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Abstract The bunched beam transfer response has been found with
account of a nonlinear character of oscillations. The signal processing
technique was proposed for reconstructing the function of particle dis­
tribution over betatron amplitudes and for evaluating the octupole field
nonlinearity. These parameters have been measured at the U-70 machine
with the help of this technique.

INTRODUCTION

The beam transfer function technique (BTF) is applied at accelerators
to measure various parameters, in particula~ to extimate the stability
of the beam and its behaviour near betatron resonances. However, this
technique has been developed only for a continuous beam and the case
of linear oscillations1 . The form of the debunched beam transfer func­
tion in the presence of a pronounced octupole field nonlinearity has
been considered in 2 but, to our best knowledge, there are no experimen­
tal works available on this subject. The RTF technique, applied for a
bunched beam, i.e. for the majority of real situations, encounters
theoretical and experimental problems.

The form of the bunched beam transfer function (BBTF) has been
obtained in this work with account of the octupole nonlinearity effect
for the case when synchrotron satellites don't overlap in the BBTF
spectrum. The results on measuring the BBTF at the U-70 machine are
presented. The technique allowing the reconstruction from the data of
the particle distribution over betatron amplitudes has been offered.

2. THEORET ICAL ASPECTS

Let us consider for definiteness beam oscillations along axis z. The
strength of the exciting electric field E and the relevant linear den­
sity of a dipole moment D will be presented as a superposition of wa­
ves e ik6 - i )! t, where 8 is the azimuth in the coordinate system
co-moving with the beam. A linear relationship exists between the am­
plitudes of harmonics:

CD

L ~. (0) .~. (0)
k' =-00

(1)

where GJ s and /3 s are the angular and reduced velocities of a synchro­
nous particle. The explicit form of the conductivity matrix 11 kk (52)
will be given later and in the meanwhile we note the following two
specific features:

i) the singularities of function Jl kk (~l) are in the lower half­
plane of the complex variable 52 ;
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ii) on the real axis these functions differ noticeably from 0
within narrow ranges of Q .~ ±LUsQz ' where Qz is the betatron tune of
vertical oscillations.

Let field E cos (wt) be produced by a short-length pusher having
an angular extent of ae , which is placed on the azimuth B=0 (in the
lab. coordinate system). The field harmonics then take the form

~,(n)
E'llS

1-­
2 'Jt

n + k'ws

(n + k'w )2 - if
s

(2)

To reconstruct the space-time pattern it is necessary to make the
inverse Laplace time transform and Fourier azimuth transform. Due to
property (a) the signal shape will be determined for large t by the
poles of function (2) only. Therefore at point Bg , where the pick-up
is placed (in the lab. system) we have

D(t)
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In our further calculations, we confine ourselves with the most
interesting case when the excitation frequency is small, (f~\< LVs /2)
and the pick-Up bandwidtQ does not exceed Ws /2 either. Taking into
account property (ii) one may get convinced that in the observed frac­
tion of the signal only harmonics k=k'=~ko' where ko is the integer
closest to Qz' are left:

D(t) N

(4)

The sign of ~ is now specified in such a way that

The conductivity matrix can be found by solving the linearized
kinetic equation. The result takes the following form:
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Here J is the mean average beam current, Qzz is the betatron tune, Ps
is the synchronous particle momentum, Ix z are the betatron amplitudes
squared, u is the deviation of the momentUm from the synchronous one.
The beam distribution function F(Ix ' I z , 8 , u) is normalized by unity.
The parameter de has the form

(6)

where ~ z is the vertical chromaticity, ~ is ~he momentum compaction
factor, y is the reduced energy. Function f)rc)(I} , u, t) is the initial
azimuth of the particle being at the instant of time t at point (B, u).

For the solution of the problem formulated above the most conve-·
nient is the operating mode of the machine for which 'de =0, i.e.

t =(a-1-2 ),(Q -K )
~z zs -iQ 0

In this case, the matrix elements of expression (4) have the form

(7 )

(8)

with the "transverse" distribution function F.ol (Ix, I z ) being normali­
zed by 1. It is taken into account here that definition (5) refers to
the upper half-plane, whereas definition (4) requires to be extended
analytically onto the real axis. For this to be done, the integrand of
(5) has to be multipliplied by e- bvsEt and further £ has to approach +0.

Putting (8) into (4) we obtain

D(t)=D .cos(wt-k 8 )+D .s1n(wt-k0 8g )cOg s (9 )

D+1D
c s

(10)
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In Qz the dependence on Ix' I z should be taken into account; the
momentum-dependence was taken into account in a special way by intro­
ducing chromaticity. If Qz is a linear function of its arguments, then
measuring Dg one may find the projection of F~ onto a straight line
in the plane Ix' I z . Let us consider the most interesting cases:

Ds
e E J fle • [~FIZ]

4Q P wf la I u 1 =1zs s s zz z z w

1
I = - <kc-Q - w/w )

(&) azz zs s

(11)

(lla)

where Fz{Iz ) is the projection of the distribution function onto axis I z .

Ds

where Fx{I ) is the projection of FJ., onto Ix; I W is determined from
formula (11a) with ~zz replaced by d... zx.

3. EXPERIMENTAL RESULTS

The BBTF was measured during the U-70 injection flattop for the fol­
lowing beam p~ram~ters: Ekin = 1.5 GeV, N = 2-1011 p/bunch, S2. c =
=2.1t·1.8 A 103 s 1, LU s = 2·5L·1.83·105 s-l, I z = 4.9 cm2 , Qz = 9.825,
Qr = 9.88, Ap/p = 3-10- 3 . During the measurements the established
chromaticity was such that be equal to O. In this case, only the
central peak (m=O) is left in the BBTF, with the amplitudes of the
remaining satellites being equal to zero.

The equipment used in the measurements contained a conventional
set of units 3 : a pickup, amplifier, filter, noise generator, wide-band
pusher and a two-channel spectrum analyser. The measurements were made
at the lowest-frequency betatron oscillation harmonic (n=10), the
frequency resolution was OQ = 2.5 10- 4 .

The correction system for the octupole nonlinearity makes it pos­
sible to establish the required dependence

by an independent tuning of coefficients O<zz and c(zx.
Figure 1 shows the BBTF's measured for oLzx=O and two values of

cX.zz : o(zz==2.2-10- 3 cm- 2 (curve A) and o(.zz=1.2.10- 3 cm- 2 (curve B).
The width of the distribution over level 0.15 from the maximum is
~Ql = 6.5-10- 3 , OQ2 == 1.1-10- 2 , respectively, i.e. 8'Q2- bQ1 =

= 4.5-10- 3 . The relevant calculated increase of the width of the distri­
bution over frequencies due to the octupole nonlinearity is
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and is in a good agreement with the measurements.
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FIGURE 1 The beam transfer function for two different operational
modes of the octupole nonlinearity correction system:
_I -3 -2 ...I -3 -2
~zzA = 2.2-10 cm , ~zzB = 1.2-10 cm .

Using formula (II) one may reconstruct the particle distribution
over betatron amplitudes from the results on measuring the BBTF. The
reconstruction procedure is as follows. First, the point Qzs corres­
ponding to particles with a small betatron amplitude is found, with the
distribution edge corresponding to ~s remaining stationary with the
value of oC zz varying. Then the frequency spectrum is transformed to
variable I z with the known value of ~zz taken into account. Dividing
the result by I z and integrating it one obtains the form of function
F(Iz ). In the region of small amplitudes, where the noise-to-signal
ratio is larger than unity, the inaccuracy increases essentially. There­
fore the experimental points were fit by a smooth second-order depen­
dence. Figure 2 presents the azimuthal distribution functions calcula­
ted with the help of this technique. In this figure, curve A shows the
initial beam, curve B shows the one cut vertically with a scraper.

Figure 3 shows the form of the BBrF for the case 01.- z =0, 0( zx
= 2-10- 3 cm- 2 directly corresponding, in accordance with f12), to
function Fx .

One should bear in mind that the nonlinearity of synchrotron
oscillations and that of space charge effect contribute into the BBTF.
The value of this contribution, Qo' is estimated from the maximum peak
width with the natural octupole nonlinearity compensated by the cor-

t' -3rection system. In our case, oQo = 2-10
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FIGURE 2 The distribution function from the amplitudes of verti­
cal oscillations: A - initial beam, B -the one scraped
vertically.
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FIGURE 3 -3 2The beam transfer function forol. zz=o,ot zz =2·10 cm- '.

4. CONCLUS IONS

The have showen that the BBTF reflects the octupole nonlinearity effect
on the spread of betatron frequencies in the beam and may be used to re­
construct the distribution of particles in the beam from betatron ampli­
tudes. But, in our opinion, the most important point is that the measu­
red spread in betatron frequencies is directly responsible for Landau
damping and allows one to estimate the beam stability.
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