a modified interpretation of the
motion is presented. The beam oscillation pattern is used to find the sideband amplitudes
in the spectra of the differential wall currents and the associated resistive wall excitation
forces. It is found that the largest resistive wall forces are not at the lowest (n - Q)
sideband frequency but at some of the (n + Q) sidebands, where n defines the revolution
frequency harmonic involved. This is a very different finding for the m = 1 mode than
Sacherer's, and a different perturbation distribution is therefore postulated in an attempt
to explain the antidamping for (n + Q) frequencies over the full extent of the bunch,
when averaged over time.
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2 EXPERIMENTAL OBSERVATIONS

Typical perfonnance figures for the ISIS 50 Hz synchrotron are the acceleration of two
bunches from 70 to 800 MeV, at a total intensity level of 2 1013 protons per pulse/cycle.
When operating at the natural value of the machine chromaticity, a coherent vertical
instability develops during the 2 to 4 ms interval of the 10 ms acceleration period, for
beams of more than 3 1012 protons. It may be suppressed almost entirely by reducing
the vertical tune Qv from 3.78 to 3.72 over the 2 ms interval. Without the reduction of
Qv, there is beam loss, and the fractional loss is largest at the lower intensities when the
coherent and incoherent space charge tune shifts are least. All the beam appears to be
involved in the oscillation and the beam loss is large when Qv is set above 3.8 through
the interval concerned.

The coherent motion may be interpreted as a resistive wall, m == 1, vertical head-tail
mode due to the following observations:

(1) A single displacement node only, at the centre of each bunch, for various initial
transverse distributions, when at the natural machine chromaticity.

(2) A resistive wall instability at (4-Qv), with an enhanced growth rate as Qv approaches
the value 4, when coasting in a 70 MeV storage ring mode.

Measurements of the tune, chromaticity and bunch duration over the 2 ms instability
interval lead to an estimate of ~W == 2.87r (see section 3) for the average value of the
head to tail chromatic phase shift. This is a much larger value than is predicted for the
m == 1 mode; by comparison, Sacherer finds a maximum fonn factor for the m = 1 mode
at ~w == 1.67r, with the value of ~w == 2.87r corresponding to a maximum for m = 2.
However, it is the fonner mode and not the latter that is observed on ISIS and, since
~W changes continuously, but instability occurs only between 2 and 4 ms, it appears
that ~W == 2.87r is an optimum in ISIS· for excitation of the m == 1 mode. Also, it is
found that, if the ramping of the tune is stopped at 3 ms, it is still an m = 1 mode that
appears between 3 and 4 ms.

A typical vertical position monitor signal is given in Fig. 1, which shows the time
progression of the coherent motion of one of the two bunches. It appears that the head
of the bunch is up while the tail is down, and vice-versa. However at 2 to 4 ms, the
bunches are approximately 30 m in length and the instantaneous head-tail phase shift is
less than that observed. To find the instantaneous value, it is necessary to subtract the
appropriate betatron phase shift, WoQv~T. for each time point on the bunch, where W o

is the angular revolution frequency, Qv is the vertical tune and ~T is the time measured
from a bunch reference point.

The shift of the betatron phase while the entire bunch passes the monitor is 1.57r, so
the instantaneous head-tail phase shift equals the observed value of 4.37r minus 1.57r, in
agreement with the estimated value of 2.87r. Thus, at one instant in time, both the head
and tail of the bunch are up and, at another, they are down, and no additional phase
shifts appear to be involved, as are required in the Sacherer interpretation of the m == 1,
head-tail mode.
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FIGURE 1: Vertical Head Tail, m=1, Mode on ISIS

3 THE HEAD TO TAIL CHROMATIC PHASE SHIFT

161

A finite value for the chromaticity, ~, results in a momentum dependent betatron tune
and hence an accumulated phase shift for coherent transverse motion at progressive time
points along the bunch:

dt

J ~QwoeD.p/p)dt = -e~Qwo/'fJ) JeD.T /T)dt

Tdk dT == ~Tdk ,

-e~Qwo/'fJ) J dT = -~QWoT/'fJ

(1)

where woT == 27f, the beam revolution period is T, the tum number is k, the time relative
to the bunch centre is T, and TJ == ,-2 - 't-2

, with 't the value of , at the transition
energy of the ring, and, == E / Eo.

When below transition and at the natural negative value of the chromaticity, the slope
of ~W against T is positive. The total value of the head to tail phase shift, averaged
over the 2 to 4 ms interval on ISIS is found to be:

~w == 2.87f
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4 BASIS OF THE SACHERER THEORY

The main features of the Sacherer theoryl for coherent head-tail dipole mode motion are:

(1) Vertical or horizontal beam displacements which are modulated at the associated
coherent betatron frequency, Qwo /21r;

(2) Chromatic head-tail phase shifts, as discussed previously, which vary as a function
of the time duration from the bunch centre;

(3) The possibility of additional continuously varying coherent betatron phase shifts
along each trajectory in longitudinal phase space2;

(4) A standing wave displacement pattern along each bunch, with the number of dis­
placement nodes usually related to the head-tail mode number;

(5) A frequency spectrum for the oscillating beam that contains betatron sidebands of
the revolution frequency harmonics, nwo /21r;

(6) A modified spectrum for the case of a finite chromaticity, due to a type of travelling
wave component at the chromatic angular frequency, we == d(~\11)/dt; and

(7) A form factor for each of the modes, expressed as a function of ~ \II. which is related
to the possible growth rate for the mode.

Of these features, the first and fifth are the same as in the case of a coasting beam
but the others are not, since they arise due to the incoherent synchrotron motion and the
associated changes in the relative momentum spread, ~P /p. For a coasting beam, the
transverse instability develops as a one dimensional travelling wave, with n wavelengths
around the ring and an angular oscillation frequency, (n - Q)wo • For a bunched beam,
there is a wider spectrum at (n ± Q)wo for a range of n, due to the modulation of
the standing wave pattern at the betatron frequency and the additional effect due to the
chromatic phase shifts. In very large machines, there may be the further complication
of coupling between coherent betatron and synchrotron motions, but this is not relevant
for ISIS.

The standing wave pattern for the m = 1 mode has a single central displacement node
which is assumed to arise due to the cancellation between the motions of the +~P /p and
- ~P /P particles at the bunch centre. This interpretation is presented both by Sachererl

and Gareyte2• Following Sacherer, the coherent beam displacements for mode m, ~m(k),
may be related to the standing wave pattern, Pm(T):

~m(k) == Pm(T) exp (jweT + j1rkQ) (2)

Actual standing wave patterns, as observed on a position monitor, include the effect
of the longitudinal shape of the bunch. Sacherer3 finds approximations for Pm (T) by
first assuming a longitudinal line density for the bunch and then applying the Vlasov
equation. Legendre and sinusoidal standing wave patterns are predicted by this means.
Finally, he interprets the Fourier Transforml of Pm(T) exp(jweT) as showing a shift of
the entire beam displacement spectrum by an amount equal to the chromatic frequency,
we/21r:

(3)
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5 SACHERER RE-EXAMINED FOR THE m = 1 HEAD-TAIL MODE SPECTRUM

Two aspects of the Sacherer theory are now re-examined; firstly, the interpretation that
the betatron sidebands are finite only if they lie within the frequency band where the
form factor is finite and, secondly, the use of just one Fourier Transform to evaluate the
beam displacement pattern. It is contended here that both these aspects are incorrect.

In the first case, it is noted that a single Fourier Transform gives a single amplitude
for each of the Fourier harmonics of the beam revolution frequency. On introducing the
modulation, each harmonic splits into an upper and lower betatron sideband, of equal
amplitude. The sideband frequencies, however, may lie inside or outside the finite region
of the Transform envelope, depending on the values of the harmonic, n, and the tune,
Qv. As a consequence, the extent of the sideband spectrum is not as indicated in Fig.
16 of reference 1, but is wider by the amounts ±Qvwo/21r.

In the second case, it is noted that Eq. (2) is written in the form of a complex
exponential and not as a real sinusoid. If the latter is adopted, and the modulated signal
is expanded, it may be seen that the expansion contains terms in Pm(T) sin WeT, and
Pm (T) cos WeT, each with their separate modulations. A complete analysis of the signal
thus requires two and not one Fourier Transform.

The use of two Fourier Transforms leads to two amplitudes for each Fourier harmonic
and half the sum of these gives one sideband amplitude, and half the difference the
other. Since it is necessary to retain the sign of the Fourier amplitudes, it proves easier
to work with Fourier Series rather than Transforms. Derivations of the Fourier Series
and sideband amplitudes are given for the m = 1 mode in an Appendix.

An expression is first obtained for the differential wall currents, b,./w, which are estab­
lished in the vacuum chamber when the beam oscillates coherently in the m = 1 mode.
The time variable, t, relates to the bunch centre. An optimal sinusoidal beam standing
wave pattern is assumed, modulated at the betatron frequency, with appropriate chro­
matic phase shifts, and this gives the same form for b,./w as the sinusoidal distributions3

of Sacherer.

The effect of a finite chromaticity is to shift the spectrum of b,./w to higher frequencies,
but not simply by an amount equal to the chromatic frequency, as Sacherer suggests. For
the ISIS ring, operation is at the natural value of the chromaticity, and parameters for the
m = 1 mode spectrum are as follows, with en and Dn the amplitudes of the sidebands
at (n - Qv)wo and (n + Qv)wo respectively, as derived in the Appendix:

n

0.0194

0.0425

2

0.0084

0.0500

3

0.0000

0.0520

4

-0.0049

0.0473

5

-0.0064

0.0360

The interesting feature emerges that for n == 1 to 5 in ISIS, the amplitudes of the
(n + Qv) sidebands are much larger than those of their associated (n - Qv) sidebands. In
the case where n is the lowest integer larger than Qv, that is n == 4, the amplitude of the
upper sideband is approximately ten times larger than that of the lower.
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6 RESISTIVE WALL ANTIDAMPING FORCES

Electric and magnetic fields are created when a beam makes a coherent transverse oscil­
lation. The electric field is related to the voltage arising at the wall impedence due to
the differential wall current, and the magnetic field is related to the integral of the elec­
tric field. As a consequence, a resistive wall leads to a coherent, transverse, magnetic,
beam deflecting force which is potentially antidamping. In the case of a coasting beam,
it may be shown that the force damps the coherent motion at the angular frequencies
(n + Q )wo , but results in antidamping at (n - Q )wo , for n > Q, above certain threshold
beam intensities. For a bunched beam, the situation is more complex.

If a bunch oscillates transversely in the rigid dipole mode (~ == 0, m == 0), the ampli­
tudes of any sideband pair are of equal amplitude. The larger deflecting force then occurs
for the lower sideband as there is generally an inverse square root of frequency depen­
dency for the transverse resistive wall impedance. In the case of instability, both the
sidebands grow in amplitude, but the lower and upper sidebands contribute to antidamp­
ing and damping respectively. This may be seen directly by making use of hypercomplex
number algebra to find the response of the wall impedance to the differential wall current
modulations; one complex number may be associated with the carrier and the other with
the modulation frequency, as described in reference 4. Modulation response functions
may be found for the resistive wall coupling impedance.

In the case of ISIS, ~ < 0,1 < 1t, m == 1, and the amplitudes of the sideband pairs
are different, as discussed in section 5. The differences are such that the largest resistive
wall forces are found to occur for some of the (n + Qv) sidebands, and not for those at
(n - Qv )wo . The result is not a marginal one, for the same holds even if the chromaticity
is halved. Reversing the sign of ~ on ISIS gives a different result, with the largest m == 1
resistive wall force then occurring for the (4 - Qv) sideband. Above the transition energy,
similar results hold, but for opposite signs of the chromaticity, ~.

The finding on ISIS of a larger than expected chromatic head-tail phase shift has led
to the revised analysis for the resistive wall forces.. Interestingly, the m = 1 mode signal
shown by Sacherer in Fig. 14 of reference 1 also appears to have a phase shift which is
larger than expected. Antidamping is generally associated with (n - Qv) sidebands and
damping with those at (n + Qv), so a case of interest is one where part of the coherent
beam distribution is at one betatron phase while the remainder is in antiphase. It appears
then that the antidamping and damping effects may reverse for the two parts of the beam,
and this idea is explored in section 7 in an attempt to interpret the ISIS observations.

Thresholds may be found by setting the coherent frequency shift equal to the incoherent
betatron frequency spread for on-momentum particles, as indicated by Sacherer. Above
threshold, however, a new expression is required for the m = 1 growth rate, Tg-

1
, and an

approximation, found for the central beam region, is given below. Here, en, Dn,I are
derived in the Appendix, R is the mean ring radius, j is the peak bunch current, (E / e) is
the beam energy in volts, {3 is the particle velocity relative to c, the velocity of light, and
21 is the resistive component of the transverse wall impedence at the beam revolution
frequency.
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7 MODIFIED INTERPRETATION FOR THE MOTION

Interpretation of the motion is made easier by reference to longitudinal phase space
diagrams. Figure 2a, for example, indicates the chromatic vertical betatron phase shift
for the 2 to 4 ms interval of the ISIS acceleration cycle. The total head to tail phase
shift is 2.8 1r, and the representative points A, B, C and D have individual phase shifts
of 1r, 0, -1r and °respectively. This picture is in agreement with the observations.

In the case of the Sacherer type of perturbation distribution,2 there are additional
coherent betatron phase shifts, eg 1r/2, 0, -1r/2 and -1r respectively, superimposed for
A, B, C and D. This gives cancellation at the bunch centre for the coherent motions of
the +~p Ip and -~p /p particles, and results in antiphase coherent motion for particles
at C relative to those at A. However, such a picture is not in agreement with observations
on ISIS and also does not explain the antidamping of coherent vertical motion for most
regions of Fig. 2a.

A modified interpretation is therefore attempted. The m = 1 node at the bunch centre
is assumed to be due to a cancellation between the coherent betatron motions of the
large and small synchrotron amplitude particles and not between those of the +~p Ip
and - ~p / p particles. Thus, at any instant, particles at Band D have the opposite phase
to those at the centre, 0, while those at C and A are of the same phase, due to their
chromatic phase shifts. As a result, the particles near 0 may receive continuous betatron
antidamping forces, while those on the phase space trajectory BCDA may be damped
when at Band D, antidamped when at C and A, and yet receive overall antidamping
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because they remain longer near the positions C and A. Such a picture is consistent with
optimal antidamping for ~W'" 2.87f.

Modes with ,m values greater than 1 may be interpreted in a similar way. Thus, the
two displacement nodes for the m = 2 mode arise if the value of ~W is greater than
47f, and if there are three and not two regions of longitudinal phase space with different
betatron motions, as indicated by the pattern in Fig. 2b. The possibility of each head-tail
mode splitting into separate radial (m, r) modes3 may also be included in the revised
interpretation.

8 SUMMARY

A vertical, resistive wall, m = 1, head-tail instability is observed at the ISIS proton
synchrotron, with a larger than expected chromatic head-tail phase shift. Analysis of
the coherent beam displacements leads to the unexpected result that the largest resistive
wall forces occur at (n + Qv) and not (n - Qv) sideband frequencies. The former are
generally associated with resistive wall damping and the latter with antidamping, which
suggests that a different coherent betatron distribution is involved from that of traditional
head-tail theory. A modified interpretation for the motion is therefore presented in the
paper, though full experimental confirmation is difficult to establish on ISIS.
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APPENDIX: Fourier Harmonics and Sideband Amplitudes for the m = 1 Mode on ISIS.

When the beam oscillates coherently, differential wall currents, ~Iw, are established in
the vacuum chamber. Their magnitudes are related to the beam current, I, the local
values of the transverse beam displacement, ~(T), and the chamber half aperture in
the plane of the displacement, b. The line density of the unperturbed beam bunches is
assumed parabolic and adequately approximated as half a cosine wave:

-I ~(T)/(2b)

j cos (O.57fT /To) for - To < T < To

The displacement, ~(T), is a modulated, m 1, standing wave pattern of optimal
bunch duration, as has been discussed. In this case:

~(T) A sin(O.57fT/To) sin (woQt +W~T)

~Iw I sin (7fT/To) sin (woQt + W~T)
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where A is the maximum transverse displacement involved,
To is half the time duration of the bunch, and
1 is used to denote the parameter, -1A/(4b).

The differential wall current then has the same form as the sinusoidal distribution of
Sacherer. It may be expanded into two modulated Fourier series:

~Iw 1 sin (7fT/To) [sin WeT cos woQt + cos WeT sin woQt J

~Iw L [An cos nwot cos woQt + Bn sin nwot sin woQt]
n

An (l IT) 1:0 (sin (7ft ITo) sin wf"t cos nwot) dt

Bn (l IT) 1:0 (sin (7ft ITo) cos wf"t sin nwot) dt

These are the amplitudes for a single bunch, as required for calculating the interaction
with a resistive wall impedance. The related sideband amplitudes are Cn == (An + Bn)/2
and Dn == (An - Bn)/2:

~Iw L [Cn cos (n - Q)wot + Dn cos (n + Q)wot]
n

Cn (1To /T) ((sin ()l/()l) - (sin()4/()4)) /2

Dn (1To /T) (( sin ()2/()2) - ( sin ()3 / ()3)) /2

where

()l 7f - weTo - nWoTo

()2 7f - weTo + nWoTo

()3 7f + weTo - nWoTo

()4 7f + W~To + nwoTo

Introducing values for ISIS, at the relevant time interval:

To/T 0.1 n 4

weTo 1.47f WoTo 0.27f
()l -1.27f ()4 3.27f
()2 0.4 7f ()3 1.67f
C4 -0.00491 D4 0.04781
A4 0.04291 B4 -0.05271

The sidebands at (4 - Qv)wo and (4 + Qv)wo are of opposite polarity, with the latter
approximately ten times larger than the former.




