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ABSTRACT: The ATLAS TRT barrel is a tracking drift chamber using 52,544 individual tubular
drift tubes. It is one part of the ATLAS Inner Detector, whichconsists of three sub-systems: the
pixel detector spanning the radius range 4 to 20 cm, the semiconductor tracker (SCT) from 30 to
52 cm, and the transition radiation tracker (TRT) from 56 to 108 cm. The TRT barrel covers the
central pseudo-rapidity region|η |< 1, while the TRT endcaps cover the forward and backward eta
regions. These TRT systems provide a combination of continuous tracking with many measure-
ments in individual drift tubes (or straws) and of electron identification based on transition radiation
from fibers or foils interleaved between the straws themselves. This paper describes the recently-
completed construction of the TRT Barrel detector, including the quality control procedures used
in the fabrication of the detector.

KEYWORDS: Particle tracking detectors; Large detector systems for particle and astroparticle
physics; Transition radiation detectors; Particle identification methods.
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1. Introduction

The Transition Radiation Tracker (TRT) is one of the three sub-systems of the ATLAS Inner De-
tector [1, 2]. It is designed to operate in a 2 T solenoidal magnetic field at the design luminosity of
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Figure 1. The ATLAS central tracker with the Pixel detector, SCT, and TRT. The Barrel TRT spans the Z
region from 0 to 74 cm in this quadrant view. Part of the TRT endcap, SCT, and Pixel forward detectors can
also be seen in the figure.

the CERN LHC,L = 1034cm2s−1, in a very dense tracking environment with up to 10 events each
25-nanosecond crossing. A view of one quadrant of the Inner Detector is shown in figure 1.

The three main detector technologies of the inner tracker are shown in the figure, starting with
the Pixel detector near the beam, then the SemiConductor Tracker (SCT), and finally the TRT occu-
pying the outer region of the cryostat bore. The TRT section of the tracker is formed from a central
TRT Barrel detector and a forward and backward TRT Endcap detector.The TRT Barrel provides
continuous tracking in individual axial drift tubes (or straws), and of electron identification via
transition radiation from fibers interleaved between the straws themselves. The TRT straw layout is
designed so that charged particle tracks with transverse momentumpT > 0.5 GeV and with pseudo-
rapidity |η |< 2.0 cross about 35 straws (except for the Barrel/End-cap transition region). The TRT
Barrel covers the radius range 56− 108cm and has a sensitive region of total length of 144cm
along the beam direction, corresponding to a pseudo- rapidity range of|η | < 1. The full length of
the combined inner tracker is more that 7 m, and the maximum cylindrical radius is 1.08 m.

This paper gives an overview of the construction of the TRT Barrel detector; the evolution of
the design and testing has been described in previous documents [3 – 20].
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Figure 2. The TRT Barrel assembly, showing the Barrel Support System,in pink. The Barrel Support
System supports and locates the two ends of each module.

2. TRT Barrel and component specification

The mechanical design of the TRT Barrel must satisfy many requirements, including the ability to
operate at high luminosity with high reliability, and, highmechanical rigidity while maintaining
dimensional stability with a minimum amount of material, plus, a reasonable level of manufac-
turability. Modularity has been used throughout the detector to simplify manufacturing and quality
control, and to minimise at every stage the number of straws affected by any failure in the overall
system. The TRT Barrel is divided into 96 modules of three types, arranged in three cylinders of
32 modules of each type, as shown in figure 2.

The modules are supported at each end by the Barrel Support System (BSS). Each module
consists of a carbon-fiber composite cover or shell, an internal array of drift tubes, which are the
detector elements, and an internal matrix of polypropylenefibers - the transition radiation material.
The drift tubes (straws) were constructed from two layers ofconductively-coated polyimide film.
They form an approximately uniform array parallel to the beam axis, with an average spacing of
about 6.6 mm between centers radially and tangentially. Thelayout of the drift tubes was designed
to optimize the probability of the detection of transition radiation as well as to maximize the number
of hits along a track. A more detailed description of the layout will be given when the straw
positioning planes are discussed later.
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Figure 3. The three types of modules are mounted in the Barrel Support System. The orientation with
respect to the beam intersection area is shown to scale. The triangular sections on the space frame are
radially symmetric.

Table 1. TRT Barrel Module parameters.

Module Inner Radius (m) |η | at Rmin Layers # Straws Mass (kg)

Type 1 0.56 1.06 19 329 2.97

Type 2 0.70 0.89 24 520 4.21

Type 3 0.86 0.75 30 793 6.53

Total for Barrel 73 52544 439

A triplet of modules comprising a stack in azimuthal angle (“phi”) is shown in figure 3.

The three sizes of Barrel modules are sequentially mounted in 32 “phi” sectors. Each module
is a quadralateral prism with front and back faces in a plane perpendicular to the local radial ray,
and sides that follow the close packing array shape of straws, approximating a 30◦ deviation with
respect to a radial line. This design was choosen to minimizethe amount of dead tracking area for
high momentum particles. The resulting numbers of straws ineach module are listed in table 1. The
mass listed in the table are for modules only, with no electronics or external services connected.
The total number of straws for all 32 sectors, and the total mass of the 96 modules is indicated in
the bottom line of the table.

The straw diameter was chosen to be 4 mm as a reasonable compromise between speed of
response, number of ionisation clusters, and mechanical and operational stability. The straw an-
odes are 31µm-diameter gold-plated tungsten wires at ground potentialand the straw cathodes are
typically operated at a high voltage of 1530V, corresponding to a gas gain of 2.5×104 for the gas
mixture chosen, which contains 70% Xe, 27% CO2, and 3% O2. To accomodate the high occu-
pancy rate at the design luminosity, the sense wires are split in half by an insulating glass wire joint
and instrumented with signal readout at both ends. The nine inner most layers are further divided
into three sections with the middle section desensitized tofurther reduce the rate. The design and
performance of the straw is described in detail in other documents [6, 21, 22], as is the evolution of
the active gas mixture [14].

The dimensional specifications on the TRT were set by the requirements for the tracking preci-
sion to be optimized for the drift tube straw intrinsic resolution of 130µm. Multiple measurements
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(a) Barrel module layout showing straw components and wire joint positions. Active sense wire regions
can be calculated from the dimensions given. The upper strawshows a wire with single wire joint. The
lower straw shows a wire with two wire joints.

(b) Isometric view of a module with end plates, radiator, straws and shell.

Figure 4. Layout of a Barrel module.

in each module linking through the three module layers required that the position (radially and tan-
gentially) of each straw in a module be precise to±40µm, and the position of each module end to
±50µm. All mechanical components were constructed to satisfy these global specifications.

Figure 4 illustrates the layout of a Barrel module. The Barrel components will be discussed in
subsequent sections.
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2.1 Barrel Support System

The Barrel Support System (BSS) is the key structural component of the Inner detector assembly.
It is comprised of two endframes connected together by an inner and outer cylinder. The BSS itself
is supported on rails mounted to the inside of the ATLAS Liquid Argon Cryosat. It is shown in
figure 2. The three layers of TRT barrel modules are supportedat each end by the endframes of
the BSS, and in addition the SCT barrel structure is supported by rails attached to the inside of the
BSS inner cylinder.

The BSS is required to have minimal temperature related distortion, and maximal strength and
stiffness since it determines the alignment of both the TRT barrel modules as well as the SCT. These
constraints were satisfied, as well as restrictions on the mass and radiation length, by building the
structure from carbon composites. The extensive performance requirements are given in CERN
Technical Specification documents [42, 43].

The open strut system of the endframes was constructed from alarge carbon fiber laminate
disk, 21 mm thick, that was machined to produce the 2 meter diameter triangular strut array.The
strut system permits access to the ends of each module, whileat the same time giving high structural
stability. The 3 mm diameter module mounting holes on the endframes ( two for each module end)
were machined to within 50µm position tolerance from the hole’s specified position across the 2 m
face. The two endframes are glued to a 2 mm thick continuous carbon fiber laminate cylinder at
the inner radius forming the “spool” shown in figure 5. The BSSwas manufactured in Russia [23].

Individual modules were inserted from the outer radius and were held at each end by two
steel pins that pass through the precision drilled holes in the BSS and engaged a hole and a slot
machined at two opposite corners of each module end assembly. After module insertion, two 3
mm thick carbon fiber laminate half cylinders were attached on the outside radius. The struts and
cylinders were covered by copper foil to increase the conductivity of the carbon fiber to form a
Faraday shield.

2.2 Shell specification and acceptance

The module shells were designed to minimize the thickness (and mass) of material while restricting
the gravitational sag to less than 40µm in any module supported only at the ends. The module-
to-module shell separation was kept less than 1 mm, to avoid compromising the uniformity of the
array of tracking points. The module shell also acts as a gas manifold for the flow of gas (CO2) that
flushes the outside of the straw drift tubes and ensures that the ionization gas mixture, containing
xenon, does not accumulate outside the straws through smallleaks or diffusion. The flushing gas
also ensures that we have a dry, high voltage insulating, gasoutside the straws. This flushing gas
enters at one end of the type-1 modules and passes serially through a “phi” stack of modules exiting
at the opposite end of a type-3 module.

A module shell with the required 400µm wall thickness was produced in by a carbon com-
posites manufacturer in California [24]. It was shown to satisfy the deflection requirements of a
maximum of 40µm sagitta sag under full load in any orientation. The required flatness for the
shell walls was 250µm. The design of the shell was based on 8 layers (90,+45,0,-45,-45,0,+45,90)
of XN50A carbon fiber in a balanced, symmetric layup using RS12 resin. This fiber was chosen
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Figure 5. Barrel Support System without the outer cylinder halves which was attached after the modules
were installed.

for the very high thermal conductivity (200W/(m ·K)) since the module shells are cooled along
two edges, and must provide an approximately isothermal package.

At full LHC rates, the average ionization current generatessignificant heat in the gas. The
heat generated is directly proportional to the straw counting rate and is estimated to be as high
as 10− 20 mW per straw at LHC design luminosity. To satisfy the basicrequirements on straw
operation stability and gas-gain uniformity, the temperature gradient along each straw should not
exceed 10◦C. To meet this specification and to remove the heat, FluorinertTM liquid is used to cool
the modules (and the front-end electronics). The liquid is passed through cooling pipes in the acute
corners of each module in order to maintain the Barrel-module shells at an approximately constant
temperature. A thin-walled KaptonR© tube was glued in the two inside corners to hold the cooling
line in close contact to the wall. The thermal conductivity of the shell material was measured to
be 57W/(m ·K). With the present shell material and the properties of the radiator, the internal
temperature rise at full luminosity is calculated to be lessthan 5◦C above the temperature of the
cooling tubes. The calculation has been verified in a 0.5m long prototype module [21].

The module shells were produced by hand lay up of the fiber material on three different sized
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aluminum mandrels. A 50µm Kapton layer was bonded into the module as the first layer on the
layup. This was used for ensuring gas tightness and HV insulation between the shell and the straws
which are at high volage. Upon receipt at our assembly sites the shells were checked for overall
dimensions and thickness. The shells were cut to length (1444mm) and penetration holes for the
straw alignment planes were machined in the sides.

The modules were scanned with a touch probe device on a granite table to verify overall
straightness and out-of-plane side panel deviations. All the shell edges near the corner at each
side of the module were required to be within a specification of ±200µm along the full length.
The flatness requirement was that the module sides (which aremuch less stiff) were required to be
extend no more than 500µm from nominal, which is the stay clear distance for each module. The
average module shell weights were 570g, 712g, 892g for types1, 2, and 3 respectively.

2.3 Straw alignment plane (divider) specification and acceptance

The wire offset with respect to the center of each straw drifttube must not exceed 300µm for
stable operation at the LHC. The maximum wire gravitationalsag at wire tension of 70 grams-
force is< 15µm, so the allowed offset is actually a specification on the straightness of each straw.
In order to meet this centering requirement, the straw straightness must be maintained over the full
length of the Barrel module to less than 300µm. It is the shell stiffness that provides, via the straw
alignment planes, the necessary alignment of the straws, given that the gravitational sag of a fully
loaded carbon-fiber shell has been measured to be< 40µm in any orientation.

Five alignment planes are positioned 25cm apart along the module. Each plane has a straw-
locating main sheet with two tabs on each edge (figure 6). The tabs pass through slots in the shell
and holes in the tabs are held on an external alignment frame,and then glued to the shell. The
aligment planes also function to maintain the shell wall profile under all loads, and so to strengthen
them. To make assembly easier, each divider is sandwiched with two or three sheets of 100µm
thick UltemR© film glued to one or two polystyrene foam spacers. Each sheet has an appropriaxte
pattern of holes; the main sheet in each divider has holes 4.3mm in diameter and two alignment
tabs on each edge. The other sheet or sheets are stiffeners with larger holes and no tabs. Four of the
five alignment planes have a main plane, foam spacer, and one stiffener sheet. The central plane
has a stiffener, foam spacer, main sheet, foam spacer, and second stiffener, for symmetry.

The Ultem sheets and foam parts were wet machined by a precision instrument manufac-
turer [25]. The perimeter features and the holes were wet machined in stacks of Ultem. Calibration
testing had determined the expansion factor during wet machining for each type of sheet (∼ 1.004).
The machined sheets were washed and dried at an assembly site, and checked for dimensional cor-
rectness by measuring the 4 corner positions with a Zeiss optical coordinate measuring machine
with 5µm accuracy. The planes were then assembled at another assembly site.

Following assembly, each hole of each divider was inspectedusing a microscope to ensure that
clearance was maintained and that the sheets were properly glued to the foam stiffeners.

2.4 Radiator specification and acceptance

The transition radiator material which completely surrounds the straws inside each module consists
of polypropylene-polyethylene fiber mat about 3mm thick [26]. This material had been chosen after

– 9 –



 
 
 
 
 
 
 
2
0
0
8
 
J
I
N
S
T
 
3
 
P
0
2
0
1
4

Figure 6. A straw alignment plane (divider). This figure shows a divider for the Type 2 module. The external
tabs are for alignment only. They extend through small holesin the shell and are cut off after the divider is
glued to the shell.

an extensive series of tests with prototype modules in CERN beam [2]. The fibers are typically
19µm in diameter and are formed from polyethylene clad polypropylene material. The fibers are
formed into fabric plies with 3mm thickness and a density of about 0.06g/cm3. The absorption
length for the lowest energy photons of interest (5 keV) is about 17mm in the radiator material.

The fiber material was delivered as rolls 0.4 meter in width. The radiator fiber sheets were
formed by stamping the pattern of straw holes into the fiber sheets. Three die sets that accurately
cut the several hundred holes and the edges were produced. A production stamping company [27]
punched the 50,000 fiber mats necessary for the TRT Barrel. A full-length module contains about
500 such pieces. The hole pattern is identical to that shown previously in figure 6 for the divider
planes, except that the holes in the radiator material were 4.8 mm in diameter.

The radiators were produced over a period of two years by the stamping company. When a set
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Figure 7. Upper plot is a transparent view of the HV plate showing HV circuits. Lower photos are front
and back view of a HV plate before bending the HV Kaptons. In the left hand photo one sees the thin plate
inserted into the well of the thick plate and in the right handphoto one sees the Kapton HV feed on the
reverse side of the thick plate. Connection between the HV feed and the thin plate is made via the capacitor
socket.

of radiators arrived, they were accompanied by a test stamping sheet, so that obvious errors could
be spotted quickly.

The boxes of radiator, each containing a known number, were weighed and sorted by density.
Due to variations in the manufacture of the fiber, storage andcompaction, and handling during
stamping, the density varied considerably. However, aligned bundles of mats were sorted and
shuffled to produce more uniform density. These bundles wereproduced at one of our assembly
sites and distributed to all sites for insertion into the modules during assembly. Each of the bundles
fit between the divider plane sections. The average weight ofthe radiator in each module was
1.12kg, 1.65kg, 2.59kg for types 1, 2, and 3 respectively, with a variation of∼ 2%

2.5 HV plates

The high voltage (HV) plates bring high voltages from outside the module into the straw cathodes.
They also play an important role mechanically for the modulestructure and alignment. Figure 7
shows a drawing and photos of an assembled HV plate. The HV plate is made of three main
components as described below.

2.5.1 HV feed

The HV feed is a Kapton flex circuit [29] that plugs into the fuse boxes and carries high voltage on
a number of copper traces embedded in between layers of Kapton. Each trace goes to a surface-
mounted 4.7kΩ, 2.0mm×1.3mm size filter resistor and is then connected to a pad that accepts a
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socket for a capacitor to return cathode signal current to analog ground. The HV feed is made in
three different layers. The center layer consists of 50µm Kapton sheet with 35µm rolled copper
on each side. The two outer layers are 25µm coversheets of Kapton with 25µm acrylic bonding
adhesive. The circuits were chemically etched on both sidesof the center layer. Then, the part
of each trace that will be in contact with the fuse boxes was selectively gold plated. No nickel
or nickel flash were permitted before gold plating due to trace cracking problems that developed
during bending of early versions.

2.5.2 Thick plate

The thick plate is a tray shaped FR-4 [30]1 structure precisely machined to mate between the tension
plate and the shell and carries series of precision holes formounting the module in the space frame,
for holding the straws in their positions, and for the feed through of the module cooling tubes.

On the outer perimeter, the side facing toward the radiator must fit properly inside the module
shell while the other end facing toward the space frame must be appropriately sized to not interfere
with neighboring modules. The stated tolerance for outer perimeter dimensions is+0.0mm and
−0.10mm per side.

The inner perimeter of the HV plate must allow clearance for the edge straws while simulta-
neously allowing clearance for the cooling tube holes whichpenetrate the HV plate at the acute
corners just outside the inner perimeter. The stated tolerance for this inner perimeter’s dimensions
is ±0.03mm.The distance between the HV plate and the tension platesurfaces is 5mm and must
be controlled to provide proper clearances for mechanical and electronic components in between.

A major function of the HV plate is to locate each straw withinthe module. This is done by
holes in the thick plate through which the straws pass. Theseholes, as well as the holes through
the HV feeds and the thin plates (which are larger than the holes through the thick plate) must be
aligned during assembly to allow subsequent insertion of the straws during module assembly.

The thick plate holes are located relative to the fixation pinholes/slots at the acute corners.
These holes/slots fix the relationship between the modules and the attachment to the TRT Barrel
Support System.

Table 2 lists the machining tolerance for the straw holes andthe fixation holes/slots. The final
precision on straw location requires that the deviation of the sense wire from the center of the straw
shall not be more than 0.3mm [1, 2]. An accumulation of tolerance limits the allowable circular
variation of straw hole-positions relative to the fixation/alignment holes. The tolerances listed in
table 2, combined with the twister, sleeve, end plug, and straw tolerances result in an expected
variance of wire center position of 91µm. This represents the part of the accumulated tolerance
that can be allowed to HV plate assembly.

During production the thick plate hole positions were surveyed using a non-contact optical
measuring machine [28] and compared to the theoretical values before they were assembled into
HV plate.

1FR-4, an abbreviation for Flame Retardant 4, is a type of material used for making a printed circuit board,
http://en.wikipedia.org/wiki/FR4.
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Table 2. HV plate machining tolerance.

Parts Tolerance

Straw hole diameter +0.03mm/−0mm

Straw hole position 0.075mm radius

Fixation slot width +0.03mm/−0mm

Fixation hole diameter +0.03mm/−0mm

Fixation slot/hole position ±0.03mm

2.5.3 Thin plate

The thin plate is a 0.2mm thick single-sided FR-4 printed circuit [29] which carries pads that con-
nect each group of eight or seven straws to each other and to a capacitor-socket hole. This hole
is aligned with a hole in the thick plate and the capacitor-socket hole in the HV feed. A capacitor
socket passes through all three pieces of the HV plate and is top and bottom soldered to connect
traces on the HV feed to pads on the thin plate.

2.5.4 Assembly of the HV plate

The three parts of the HV plate, the HV feed, the thick plate and the thin plate are first glued with
Araldite R© 2011 epoxy. Then, the resistors are soldered to the HV feed, and the capacitor sockets
are soldered to the thin plate and the Kapton circuit. The flaps of the HV feed are then bent 90◦

following the edge profile of the thick plate. This folding isdone by heating and bending the Kapton
on a 250◦C heating block. The heating block is machined to match the edge profile of the HV
plate. After bending to 90◦ the Kapton is clamped against the heating block to cool down.When
the temperature reaches below 100◦C, the clamp is opened and AY103 epoxy is applied between
Kapton and the thick plate. The assembly is then clamped again and the epoxy is allowed to cure
overnight as it gradually cools to room temperature. Electrical continuity is checked between the
Kapton feed and the thin plate sockets to ensure no breakage during the bending process.

2.5.5 HV stability

The electrical stability of the HV plate is characterized byits leakage current, the micro-discharge
rate and the breakdown voltage under high voltage.

The leakage current measurement is repeated several times from trace to trace and from trace
to shield during module production, and is required to be< 50nA at 3000V in dry air.

The micro discharge rate was sampled for a finished HV plate and was determined to be
< 0.01Hz at 5 pC threshold under 3000 V in dry Nitrogen.

Destructive breakdown voltage test was not carried out on finished HV plate, however, the
HV plate operates at 3000 V in dry air without problem. Discharges sometimes occur due to
contamination on the surface and can be eliminated by cleaning.

2.6 Tension plate

The tension plate is a 2-mm thick double-sided printed circuit board made of FR-4. It provides wire
fixation mechanism using eyelets and taper pins, and, combined with the HV plate, forms a beam
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Figure 8. Tension plate and HV plate at module end.

structure that transfers wire tension to the carbon-fiber shell and the straws. In addition to taking
the wire tension, the tension plate also serves as the interface between the module and the outside
world. The empty space enclosed between the tension plate and the HV plate is a gas volume. This
volume buffers the ionization gas from external pipelines into individual straws. The printed circuit
traces on the inside of the tension plate brings signals fromanode wires to an array of sockets on
the tension plate. These sockets are where the external electronics is connected. The outer side
of the printed circuit is a ground plane which provides signal return for the straws through HV
blocking capacitors connected to the HV plate. The ground plane also serves as the analog ground
for the external electronics [31]. Together with the shell,the tension plate is also part of a Faraday
shield for the module. Figure 8 shows a cross section view of the tension plate region and its related
components. The tension plate includes the following components:

2.6.1 Eyelets and taper pins

The eyelets are Stimpson stock item A1994 flat flange eyelets.The taper pins are custom machined
part [33] to fit the eyelets, 3.43 mm long with a taper of 37 mm/m. Both eyelets and taper pins are
made of brass and gold plated. A crimping mechanism is used toforce the two brass pieces against
the tungsten sense wire during stringing of the module. The back of the taper pin is machined
with a blind hole. This is to reduce material and to facilitate handling and removal if needed. The
diameter of the blind hole, 0.71 mm, is made to the tap size of a#1 screw so that a steel screw can
be threaded into the taper pin and grab it for extraction.

2.6.2 Capacitors and capacitor barrels

The capacitor barrel provides a pocket between the tension plate and the HV plate that allows a
capacitor to connect to the HV plate without disturbing the ionization gas volume. In the case of a
capacitor failure, the capacitor can be replaced without having to open up the tension plate which
would require cutting all the anode wires. The capacitor barrels, distributed across the tension plate
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surface, also serve as spacers to maintain distance betweenthe two plates and transfer wire tension
from tension plate to the HV plate. The capacitor barrel [33]is made of Ultem 1000 with a double-
sided pin glued at the end for electrical connection. The double-sided pin is gold plated brass and
designed to fit the sockets on the HV plate on one end and the sockets on the capacitor on the other
end. Because the capacitor barrel is part of the ionization gas enclosure, each assembled piece was
tested with 1.4 bar dry air and submerged in water for 5 sec. tocheck for their gas tightness.

The capacitor is 875 pF NPO/COG type in an 4.6mm× 3.0mm size package. A reduced
length Mill-Max PGA socket is soldered on one end of the capacitor for connection to the double
pin. A custom made bent pin is soldered on the other end for connection to the tension plate ground
socket. Both sockets and tail pins are gold plated brass. To ensure reliability the capacitors have to
withstand a burn-in at 2750V in dry air for 10 days. In this test, about 0.2% of the capacitors showed
signs of breakdown and were rejected. The final capacitor assembly is coated with Hysol PC18M
urethane coating to protect against contamination and humidity. The capacitors are not installed
until the module is complete and ready for operation. After they are installed, a thin layer of AY 103
epoxy is applied over the opening of the capacitor barrel to add redundancy to the gas seal. This thin
layer of epoxy can be removed with a small tip solder iron if it’s necessary to replace a capacitor.

2.6.3 Ionization gas fitting

Each tension plate is equipped with four ionization gas fittings [33] near the four corners. The
gas fittings are machined from Ultem 1000. The gas fitting seats on the HV plate and shoulders
against the tension plate. The fitting is hollow and threadedon the tension plate end for adapting to
external gas lines. Three openings in the gas fitting near theHV plate end, 120◦ angle apart, allow
the gas to flow into the ionization gas volume uniformly. In normal operation, only one diagonal
pair of fittings is used on a tension plate. The other 2 are sealed up as spares. On a module, the
opposite pair of gas fittings are used on each side of the tension plate to force a more uniform gas
flow through the straws.

2.6.4 Pre-assembly of tension plate

After the bare tension plate is made and cut into shape, the eyelets and sockets are soldered. When
soldering the sockets, they are held by a mock up electronicsboard so that the socket arrays will
fit for the electronics to plug in. The capacitor barrels and the gas fittings are then glued to the
tension plate from the inner side. This glue is cured with a matching HV plate plugged into the
capacitor barrel pins and the gas fittings seated to ensure that the glued components will fit their
mating parts. After soldering and gluing, the components onthe inner side of the tension plate are
coated with a layer of sealing glue (AY 103) to ensure gas tightness. Figure 9 shows pictures of the
various tension plate components.

2.7 Straw drift tube

The finished drift tube consists of a conducting ‘straw’ tube, sense wire supports at either end
and the centre, plus the sense wire with an insulating joint,as described in the TDR [2], p. 653.
Details of the design and the performance of the drift tube are described in a separate paper [22].
Mechanical assembly is described below.
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(a) Taper pin, eyelet, socket. (b) Capacitor barrel, capacitor. (c) Ionization gas fitting.

Figure 9. Tension plate components.

Figure 10. Wire support drawings and photos. In the photo: Left - a bare wire support (twister). Middle -
embedded in a cylindrical sleeve as a centre wire support. Right - embedded in a flanged sleeve as an outer
wire support.

2.7.1 Center and outer wire supports

The center and outer wire supports are designed to keep sensewires centred in the straw. The wire
supports must not obstruct the flow of the ionisation gas going through the straw, and must allow
installation or removal of the sense wire during module construction.

Wire supports consist of a twister [34] and a surrounding Ultem sleeve [35]. The twisters are
cut from an Ultem rod with a machined helical groove [36]. Thedepth of the groove is 25µm
greater than the radius of the rod, forming a 50µm diameter hole along the axis. The length of the
twister is 7.7mm, a little over one pitch of a helix 6.88mm, sothat the sense wire is constrained
radially in all directions.

Figure 10 shows drawings and photographs of wire supports. The finished centre wire support
is glued in a sleeve to provide an uniform surface for gluing to the inner straw wall. The outer wire
support is embedded in a sleeve with a flange [33] to facilitate conductive gluing from the straw
end to the HV pad on the HV plate.

2.7.2 Straw preparation and acceptance

Reinforced straws arrived at the U.S. preparation sites in batches from reinforcement sites at
PNPI [37] and Dubna [38], sorted according to straightness;each straw was 1.65 m long. About
64,000 straws were processed.
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Figure 11. Glue dispenser in cut-away straw.

Glue

Wire

Support

Straw

Wall

Figure 12. Center wire support in cut-away straw showing cured glue.

Since the centre wire support is not at the precise centre of the straw (it is offset from|η |= 0),
each straw was first marked with a water-based latex paint at one end, to establish its orientation.
Next, each straw was cut with scissors to a length of approximately 1.48 m, about 4 cm longer than
the final length.

The next step was to glue in the centre wire support. This was done by batch in a jig. First, a
drop of glue was placed by an glue dispenser at the centre of each straw. The dispenser was a glue
reservoir at the end of a long stainless steel tube. Figure 11shows the dispensing tip in a cut-away
straw.

The glue-dispensing process required careful adjustment of tip distance from the straw, glue
viscosity, air pressure, pressure pulse length, and speed of removal from the straw. Without correct
adjustment, drops of glue can be left in the straw in the sensitive region. (This did occur in initial
production, and led to the addition of a final quality assurance step: visual inspection of the inte-
rior.) Centre wire supports were then pushed down each strawover the glue drop (figure 12). After
a short time the straws were removed from the jig and allowed to cure.

The next stage was to check the straws for leaks. This was donewith an automated version of
the leak-test system described in the TDR [2], p. 660. An elastomer seal was inserted into each end
of the straw and expanded against the inside with a supporting collar on the outside. At one end, a
central tube allowed the straw to be pressurized with dry airto about 5 mbar. After a short time to
allow the gas to come to equilibrium, the pressure was measured over an interval of two minutes. If
the pressure fell at rate corresponding to a leak rate of greater than 1 mbar/bar overpressure/min, the
test was registered as failed. It would then be re-tested. A straw can be re-tested up to three times

– 17 –



 
 
 
 
 
 
 
2
0
0
8
 
J
I
N
S
T
 
3
 
P
0
2
0
1
4

before it’s rejected. Repeated tests were allowed because the sealing mechanism was imperfect:
the interior winding of the straw created a spiral channel that could allow a leak. Overall, about
0.1% of straws failed this test, but that may have been due to seal failure, not straw leaks.

The design of the Barrel modules required that the straws were of a precise length: the end
wire supports in each end of the straw had to contact the HV plate and not interfere with other
components. The straw was cut to its final length, removing the part that had been in contact with
the leak-test seal, in a cutting machine modelled after the one described in the TDR [2], p. 680. The
production machine had rotating bypass shears made of tungsten carbide. The straw was mounted
with a spacing rod inserted to position the centre wire support and the cylindrical internal ‘blade’
inserted into the ends. Clamps then held the straw in place while it was rotated so that the external
blade cut the straw.

The length of every straw was assessed in a measurement jig using a digital dial gauge. The
nominal straw length was 1441.00±0.25mm. Figure 13 shows the length assessments for about
65,200 straws, in terms of deviation from a nominal setting.The jig was set by indirect comparison
with an Invar bar in combination with shims. One assembly site made and calibrated the Invar bars
used by the other sites. A carbon-fiber rod with metal tips wasthen used to transfer the appropriate
length from the bar to the measurement jig.

In addition to the length assessment, the position of the centre wire support was checked after
the final cut.

The final step before packaging was interior inspection of the gluing side of the straw. This
was done with an endoscope, about 2 mm in diameter, attached to a CCTV camera with the image
displayed on a monitor. Straws with glue drops or other imperfections were rejected. Finally, the
straws were packed in sealed polyethylene bags, with the batch bar code attached, and shipped to
assembly sites.

2.8 Signal wire

The straw anode was a 31µm gold-plated tungsten wire. This wire was produced by Toshiba at the
Yokohama, Japan factory. The base wire material was pure (99.95%) tungsten with a density of
19.22g/cm3 and was plated with pure gold. The thickness of deposited gold was 0.5µm minimum
to 0.7µm. No nickel additives to the gold or nickel-flashing of the wire surface before gold plating
were allowed.

Requirements on electrical stability for high rate operation, gas gain uniformity for Transition
Radiation function, and radiation hardness for LHC environment imposed very stringent require-
ments on the quality of the wire and its production processes. The wire ellipticity corresponding
to wire diameter variation was required to be less than±2%. The finished, gold-plated wire was
required to have a tensile strength 700−800MPa.

The base wire had to be free of cracks, splits, or other defects. It was electrically polished to
provide a smooth surface free from any pollutants and also carefully treated using light electrolytic
cleaning to eliminate all traces of oxides and other possible pollutants immediately prior to gold
plating.

The gold plating was required to be smooth, uniform and free of defects. Specifically, holes
in the plating, poor adhesion, flaking, peeling, deep scratches, and blisters were not acceptable.
The wire cleaning procedure following the gold plating process is critical. It ensured that the gold
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Figure 13. Straw length checks. The shift in the first 120 days is due to a mis-calibration of 0.15 mm.

surface is free from any chemical residue. No mechanical treatment of the wire surface was allowed
after gold plating. This also implies special requirementsfor cleanliness and surface quality of all
the parts of the set-up that are in contact with the gold plating surface during the gold plating
process and the respooling process.

The wire was wound onto clean aluminium spools approximately: 95mm ID×110mm OD
×20mm height. Each spool typically held 3−4km of one continuous wire.

The wire was extensively inspected upon arrival using a scanning electron microscope (SEM)
at North Carolina State University (Raleigh, NC). Typical images from these inspections are shown
below in figure 14.

2.9 Wire joints

Due to the high occupancy of the straw tubes, especially at low R, it is necessary to split each
sense wire into two electrically isolated wires, with each being read out from the corresponding
end. To achieve this electical split, each sense wire consists of two wire sections joined by a length
of glass tubing [39]. The pre-cut tubing, before any melting, is 6mm long with an inside diameter
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Figure 14. Two images of accepted gold plated tungten sense wire under electron microscope.

of 0.127mm, and an outside diameter of 0.254mm. The glass, Kimble EN-1R© type, was chosen
for its superior bond strength when fused to metal. The center 0.5mm of each glass tube was
first fused in a methane-oxygen flame to form a ball to prevent the subsequently inserted sense
wires from becoming electrically connected and to aid in thealignment of the tube in the wire joint
tooling. Each center-fused tube was inspected for completeness of melting and straightness. To
make wire joints, the sense wire is unspooled and cut near thecenter of the wire joint jig. The glass
tube is held in the jig and the cut ends are fully inserted until stopped by the fused center and then
fused by a pair of flames into the tube. The wire is then taken upby a spool so that the next cut
is made 2m from the previous wire joint. This produces a continuous batch of sense wire with
sufficient extra length to allow for handling during module stringing. The finished length of each
wire joint is in the range 5.0− 5.5mm. Each wire joint was visually inspected for completeness
of melting, and periodically wire joints were tested by attaching to a force gauge and pulling to
destruction. Properly made joints are stronger than the sense wire itself, so the wire breaks at 200g
of pull rather than pulling out of the tube or the glass breaking. This is∼ 3 times the maximum
tension that the wires will have in the modules. For the straws at the smallest R, i.e. those in the
first nine layers of each Type 1 module, the high occupancy requires that approximately the center
third of the wire not being read out. For this case sense wireswere produced with two joints per
wire, spaced apart to create an 80 cm dead segment as shown in figure 4(a). Figure 15 shows a
completed wire joint.

2.10 Preparation and acceptance of components

An important aspect of the manufacturing process was the shift from prototype methods to series
production with consistent quality assurance procedures.To achieve a degree of uniformity, most
or all of several kinds of components were prepared at a single facility at Hampton University and
shipped to assembly sites at Duke University and Indiana University. These parts included straws,
wire supports,dividers, shells, HV plates, tension plates, etc. A total of about 500,000 parts were
processed, a database being used to track parts and batches,and to guide the preparation process
— instructions for each procedure were presented to the technician on a screen and a response was
required on the completion of each step. Bar codes on items orbatches were recorded so that there
was assurance that processing and assembly procedures werefollowed.
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Figure 15. From the bottom up: a pre-cut glass tube, a center-fused glass tube, and, a glass wire joint fused
to two sense wires. The fused center of the glass tube prevents the two wires from touching each other.
White mark on top is a ruler in mm scale.

2.10.1 Common preparation processes

There were common features to the preparation of many parts particularly in cleaning and gluing.

Cleaning of small parts made of metal or Ultem (twisters, wire support sleeves, capacitor bar-
rels, taper pins, etc.) was done via ultrasonic cleaning using a 2% solution of Micro-90 detergent
in distilled water. Following this cleaning, the parts wererinsed in distilled water until the conduc-
tivity of rinse water was not distinguishable from that of distilled water. The parts were then dried
in an oven at 110-120◦ C for 45 minutes, spread out on a tray in a single layer.

Assembly of composite parts (e.g., wire supports, dividers) was done with an appropriate
epoxy. To speed up production, epoxy was set by baking the parts in suitable jigs for 1.5 hours at
60 to 65◦ C.

Specifications and quality control tests for small parts varied. For wire supports, samples from
each batch were tested for adhesion of the twister to the sleeve by applying a longitudinal force;
the glue joint had to support a load of more than 9 kg.

The brass taper pins were finish plated with 1.3µm of 99.7% gold (130 Knoop hardness) over
2.5µm of nickel, and over 2.5µm of copper base plating. Quality control was by visual inspection
of completeness of coverage. A similar specification was used for the tension plate eyelets.

3. Electronics and services

3.1 High voltage

High voltage is supplied to the TRT Barrel from power supplies in the electronics room through
∼ 100m of cables divided into 3 sections. The last section starts from the outer edge of the Barrel
and distributes HV to the modules through sets of fuse boxes.Each fuse box is a two-half FR-4
shell enclosure containing filter circuits, fuses and spring contacts for direct connection to the HV
feed in front of the modules.
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Figure 16. HV cable routing and fuse box connections to the modules. Sixfuse boxes for 1 stack of 3
modules are bundled into 1 HV connector at the outer edge (bottom) of the Barrel.

A Barrel module has two HV feeds at each end to receive high voltage, however, fuse boxes
and HV are only supplied to one end of the module. The two HV feeds on the other end are used
as spare and protected by empty FR-4 dummy fuse boxes. Real and dummy fuse boxes alternate
between neighboring modules and split HV lines equaly between the two ends of the Barrel. The
wiring and fuse boxes are designed such that if one end of a module has a defect and is unable to
receive HV, the other end can be used by swapping cables with its neighbors. Figure 16 shows fuse
box connections on the modules.

3.1.1 Fuse box design and HV granularity

Inside each half of a fuse box is a 0.15mm thick double-sided printed circuit board glued on to
the FR-4 casing and holding all the components as shown in figure 17. The HV mini coax cable
entering the fuse box first goes through a filter circuit consisting of 1kΩ resistors on HV and return
lines bridged by a 875 pF HV capacitor. The filtered return line then goes to a spring contact that
will connect to the analog ground of the electronics. The HV line goes through fuses to the spring
contacts that will connect to the module HV traces.

The fuses are 50kΩ and custom designed [40] to withstand occasional chamber discharges and
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power supply trips. When there is a broken sense wire and the fuse has to be disabled, a special
HV pulse is injected from the power supply side to blow the fuse.

The nominal TRT operating voltage is 1530V. The fuse boxes are required to hold 2 kV with
a leakage current less than 50 nA per HV line. After solderingand cleaning, they are baked and
coated with urathane conformal coating to reduce surface leakage current.

The HV granularity is a trade off between cost, performance and tolerance in losses:

1. In order for the straw gas gain to be uniform across the Barrel, the voltage drop over the fuses
and filter resistors due to current draw in the straws can not be more than 7 V at the design
luminosity. This sets an upper limit on how many straws can befed from a fuse or a HV line.

2. In case of a HV failure inside the detector, e.g. a broken sense wire, we want to minimize the
number of straws that have to be shutdown by a fuse. This number is determined to be 8, and
is implemented on the HV plate which groups 8 straws to share one trace on the HV Kapton.

3. To minimize the cost, a HV power supply should drive as manystraws as possible up to
a limit either set by the number of straws or the current draw.Based on the power supply
specification, the nominal load assignment to a power supplyis chosen not to exceed 1.5 mA,
and, the maximum number of straws is chosen to be less than 100.

With these criteria, GEANT simulation was used to estimate current draw on each fuse at projected
LHC luminosity. The fuses are then grouped to share HV power lines within the current limit.
To simplify fuse box production and installation, symmetryis taken into account, and, the fuses
are grouped such that one fuse box layout can be used on all 4 possible HV Kapton positions in a
module. The results are 6 lines for a type 1 module, 6 lines fora type 2 module, and 10 lines for a
type 3 module. The number of straws each line drives ranges from 48 in a type 1 module to 96 in a
type 2 module. Type 3 module was assigned a uniform 80 straws per line for simplicity, despite its
lower current draw [41]. The HV circuit and a picture of the layout with fuse grouping is shown in
figure 17.

3.2 Electronics

The basic front end electronics [31] for the TRT Barrel is schematically the same as the electronics
for the TRT End Cap - an ASDBLR (Amplifier, Shaper, Descriminator, Base Line Restorer) analog
signal processing chip followed by a DTMROC (Drift Time Measurement Read Out Chip) time
measuring.

The 8 channel ASDBLR ASIC in DMILL technology [32] performs the amplification, shaping
and base line restoration. It includes two discriminators,one at low threshold for minimum ionizing
signal detection and one at high threshold for transition radiation detection;

The 16 channel DTMROC in commercial 0.25m CMOS technology performs the drift time
measurement (3 ns binning). It includes a digital pipeline for holding the data during the level 1
trigger latency, a derandomising buffer and a 40 Mbits/s serial interface using LVDS (Low Voltage
Differential Signaling) for the readout. It also includes the necessary interface to the timing, trigger
and control as well as DACs to set the ASDBLRs thresholds and test pulse circuitry for mimicking
analog inputs to the ASDBLRs. These ASICs are housed on front-end boards attached to the
detector. Details of this electronics can be found in the TRTelectronics publication [31].
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(a) The fuse box layout for module types 1, 2, and 3 from left toright with fuse grouping indicated in
white and current draw ranges in black.

(b) Schematics showing HV circuit.

Figure 17. Fuse box and HV circuit layout.
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3.2.1 Protection boards

Physical connections of the anode wires and the tension plate ground reference to the front end
electronics is made via a small 22 pin "protection board". Each protection board connects 16
anodes and 6 signal returns using 0.5 mm diameter gold platedbrass pins in a common physical
pattern repeated across the faces of the modules. The cornerpins for each protection board have
PEEK2 standoffs to ensure a common mating height for all the protection boards on a module. The
outer surface of each protection board has a miniature 50 pinconnector for connection to the front
end electronics boards. The 50 pin connector has enough contacts to allow each anode signal to be
accompanied by a "dummy" signal from the protection board upto the front end and the ASDBLR
inputs and for each pair of anode and dummy to be separated by asignal return trace. The remaining
surface area on both sides of the protection board is used to mount a limiting resistor (24 Ohms)
and a clamp diode for each anode signal to provide additionalprotection for the ASDBLR inputs
against electrical discharge.

The other function of the protection boards is to allow a mechanical degree of freedom for at-
taching the front end boards to the modules - even the smallest of the front end boards has ten pro-
tection boards, 220 brass pins that would be difficult to insert simultaneously and the largest front
end board has 594 pins. The 50 pin connectors themselves provide some 300 microns of mechanical
compliance which adds to the degrees of freedom for each individual protection board and yields
a mechanical system that allows a surprisingly easy and reliable manual insertion of up to 1350
individual connections between the largest front end boardand its ensemble of protecion boards.

3.2.2 Front end boards

The front end electronics for the TRT Barrel has physical andthermal constraints that are tighter
than those for the Endcaps, thus the Barrel final front end board designs turned out to be signifi-
cantly more challenging. Instead of a two board design for the Endcaps which allows some physical
separation of the ASDBLR analog and DTMROC digital circuitry, both chips were combined on a
single physical triangular substrate. More details can be found in [31].

The readout is segmented in 32 stacks in “phi” to ease the level 2 trigger task of data retrieval.
The readout uses 40 Mbits/s electrical LVDS links to patch panel boards (PP2) located up to 13
meters away just after the first muon chambers. Further details about the back end electrlnics and
the off-detector DAQ can be found in [31].

3.3 Cooling plates

The electronics as well as the modules themselves need to have heat removed from the detector
area. This is accomplished by circulating C6F14 (Fluorinert) from a central cooling plant to four
distribution racks located near the detector and through the modules in the detector. For the design
and tests of the cooling system it has been assumed, with enough of safety margin, that FE electron-
ics generates 100 mW/channel. This heat is removed by conduction from surface of the DTMROC
chip directly to an aluminum cooling plate attached to each of the electronic roof boards. The
Fluorinert is carried by a cooling manifold from the outsideradius of the BSS to the modules. In

2PEEK, Polyetheretherketone, is a thermoplastic with extraordinary mechanical properties,
http://en.wikipedia.org/wiki/PEEK.
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Figure 18. Exploded View of Cooling plate.

order to cool the modules themselves, which can produce up to6 W/module at highest luminosity,
the Fluorinert exits each cooling plate and passes along thelength of the module to the opposite
end before being carried away by a manifold to the outer radius of the BSS and ultimately back to
the pumping station. There is a module cooling tube inside the shell in each of the acute corners of
every module. This module cooling tube is made of 3mm PEEK andis connected to the electronic
cooling plate at one end, and exits via the manifold at the other end. The nominal entrance temper-
ature of the fluid is 15◦C, and the fluid flow is set to have a maximum temperature increase of less
than 8◦C at the return.The cooling plate itself is shown in figure 18.

The cooling plate is made from two triangles of aluminum withaluminum input and output
connections. All components are bonded with epoxy - Epibond420. The top plate is machined to
produce a path for the cooling fluid directed over the tops of the electronic chips. For increased
protection against de-laminating, the two plates are riveted in numerous places as well as being
glued. All plates were tested for tightness at 10 bar. The nominal operating pressure is about 3 bar.

The specifications for leak tightness was< 100 l/year for the entire manifold and plumbing
system. The leak rate in any cooling plate was too low to measure, it was expected that the major
loss would be in the interconnects of the manifold and plumbing connections. The cooling plates
and manifolds have a total volume of about 3 liters while the plumbing ditribution lines from the
racks in the cavern is more than 200 l. The coolant flows are 0.6l/min for a type 3 module and 0.5
l/min for type 1 and type 2 modules.

3.4 Active gas, flushing gas and manifolds

3.4.1 Active gas

The active gas for the straw drift tubes is Xe(70%), CO2(27%), O2(3%). This gas is supplied
through two ports at one end of each module, and exits from twoports on the other end of each
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Figure 19. The cooling and active gas manifold for an 1/16 “phi” section. Active gas (five leftmost fittings)
and cooling fluid (the next four fittings on the right) are supplied from the large radius fittings and distributed
to the three layers of modules.

module. The gas volume within the module itself is the volumebetween the tension plate and the
HV plate and the straws themselves. For the three module types the nominal flow rate is 110 cc/min
for type 1, 170 cc/min for type 2, and 240 cc/min for type 3, which results in about one volume
change per hour. The exit gas is recovered, cleaned and recirculated.

3.4.2 Barrel manifold

At each end of the Barrel there is a PEEK based manifold that carries active gas to each module.
For the innermost modules (type 1) one manifold line feeds two modules in parallel. The active
gas lines are part of the Barrel manifold shown in figure 19. The active gas and cooling manifolds
are physically grouped into a radial network that links the supply line at the outer BSS radius to the
individual modules.

3.4.3 Flushing gas

In the TRT Barrel the individual drift straws are separated by several millimeters. In between the
straws there is the TR radiator. It is very important that Xe does not fill this region, otherwise the
transition radiation photons would deposit their energy outside the straws. In order to sweep away
any small amount of active gas that might have leaked or diffused from the straw wall, the radiator
region is flushed with CO2. The shell of the module has access holes that act as the manifold for
this gas volume. The CO2 gas flows at a rate of about 500 cc/min per stack of 3 modules. The gas
enters at the inner radius of the innermost module, flows the length of this module and exits via
a gasket coupling to the inner side of the middle module. Again it flows the length of the middle
module and exits into the inner side of the outer most module,passing along its length and exiting
at the outer radii. This is done for each of the 32 module stacks in “phi”. The entrance end for
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the gas flow alternates between “phi” stacks. The connectionto the input coupling is made via a
flexible PEEK tube that starts at the outer radius of the BSS ( not shown in figure 19).

4. Assembly of modules

The assembly of a module is divided into two main parts, a “mechanical assembly” that puts to-
gether aforementioned parts to form the structural body of amodule, and, wire stringing. In either
process QA procedures are embedded wherever possible to ensure that the assembly is done cor-
rectly. The following sections describe the assembly processes in the sequence they occur. Module
production began in the Fall of 1999 and was completed in 2004.

4.1 Alignment of straws

The assembly process starts with checking the alignment components of a module. The compo-
nents that maintain the straw positioning in the module, including the shell, the two HV plates and
the five alignment sheets are placed in an “assembly frame”. The assembly frame is a portable
support structure made of precision machined stainless steel rods and aluminum plates to hold a
module by its alignment components through out the assemblyprocesses. The assembly frame
allows transportation of a module before its completion. However, for most critical tasks the as-
sembly frame is mounted on calibrated stands on an optical table to achieve repeatable alignment
requirements.

For checking the alignment components, nine fiducial strawsin a 3x3 array are inserted in
pre-defined locations. A laser aligned to the module axis is mounted on one end of the assembly
frame and shines onto a target that slides inside the fiducialstraw. The target is connected to a
CCD camera through optical fibers from the other end of the assembly frame. The CCD image
is read into a PC every 5 cm and analyzed for straw straightness profile. Figure 20 shows the
setup and a typical module data. The measured deviation of the fiducial straw is a combination of
deviations from the module components being evaluated, theassembly frame, the fiducial straws
and the precision of the measurement method itself of 75µm. In this test we require the combined
deviation to fall within an envelope of±180µm.

4.2 Radiator insertion

After checking the alignment components, the HV plates are removed and replaced by an aluminum
rim to hold the shell. Four of the five alignment sheets, except the middle one, are also removed to
allow insertion of radiator from each end of the module. Radiator sheets are pre-packed into blocks
for each section between alignment sheets, and inserted section by section with alignment sheets
restored in between. In order to keep the straw holes alignedacross radiator packs, nine stainless
steel tubes, replacing the fiducial straws, are used to guidethe radiator packs as they slide in. These
rods stay in place until they are replaced by straws.

After radiator packs are installed, the two HV plates are also re-inserted and tested with 3000 V
relative to the shell to check for any defect in Kapton insulation.
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(a) Setup of the laser system and the target.
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(b) Left: Deviation from center for the nine fiducial straws in a type 2 module. Right: Positions of the
nine fiducial straws are shown in filled circles.

Figure 20. Laser survey system for straw straightness measurement.

4.3 Straw insertion

To avoid distorting radiator alignments and pushing radiator toward one end, straw insertion starts
from the center of a module and goes outward in a spiral pattern. The direction of insertion is
also alternated in sequential straws. When a straw is inserted, it goes through HV plates, radiators
and alignment sheets several times. To avoid de-laminatingthe carbon fiber strips on a straw and
to avoid any debris that may fall into it, a “straw insertion bullet” made of a Mylar sleeve over a
rounded Delrin head is used to cap the straw end and guide it through the straw tunnel. Figure 21
shows a straw insertion bullet and the insertion path pattern.

With the straws inserted, the main body of a module is in place, however, at this stage, noth-
ing has been glued and the process is reversible. Several tests are carried out, and any problem
corrected, before proceeding:

1. The straw ends are inspected, making sure there is no damage and all 4 carbon fiber strips
are present. Any stray radiator fibers that come to the HV plate are also removed. To do this,
a stepping motor controlled camera is mounted at the straw end to step from straw to straw
and the image is displayed on a TV screen for the operator to inspect.
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Figure 21. A straw insertion bullet, the straw insertion direction andsequence.

2. The nine stainless steel tubes are replaced by fiducial straws and surveyed again to ensure the
alignment has not changed. After survey, the fiducial strawsare replaced by normal straws.

3. A 2500 V test voltage is automatically cycled through all HV lines, one line at a time, by
a PC controlled HV relay system to ensure no HV breakdown between straw groups, and,
between straws and shell.

4.4 Assembly of HV endplates

With the HV plates referenced to the assembly frame, a few drops of super glue, 3M CA8, are used
to fix the HV plates to the shell. Although it’s possible to break the glue, this step effectively sets
the length of the module and the position of the module mounting.

The straws need to be connected to the HV plate electrically and mechanically. This is done by
using an Ultem “straw end-plug” and silver conductive glue.The straw end-plug is a cylinder with
a cup shaped lip at one end, and housing the end wire support inside. A special tool is made to hold
the end-plug under a glue dispenser and rotating it such thatthe glue surrounds the end-plug, and
leaves an excess at one spot. When the end-plug is inserted into the straw, the excess is oriented
toward the HV pad, it gets pushed out and flows around the cup shaped lip to the outside of the
straw, and overflows to the HV pad on the HV plate. This way, theinside of the straw is electrically
connected to the outside of the straw and connected to the HV pad that brings HV from the power
supply. A stopper plate on the opposite end of the module is used to stop the straws from slipping
while inserting the end-plugs from one end.

The silver glue takes 24 hours to cure. After one end is cured,resistance from the glued HV
plate to the opposite open end of the individual straw is measured to check the glue quality. An
2500 V HV scan which steps through each individual HV line on HV while holding the rest of
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the lines on ground is repeated to ensure no stray silver glueis causing problem. The same gluing
and testing process is repeated for the other side, except, when both ends of the straws are glued,
resistance for individual straws are no longer available and the resistance for straws grouped in the
same HV pad are measured.

After both ends of the straws are glued to the HV plate with conductive glue and tested. A layer
of AY103 (Araldite 2019) epoxy is applied around the straw ends to provide mechanical strength.
The low viscosity nature of AY103 also provides a first round of gas seal between straws and HV
plate.

4.5 Gluing the shell

The shell is connected across the five alignment sheets and the two HV plates to form the structural
support together with the carbon fiber re-enforced straws. For each alignment sheet, Araldite 2011
is applied along the four edges by inserting a flattened 1.5” long syringe tip between the shell and
the alignment sheet through the shell holes cut out for the protruding alignment sheet tabs. This is
a blind operation inside the shell and one has to be careful not to poke holes on the straws or apply
the glue in the wrong place.

When the glue is cured the module structure is complete. The alignment sheet tabs are cut and
the module is taken out from the assembly frame. A bead of Araldite 2011 is applied between the
shell and the HV plate to strengthen the bond and as a seal for the purging gas volume confined in
the shell.

To strengthen the gas seal of the ionization gas volume, the module is stood up vertically on
a stand and a very low viscosity epoxy (StycastR© 1266) is injected through pre-cut holes on the
shell to pot the back side of the HV plate with a 2.4mm thick layer of glue. The glue slips through
any crack or pin hole between the HV plate and the straws. Thisstep completes the mechanical
assembly of a module.

4.6 Finishing mechanical assembly

Before proceeding to stringing sense wires, a series of tests are carried out to check for the proper
construction of the module. Glue blockage on mechanical pathways or electrical contacts are
checked and corrected. Continuity of HV traces and HV stability are tested and repaired if needed.
The gas tightness of the ionization gas volume is required tomeet the specification of leaking less
than 1 mbar/bar/min. For most modules the leak rate was measured below 0.1 mbar/bar/min.

After all the above test are passed, the pre-assembled tension plate is attached to the HV plate
and the module is sent to the stringing station.

4.7 Wire stringing and testing

The presence of wire joints greatly complicates the stringing of sense wire into the modules, since
the joint must be consistently located within 1 mm of the center wire support for straws with single
wire joint, and, equally spaced for straws with double wire joints. Figure 4 shows positioning of
wire joints inside the straws. The sense wire is pulled into the straws from “C” side to “A” side.

The first step in stringing a sense wire is to attach a “stopper” to the sense wire, which will
be stopped at an external reference when the sense wire is pulled into the module. The external
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reference provides a stopping point at a known distance fromthe middle wire support and sets the
wire joint position inside the straw. With a “pre-stringing” jig, the wire is put under tension and a
stopper using eyelet and taper pin mechanism is attached at the trailing edge of the sense wire at
a preset distance referenced to the leading edge of the wire joint. This distance is different for a
single-joint or a double-joint wire and is set accordingly.

From the “A” side of the module (see figure 4), a leader wire consisting of 50µm diameter cop-
per/beryllium is blown through the straw using filtered and dried compressed air flowing through
a tapered syringe tip inserted into the eyelet on the tensionplate. The end of this leader wire exits
the “C” side of the module and is attached to the sense wire by tying a knot. The leader and the
sense wire together are then pulled back through the straw using a motorized spooling system until
the stopper is stopped by the external reference. Then, a 70 gtension is applied to the sense wire
from “A” side and the wire is pinned to tension plate on “C” side first and then on “A” side, and
the tension is measured. The wire tension measurement was done by vibrating the module with a
loudspeaker and sweeping an audio signal through the 100 – 200 Hz range. When the frequency
matches the resonant frequency of the wire under tension, the wire vibration amplitude increases,
causing a capacitance change in the wire/straw system whichcan be detected. This peak in the
audio spectrum provides the wire tension, according to the relation:

T = 4ℓ2 f 2(ρ/980)

whereT is the wire tension in grams,ℓ is the length of the vibrating wire segment 71 cm to the
center wire supported,f is the resonant frequency in Hz,ρ is the linear density of the wire which
in this case is 0.0001475 g/cm.

The stringing system is computer controlled and logs all stringing activity including restringing
attempts and the wire tension measurements. If the tension is within the acceptable range of 55–80
g the wire excess is trimmed at the eyelets. If not, the “A” side taper pin can be removed and re-
pinned to slightly change the tension, or the sense wire can be replaced. These procedures enabled
> 99% of the straws to be strung, with the remainder having obstructions such as an irregularly
shaped wire support or stray glue from mechanical construction.

After stringing is complete the wire tensions are measured again and logged. This is to verify
that the cumulative effect of the tensions of all the wires has not caused dimensional changes in
the module, and also to provide baseline data to be compared with that obtained during acceptance
testing.

4.8 Finishing module assembly

After wire stringing, taper pins and eyelets on the tension plates as well as the edges between
tension plate and HV plate are sealed with AY103. This completes the sealing of the ionization gas
volume.

All holes on the shell, except the two reserved for purging gas fittings, are sealed with Kapton
pads to complete the sealing of the purging gas volume.

A ground wire running from one tension plate to the other is soldered on to the tension plates
and glued to the edges of the shell with conductive glue wherecarbon fiber is exposed. This
completes the electrical ground path way of the module.
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5. Production testing

Before a module leaves the production site, a series of QA tests are performed. The data collected
is the characteristic of a module and a part of a “passport” that travels with the module. Most of
the tests are repeated when the module is received at CERN. The tests include:

• Re-measure wire tension

• Dimension tests

• Gas volume leak tests

• Signal and gain uniformity tests

5.1 Dimension test

The mounting holes of a module need to be in the right places sothat the module can be mounted
on the Barrel Support System. The dimension of a module also needs to fit inside a dimension
envelope so that it doesn’t interfere with others when mounted on the Barrel. To check this, the
module is test mounted on a stand that simulates the Barrel Support System. This ensures the
conformity of the mounting holes and the module length. The module is then checked against a flat
surface and documented/corrected for any bulge that exceeds the envelope.

5.2 Gas volume leak test

The ionization gas volume is required to have a leak rate lessthan 1 mbar/bar/min. To test this, the
ionization gas volume is pressurized with N2 to 20 mbar and compared to a reference volume with
a pressure gauge connected between the two volumes. The pressure difference between the module
and the reference volume is recorded over time and calculated for the leak rate. The process often
takes more than 12 hours. The environmental temperature, pressure, humidity are monitored for
bias correction.

The ventilation gas volume is required to leak less than 200 mbar/bar/min. This is much less
stringent than the ionization gas volume. Because the shellis easily deformed, this is measured by
pressurizng ventilation gas volume with N2 to 10 mbar and monitoring the pressure drop with a
analogue gauge over 2–3 hours period of time.

5.3 Signal and gain measurement

To ensure a module can operate as it is designed to, the moduleis flushed with Ar(70%) - CO2(30%)
in the ionization gas volume and put on high voltage to sense signals generated by an X-ray source.
Amplifiers and a DAQ readout system are set up to collect pulsecharge information.

The first pass is a signal test to make sure that all channels are active and getting signals
as expected. The second pass steps the X-ray source along themodule to map out the gas gain
variation along the sense wire. For gain mapping, the X-ray source is collimated and filtered with
50µm Cu foil to concentrate on the 8 keV characteristic energy and reduce the energy spread.

The gas gain uniformity is important for stable operation ofa module under LHC conditions,
and for the TR function. However, non-uniformities also reflects construction irregularities in
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a module. Figure 22(a) shows a non-conforming straw. The spike in the middle indicates that
the sense wire is not seated at the center of the middle wire support. This problem can often be
corrected by re-stringing the wire. Figure 22(b) shows another non-conforming straw. The periodic
humps indicate that the straw is bent between alignment planes. For this kind of straws, the wires
are removed and the channels are not used.

6. Acceptance tests at CERN

This section presents a complete list of acceptance tests and quality control criteria used for the
TRT Barrel modules. Many of these tests were first performed during module assembly but all
were repeated during the quality control process at CERN foruniformity and conformity before the
modules were accepted for insertion in the Barrel Support System.The first modules were qualified
in 2003. All modules were qualifed in 2004 and were installedinto the BSS in 2005. The completed
Barrel TRT was installed in the ATLAS detector in August, 2006.

6.1 Quality control testing sequence

Each module upon arrival at CERN underwent the following quality control testing sequence. The
tests themselves are described in details in the following sections.

1. Dimension checks

2. Tension test

3. Initial leak test

4. Initial HV checks

5. Rework: all miscellaneous repairs and restringing of identified problematic wires

6. Final HV checks

7. HV conditioning

8. Gain mapping

9. Final leak test for active gas and purging volumes

10. Weight

11. Quality control review

The results of the tension test and initial HV checks done at CERN as well as results from
the gain mapping performed at the production sites were usedto identify wires that needed to
be replaced at CERN. A first leak check was also performed on the straw volume and the shell
to identify leaky straws and leaky shells at the earliest possible stage. Replacement of known
problematic wires and repairs for blocked cooling sleeves,blocked electronic sockets and leaky
straws were performed before the module underwent the final HV checks. After rework, the module
was tension and HV tested again before undergoing HV conditioning and gain mapping with the

– 34 –



 
 
 
 
 
 
 
2
0
0
8
 
J
I
N
S
T
 
3
 
P
0
2
0
1
4

M202 straw 445 (F) G  8         

450
460
470
480
490
500
510
520
530
540
550

0 10 20 30 40 50

Front Back

Wire position (25 steps each half)

G
a

s 
g

a
in

 i
n

 A
D

C
 c

o
u

n
t

Front Back

(a) A hung wire.M336 straw 014 (F) G  8         

450
460
470
480
490
500
510
520
530
540
550

0 10 20 30 40 50

Front Back

Wire position (25 steps each half)

G
a

s 
g

a
in

 i
n

 A
D

C
 c

o
u

n
t

Front Back

(b) A bent straw.

Figure 22. Gas gain variation along the sense wire. The step positions are fine tuned to equally distribute
between dividers. (a) The peak at the center left is an indication that the sense wire was caught off-center at
the middle wire support. However, the flat spectrum on the right indicates that on the other side of the middle
wire support the wire exited the wire support normally from the center. (b) The peaks between dividers are
indication that the straw is bent between divider planes.

Module Gain Mapper (MGM). When all tests and repairs were completed, the module was leak
tested and certified for readiness before shipping it to the assembly building for installation on the
Barrel Support System. All tests results were compiled in a “module passport”, where a summary
of all results, anomalies, repairs and dead channels was recorded.
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6.2 Dimension checks

All main dimension parameters were re-measured once the Barrel modules arrived at CERN. The
length of each of the three sides measured had to be between 1462.0 mm and 1464.0 mm. All
modules were found to be between 1461.5 and 1462.95 mm. A small shim was added for the
shorter modules during insertion on the Barrel Support System. Bulges in the shell could not
exceed 0.8 mm and twists of one tension plate with respect to the other had to be less than 1.0 mm;
twists larger than 0.2 mm were recorded in the module passport. All bulges and twists found were
within these limits. The two cooling sleeves were checked for blockages and repaired if needed
before undergoing the HV tests.

6.3 Wire tension measurements

The tension was re-measured at CERN for each wire to ensure that no wire had slipped during
shipment. This value was compared to the tension measurement taken at the production site after
stringing. The tension was required to be larger than 47 g andless than 100 g, and with no more
than 5 g change since stringing, or show a tension differencebetween the front and back wire
segments greater than 8 g. Out of the 58592 wires tested, 142 wires (0.24%) were found to be
outside these specifications and were replaced, as well as 10wires (0.02%) that had broken or
slipped out of the wire-joint during shipment. Only two wires had to be permanently removed
due to tension anomalies. In some rare cases, the spectrum showed a double peak, indicating an
electrical connection with one or many nearby wires due to a piece of wire caught between the
tension plate and the HV plate. The extraneous piece of wire had to be removed and these channels
could be restrung.

6.4 High voltage tests

6.4.1 Check of all electrical connections

The electrical connections between each capacitor barrel pin and the HV trace on the Kapton con-
nector were all checked for continuity to ensure there was nodamage to the HV distribution chain.
Broken traces were noted in the module passport. Eight modules were found with a broken HV
trace and were mounted on the Barrel Support System such thatthe fusebox was connected to the
undammaged Kapton connector at the other end. We also checked the connection for the ground
wire between the front and back tension plates and recorded in the module passport all HV groups
that were inadvertently interconnected according to the production site passport. These groups
were detected while testing the HV plates by applying 2000 V on one HV pad and holding all
others to ground.

6.4.2 HV checks

Both the initial and final HV checks were conducted with Ar/CO2 in the active gas volume while
flushing with CO2 in the radiator volume. All wires were kept at ground potential while -1550 V
was applied to the straws. This corresponded to a gain of 10.0×104, namely four times the nominal
gain. The module was prepared for HV checks by flushing dry CO2 for several days in the radiator
volume prior to testing to reduce the water content. The relative humidity level in the laboratory
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itself was maintained at or below 30%. For both tests, we required that each wire held -1550 V
without tripping the HV power supply at a limit of 20µA × 5 sec for a minimum of three days.

6.4.3 Initial HV checks

Non-complying wires identified during the initial HV checkswere replaced. The leakage current
was required to be below 20 nA per module at -1550 V (without any capacitors). Typically, leakage
currents of the order of 10 nA per module were measured. This varied slightly between modules but
largely depended upon the relative humidity level in the lab. To cure wires drawing excess current
or modules having too many trips during the HV checks, reverse-voltage was applied at a maximum
of +1300 V. The duration depended on the current behavior andwas usually of the order of 30-60
minutes. This helped removed residual dirt or contaminantson the wires, reducing the overall num-
ber of trips and amount of leakage current. In total, 300 wires that could not be cured by reverse-
voltage or caused repeated discharges even after reverse voltage treatment were replaced following
the initial HV checks and were found to satisfy the minimum criteria in subsequent HV tests.

6.4.4 Final HV checks

The module was given a final HV check under the same conditionsas the intial HV checks after
all rework was completed. An additional 222 wires that caused trips during this test were removed
permanently, including 150 replaced wires that kept givingHV problems.

6.4.5 Rework

Table 3 summarizes the causes for wire replacement that tookplace prior to the final HV checks.
A third of the wires needing replacement were detected during the initial gain mapping in the U.S.
prior to shipment to CERN. The vast majority of them were wires that got hung on the central
or end twister, causing a large wire offset. Only a handful ofhung wires could not be restrung
successfully due to a problem in the twister itself.

Another third of the replaced wires were problematic wires identified during the initial HV
tests. These wires either had a defect, a kink or were simply dirty. Replacing the wire cured the
problem. On the other hand, some replaced wires kept causingdischarges, most likely due to a
problem in the straw itself or in one of the twisters. These wires were found during the final HV
checks and had to be permanetly removed.

Many channels proved difficult to string at the production site, often due to pieces of wires
or small debris caught inside the straw. In many of these cases, small pieces of wires could be
retrieved by “fishing” inside the straw with a piece of twisted ∼ 50− 100µm wire. By twirling
it inside the straw, the small pieces of wire would get caughton it and could be pulled out. This
operation was successful on 194 of the 347 channels left unstrung at the production site. In some
cases, tiny pieces of wire, solder or even long sections of wire had fallen between the tension plate
and HV plate, causing HV shorts and/or occasionnal discharges. Some were identified during HV
checks or during the tension test. Some were located using anendoscope through an eyelet and
fished out using a tiny hook on a piece of lead wire, while others were retrieved using a vacuum
pump or even using a large industrial vacuum cleaner on one ofthe active gas inlets. Some wires
were temporarily removed to allow various repairs. A summary of the causes for wire replacement
is given in table 3.
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Table 3. Total number of wires successfully replaced for the 111 modules tested.

Cause for wire replacement # wires % of total wires

Problem found during gain mapping in the USA 352 0.60%

HV problem found during early HV checks 300 0.51%

Straw left unstrung at production site 194 0.33%

Tension too low or too high, slippage, front/back difference 142 0.24%

Removed temporarily to fish out pieces of wires 80 0.14%

Broken wires 10 0.02%

Removed temporarily to fix a straw leak 2 < 0.01%

Total: 111 modules with 58592 straws 1055 1.80%

6.5 HV conditioning

The HV conditioning took place over a four week period after the final HV checks and all prob-
lematic wires had been removed. The purpose of the conditioning step was to ensure that no
problematic channel had been missed during the HV checks. The HV and gas conditions used for
this test were the same as the previous HV checks. The number of discharges and the leakage
current was monitored for the whole module over the entire period. Individual channels were not
monitored during this test. A module was required to hold -1550 V without discharges for the last
two weeks. Occasional discharges during the first two weeks were attributred to some initial clean-
ing processes. The leakage current was required to be below 20 nA per module at -1550 V (without
any capacitors). If a module failed to satisfy these criteria, it was returned to the HV test station for
investigation. Problematic wires were removed and the module was conditioned a second time.

6.5.1 Leakage current at -2000 V with CO2 in the straws

After one month of HV conditioning performed as described above, pure CO2 was circulated in the
straws overnight. We then measured the leakage current after 15 minutes while applying -2000 V
on the straws with all wires and the shell grounded. The purpose was to detect any HV problems in
the absence of amplification in the active volume. The leakage current had to be below 20 nA per
module. Six wires shorted out in CO2 while applying between -1900 and -2000 V on the straws
and were removed.

6.5.2 Gain mapping

Modules were placed in the Module Gain Mapper (MGM) and supplied with Ar(70%)/CO2(30%)
mixture in the ionization gas volume and CO2 in the purging gas volume. The MGM scanned a
12 keV X-Ray beam (from a bromine transition) along the full length of each module. All module
channels were instrumented and a switching network steeredsignals from sixteen channels at a time
to histogramming ADCs. Fifty points on each straw were sampled for gain. This gain mapping
took place either before or after HV conditioning, to ensurea steady module flow on every test
station. The wire acceptance criteria were similar to thoseused after gain mapping in the U.S.:
gain variation less than 8 % and peak width less than 7.5 %. In addition, wires having a gain
variation higher than 7 % were also examined to ensure thatS/A was less than 25 %, whereS
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Table 4. Dead channel statistics.

Cause for removal # wires % of dead channels % of entire TRT Barrel

Bent straw 349 44.9 % 0.66 %

HV problems 222 28.6 % 0.42 %

Unstrung at production site 153 19.7 % 0.29 %

Wire offset 37 4.8 % 0.07 %

Broken socket 14 1.8 % 0.03 %

Tension 2 0.3 % < 0.01 %

Total out of 525442 wires 777 100 % 1.48 %

represents the half-width at 20 % of maximum height of the spectrum of the highest gain point
andA the maximum amplitude. TheS/A value was corrected for ADC offsets. New wires and
wires that did not receive a valid measurement during gain mapping in the U.S. were particularly
scrutinized. Non-conforming wires were removed.

At this stage, the module had reached its final state and all identified problem channels had
had their wires removed. The largest number of dead channelscomes from bent straws (44.9 %),
mostly in Type 3 modules where 74 % of all bent straws were found. These straws have large wire
offsets and large gain variations, compromising HV stability during operation and hence, had to be
removed. The second largest category comes from channels having HV problems, either identified
at CERN during acceptance tests (28.6 %) or at the productionsite (19.7 %). Table 4 summarizes
the final number of dead channels in the TRT Barrel and the various causes for wire removal. In
total, 98.53 % of all TRT Barrel channels were fully operational at the time of installation.

6.6 Final fluid-tightness tests

6.6.1 Active gas volume

For the active gas, the target was to achieve a leak rate below0.1 mbar/min/bar. Nevertheless,
modules with leak rates up to a factor 10 times larger were accepted. The test was done with Argon
at 20 mbar (0.3 psig) over-pressure and conducted over a 12 to16-hour period. This test was done
after all non-conforming wires found during the HV conditioning and found with the Module Gain
Mapper had been removed and sealed. All but 15 modules had a leak rate below 0.1 mbar/bar/min.
The remaining 15 modules had leak rates up to 0.6 mbar/bar/min. After capacitor insertion, the
leak rate was remeasured and 30 modules exceeded the target value of 0.1 mbar/bar/min, but only
five of these modules had leak rates between 0.3 and 0.6 mbar/bar/min.

6.6.2 Ventilation gas volume

The cooling/ventilation gas connections and seals had to achieve gas leak rates below 1 mbar/min
at about 5 mbar over-pressure. The test was done by pressurizing the module with about 10 mbar
of water column. The decay time had to be greater than 5 minutes. Non-conforming modules were
repaired and all satisfied this criterion.
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6.7 Module acceptance passports and Quality Circle review

The module passport contains the results of all acceptance tests, anomalies and repairs done at
CERN as well as selected information from the production sites on which rework and repair deci-
sions were based. The module passport contains:

• A summary of all dead channels,

• A summary of all remaining anomalies either reported by the production sites and not fixed
at CERN, or discovered at CERN and found impossible to repair,

• A report on dimensions checks and final module weight,

• A comparative study of tension data between the production site and CERN,

• A summary of gain mapping results in the United States and at CERN showing a 2-D map of
the gain variations for all wire segments (front and back) and a summary table of the status
of all wires having a gain variation of more than 8%,

• A summary of all repairs, including a list of replaced wires and removed wires,

• A complete report on HV tests, HV conditioning, leakage currents without capacitors and
anomalies noted during the various HV tests,

• The leak rate for the active gas volume before and after capacitor insertion.

The passports are kept at http://trt-wts.web.cern.ch/trt-wts/passp/blogin.html. The informa-
tion resides in a CERN-based Oracle database. A web interface allowed users to enter or review
information from anywhere. Based on the module passport, a Quality Circle composed of several
physicists reviewed the information for each module and decided if it could be used in the TRT
Barrel. Of the 111 modules shipped to CERN, the 96 best modules were installed on the Bar-
rel Support System whereas an additionnal seven modules satisfying all acceptance criteria were
prepared as spares. The remaining four modules were rejected and will be used for testing and
educational purpose.

7. Beam test performance

TRT Barrel performance was evaluated using electron, pion and muon beams with energies from 1
- 300 GeV. For this purpose two TRT barrel “phi” stacks, corresponding to 1/16 of the final Barrel,
were assembled and installed on the H8 line of CERN SPS, figure23. The detector was equipped
with the final TRT readout electronics. This test was completed in August, 2006.

In order to obtain a precise particle trajectory and identify the beam particle auxiliary detectors
were used. A three plane silicon telescope with intrinsic resolution of 10µmwas used as an external
tracking to define the beam trajectory. A Cherenkov counter system and preshower and lead glass
calorimeter were used to identify the particles. Measurements with TRT modules were carried out
using the baseline mixture 70%Xe+27%CO2 +3%O2.

One of the most important parameters which defines the detector performance is the drift-time
accuracy. This is defined as the sigma of the distribution of the track residuals by comparing the
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Figure 23. Two "phi" stacks of the TRT Barrel installed in H8 beam line. Left picture - preparation for the
tests beam. Right picture - TRT Barrel installed on the beam line and equipped with front-end electronics.

space points measured using drift-time information to the actual particle position projected by the
silicon-telescope. Another critical parameter is the TRT drift-time efficiency which is defined as
the probability for finding the drift-time measurement hit within a±2.5σ window from the beam
particle track. The uniformity of these parameters across the detector reflects its production quality.
On the top plot of figure 24 the total straw efficiency and the drift-time measurement efficiency are
shown as a function of Barrel straw layer number (counting from inner to outer radius). The bottom
plot shows drift-time accuracy as a function of the same parameter. All these values are well within
the specifications presented in the TDR.

The drift-time accuracy for the first 9 layers is 130µm while it is 137µm for following layers.
This is explained by the fact that the active wire for the first9 layers is shorter than that for the other
layers, resulting in a shorter time difference between the direct signal and the reflected signal from
the wire joint termination. Wire position accuracy is a critical parameter for the track reconstruction
procedure. Figure 25 shows wire placement deviation from its nominal geometrical position as a
function of the TRT Barrel depth measured with a beam of 80 GeVpions. It can be seen that the
TRT module production accuracy is very good and this deviation is less than 50µm.

Particle identification properties of the TRT Barrel using transition radiation were studied at
several different beam energies. Here we report studies on 20 GeV beam energy. Extensive MC
and test beam studies at this energy had been carried out in the past and published in the TDR. The
results are shown in figure 26. On this figure the pion rejection power is shown as a function of
the high level threshold at two beam positions along the straw. The upper points are when beam
particles crossed the Barrel module 40 cm from its edge. At this position the first 9 straw layers are
not active. The lower points are when the beam was positioned20 cm from the edge of the Barrel
where all 73 straw layers are active.

As seen in this figure the best particle identification properties for the TRT Barrel are at a
threshold of about 7 keV. Pion efficiency in that case is 1.5−3% at 90% of the electron efficiency.
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Figure 24. Hit efficiency registration (top plot) and drift time accuracy (bottom plot) as a function of the
Barrel straw number for incident pions of 80 GeV.
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Figure 25. Wire placement deviation as a function of the TRT Barrel depth.

8. Summary

We have completed the construction of the TRT Barrel for the ATLAS Inner Detector. A total
of 111 modules were constructed over the period 1998 to 2003 at three sites within the United
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Figure 26. Electron/pion rejection power as a function of the high level threshold. Red markers: all Barrel
straw layers are active. Green markers: particle crosses the Barrel in the central area where the first 9 layers
do not have active anode wires.

States. These modules were extensively tested and the 32 best of each of the three types were
selected for assembly in the Barrel Tracker. The 96 modules in the BSS frame have been tested
as a unit, and the associated services such as HV, active gas,and cooling have been contructed to
operate and take data. At the time of assembly 98.5 % of the 52,544 drift tubes were operational.
Individual modules have been tested in the CERN test beam. The module performance was within
specification for tracking resolution and transition radiation performance.
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