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Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region
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In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equaticais with
initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps.
We examine both the ground state and excited states having a vortex line alaaxibat high values of the
gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaeafskinidad
Monte Carlo methods, both for the ground and vortex states.
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I. INTRODUCTION mation (LDA) by keeping only the first term in the low-

Most theoretical studies of Bose-Einstein condensa‘tegjenSIty expansion of Eq1)

(BEC) in gases of alkali atoms confined in magnetic or op- 52

tical traps have been conducted in the framework of theEeP[‘I’]=fdr[EJV‘I’(r)|2+Vtrap(f)|‘1’|2+
Gross-PitaevskilGP) equation[1]. The key point for the

validity of this description is the dilute condition of these (2
systems, i.e., the average distance between the atoms is m%ﬂere

larger than the range of the interatomic interaction. In this

situation the physics is dominated by two-body collisions, Vtrap(r)z%m(wix2+w2ly2+w522) (3)
well described in terms of the-wave scattering lengti.

The crucial parameter defining the condition for diluteness ids the confining potential defined by the two angular frequen-
the gas parametex(r)=n(r)a®, wheren(r) is the local den- pieSwl andw,. The condensate.wave functidnis normal-
sity of the system. For low values of the average gas paranized to the total number of particles. .

eterx,, =< 1073, the mean-field Gross-Pitaevskii equation does By performing a functional variation dtqe'¥'] with re-

an excellent job(see, for example, Ref2] for a review.  spect toW" one finds the corresponding Euler-Lagrange
However, in recent experiments, the local gas parameter magquation, known as the Gross-PitaevsidP) equation

2mh%a

— vt
m

well exceed this value due to the possibility of tuning the 52 Py
[sgzzﬁtering length in the presence of a Feshbach resonance - Env2+vtrap(r) + - a|\p|2 V=puW, (4)

Under such circumstances 1t Is unaymdaple to test th(\e/vhere,u is the chemical potential, which accounts for the
accuracy of the GP e_quatlon by performing microscopic Cal'conservation of the number of particles. Within the LDA
culations. If we consider cases where the gas parameter h?s )

; . i ; amework, the next step is to include into the energy func-
been driven to a region were one can still have a univers . .
. . o o .tional of Eq.(2) the next term of the low-density expansion
regime, i.e., that the specific shape of the potential is unim-

X . %I Eqg. (1). The functional variation gives then rise to the
portant, we may attempt to describe the system as dilute har . :
. e . . o-called modified GP equatidiMGP) [8]
spheres whose diameter coincides with the scattering Iengtﬁ.
However, the value ok is such that the calculation of the n2_, Amhla ) 325312
energy of the uniform hard-sphere Bose gas would require tq = 5=V + Viadr) + ——[W[*| 1+ ——55 V[ | [V = .
) - . 2m m 3w
take into account the second term in the low-density expan-

sion[5] of the energy density (5)
E 2mnlah? 128/ na®\/2 The MGP corrections have been estimated in R&f.in a
v m 1 15\ o (1) cylindrical condensate in the range of the scattering lengths

and trap parameters from the first JILA experiments with
wherem is the mass of the atoms treated as hard spheres. Féeshbach resonances. These experiments took advantage of
the case of uniform systems, the validity of this expansiorthe presence of a Feshbach resonance in the collision of two
has been carefully studied using diffusion Monte Cd6p  2°Rb atoms to tune their scattering leng8i. Fully micro-
and hypernetted-chain techniqués. scopic calculations using a hard-spheres interaction have also
The energy functional associated with the GP theory ideen performed in the framework of variational and diffusion
obtained within the framework of the local-density approxi- Monte Carlo method§10-13.
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In this work we compare the results of the GP and MGP o(r) = A(a)\Y* ex;{— %a(XZ +y2+ )\22)], (10)
equations discussed above, E@s.and(5), with variational
Monte Carlo(VMC) calculations for axially symmetric traps wherea is taken as the variational parameter of the calcula-
in a region(x>107%), where the validity of the GP equation tion, andA(a)=(a/m)¥* is the normalization constant. The
is not clear. We examine both the ground state and excitegarameteh =w,/ w, is kept fixed and set equal to the asym-
states having a vortex line along thexis. metry of the trap. In this way the mean-field wave function

In the next section we present our numerical approachew,,. has all the particles in the condensate, the latter being
together with a discussion of ground-state properties. In Seglescribed by the wave functiop
lll we proceed to study several trial wave functions to de- The evaluation of the expectation value of the Hamil-
scribe the excited state with one vortex. A comparison betonian with this correlated trial wave function provides an
tween VMC and the GP and MGP equations is done. Weupper bound to the ground-state energy of the system
summarize our results in Sec. IV.

_ (WelHW)

Il. NUMERICAL APPROACHES AND GROUND-STATE Ty
PROPERTIES

11

This expectation value has been evaluated by the Metropolis
The starting point of the Monte Carlo calculations is theponte Carlo method of integratiofi5,16].
Hamiltonian forN trapped interacting atoms given by The energy obtained with the Hamiltonian of E6) can
2 N N N be directly compared to the output of the GP and MGP equa-
__n 2 _ tions, see Eqs(4) and (5). The Gross-Pitaevskii equations
H= 2m§1 Vit zv"ap(”) " % Vindri =1if). (6) represent a mean-field description, with all the atoms in the
condensate. In fact, the additional correlations, which are
The two-body interactiorvim(|ri—rj|) between the atoms is taken into account in the second-order term of the low-
described by a hard-core potential of radiaysvherea is the  density expansion of the ener§gee Eq.(1)], are incorpo-
scattering length. The atoms are thus treated as hard sphereated in the density functional and, therefore, in the solution

The next step is to define a trial wave function of the MGP equation. In contrast, the Monte Carlo calcula-
tion explicitly incorporates the interatomic correlations, and
Yr(l, ... N)=F(1, ... N)Wye(L, ... N), (7)  therefore one could, in principle, find the natural orbits and

extract the occupation of the condensft6].
The GP and MGP equations have been solved by the
steepest descent methd] for the deformed harmonic os-

where F(1,...,N) is a many-body correlation operator ap-
plied to the mean-field wave functioh,,-. The advantage of

using a correlated trial wave function lies in the fact thatCillator trap previously described in Eqg). An initial de-

nonperturbative effects, as the short-range repulsion betwe?(r)]rmed trial state is projected onto the minimum of the func-
atoms may be directly incorporated into the trial wave func-

tion. The simplest correlation operator has the Jastrow forr@ﬁgilsgg g?ﬂiﬁiﬂ?\g gtgiI?na:jgli?;g[;gﬁelgq%r;?gge’ one
[14],

W(r,t+At) = W(r,t) - AtHW(r,t 12
F(L, . N) =TT ). (8) (r.t+AY=(r.Y . (12
= by normalizing¥ at each iteration. When the gas parameter

In our variational calculations we use a two-body correlationbecomes large, the time step, which governs the rate of con-
function, which is the solution of the Schrédinger equationvergence, should be taken accordingly small. Convergence is
for a pair of atoms at very low energy interacting via a hard-reached when the chemical potential becomes a constant in-
core potential of diametes. The ansatz for the correlation dependent of the position, see E$. and (5).

function f(r) reads For the comparison of the results obtained with the differ-
ent GP-type equations and the variational Monte Carlo cal-
(1-alr) r>a culations, we consider a disk-shaped trap withw,/
= {0 r<a. 9 =8, see Ref[18]. We have fixed the scattering length to

a=35ag,, with ar,=1008;, 8, being the Bohr radius. We set

This type of correlation, besides being physically motivatedthe number of confined atoms =500 in order to keep the
has been successfully used in Rdfs0,11] to study both amount of computing time acceptable when using the Monte
spherically symmetric and deformed traps. These author€arlo method. All the numerical results are given in units of
have also explored the quality of this correlation function bythe harmonic oscillator lengta, =(%/mw, )*? and the har-
comparing variational Monte CarlVMC) and diffusion  monic oscillator energyio | .
Monte Carlo(DMC) calculations for the case of spherically ~ First we analyze the GP and MGP results reported in
symmetric trapg12], with a good agreement between the Table I. For a scattering length=35ag,, the corrections of
VMC and DMC results. the MGP approach to the chemical potential are of the order

The deformation of the trap is incorporated in the mean-of 20%. The energy corrections are also relevant, and it is
field wave function¥ s, which is taken as the product bf interesting to study the different contributions to the energy.
single-particle wave functions The kinetic energy is given by
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TABLE I. Chemical potential and energies in unitsfab, from the GP, MGP, and VMC calculations for
the ground state. The scattering lengtrais35az,=0.151 5%, A=8, N=500.

u E/N Eyin/ N Enol/N E/N E,/N
GP 12.980 9.496 836 0.394 95 5.619 11 3.482 7765
MGP  15.453 11.061 08 0.35353 6.940 92 2516691  1.249938
VMC 11.1210914)  4.2152024)  6.905 9019)

K2 ) by the MGP equation. Note that in this approach, and using
Biin =5 J dr[ VW (r)f?, (13)  the Hamiltonian of Eq(6), the potential energy is zero since
the wave function is strictly zero inside the core. The total
while the harmonic oscillator energy due to the trapping po-energy in this case is distributed betwe, and the true
tential reads kinetic energy. Actually the only energies that can be directly
m compared to the GP results are the total and the harmonic
_m 20024\ 2 2 2 oscillator energies.

Ero 2 Jdr(wl(x #Y) D) 4 The Monte Carlo results obtained with the Metropolis al-
gorithm take into account the energy of 27 000 configura-
tions, grouped in 90 blocks of 300 movements. At each

2mhla Monte Carlo step we move all the particles and the accep-
E.= fdrl‘lf(r)l“,

and the interaction energi€§ andE, are given by

(15  tance is around 58%. A thermalization process is incorpo-
rated at the beginning of the Monte Carlo process and before
5 3\ 1/2 each block. In the Monte Carlo calculation we have used the
,= 2mh a1_28(a_> fdr|\lf(r)|5. (16) Pandharipande-Bethe prescription for the kinetic energy
m 15\« [16], which produces a smaller variance. To get a feeling for
the numerical accuracy of our VMC results, we list here GP,
F/IGP, and VMC results in the dilute limit. We empldy
=500 particles and a scattering length ¥&Rb considered by
2B, — 2B o+ 3E, + %Ef 0, (17)  Dalfovo and Stringgr[lg], which in units of the oscillator
. ) parameter perpendicular to teaxis is 4.33x 10°3. We ob-
which serves as a proof of the numerical accuracy of theain energies in units of the oscillator energy of 3.303 2151,
solution of the GP equations. The results in Table | show thag 308 0392, and 3.324 18810) for GP, MGP, and VMC
this test is well satisfied by all calculations. calculations, respectively. The VMC results are for an opti-
Note that the kinetic energy associated with the meanmum variational parameter=0.475. Taking into account
field descriptions is not negligible, indicating that the regimethat the two-body correlation has been kept fixed, and that
where the Thomas-Fermi approximation to the GP equatiofhe only variational parameter is these results indicate that
is valid has not been reached. In this limit, the chemicaloyr ansatz for the variational wave function is a viable one.
potential is Actually, as the reader will note from the discussion below,
— 1/q =R \2/5 this discrepancy of roughly 0.5% is of the same relative or-
wre=3(158NNTha (18 der as for the higher density cases reported here.
wherea=a/a, is the dimensionless scattering length, and In the minimization process we keep fixed the parameter
the energy per particlEr/N=5u¢/7. In this approach we X\ in the single-particle wave function of EqL0), i.e., we
haveErr/N=9.0%iw, and utr=12.64w,. Both these val- assume that the deformation of the trap is transferred to the
ues differ from the values reported in Table I. However, thiswave function, and vary onlya. At the minimum, «
approximation can still be used to estimate the peak value cf0.7687. One can also explore the effects of the correlations
the gas parameter, namely, in the density profiles. These profiles, which represent a col-
umn density defined according to

The virial theorem is used to establish a relation between th
different contributions to the energy, viz.,

XPK = n(0)a®= i(lsam)”f’?, (19
8 ne(r ) =J dznr,,2) (20)
which yields x2£=0.023. At this rather large value of the
diluteness parameter, the corrections brought by the MGRnd normalized such thati dr, r ny(r,)=1, are shown in
equation to the GP results are expected to be reld@and). Fig. 1 for the various approximations used in this work. The
Howeverx is low enough to allow for a mean-field approach repulsive character of the correction term of the MGP equa-
(as it is the case of the MGP equatjoifror such density tion translates into a decrease of the value of the column
regimes, a mean-field approach provides a rather good delensity at the origin and an increase of the size of the con-
scription when compared to a microscopic calculafi8h densatd8,9]. This gives a slightly more extended profile for
The variational Monte Carlo results are also given inthe MGP approach compared to both the GP and the VMC
Table | and show a close agreement with the results provideresults. As one can see from Fig. 1, there is a much better
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0.04 — T T T T T A

= 22
Vg mrlK (22

— GP

- wherer | =\x?+y? is the distance to the symmetry axis of the
vortex. The numbek represents the quantum of circulation,
and the total angular momentum along thaxis is given by

N N«7. Introducing the wave function of Eq21), in the GP
energy functional of Eq(2), one gets the corresponding GP
energy functional for the vortex state

0.03

0.02

column density

0.01 hz ) h2 K2 5 5
EGP+vo[q}] :f dr EJ v ¢(f)| + %EWA + Vtrap(r)|¢/|

2
C + 2 alwl“] 23

radial distance m

FIG. 1. Ground-state column density(r | ) as a function of the ~ which incorporates a centrifugal term in the density func-
distance to the z axis, fo4=500 particles, comparing the Gsolid  tional, arising from the quantized flow of atoms around the
line) and MGP(dashed lingresults fora=35ag,=0.151 5%, . Also  vortex core. This term defines a rotational energy
shown are the results of variatione_ll Monte Carlo calculatiding ) )
with symbolg. The deformatior =8 and the oscillator lengths are E = ﬁ_ f drK—|zp(r)|2 (24)
defined as in Refd.18,19. The radial distance is given in units of ot o '

aL:(h/mwl)l’Z. The column density is dimensionless. See text for ) ) o .
further details. The corresponding nonlinear Schrédinger equation ob-

tained by functional variation is

2
€

agreement between the Monte Carlo and MGP profiles than #2 5 h2 K2 Amhla 5

with the corresponding profile from the GP calculation, par- - %V + omrZ + Viair) + m [ | = ny.

) L 1

ticularly at small values of the radial distance where the den-

sity is larger. (25

The good agreement between VMC and MGP does not  aqging E, to the density functional and after performing

guarantee that these methods give a good description of theqnctional variation one gets the corresponding MGP equa-
system. However, as it was shown in Réfl] for the case of tion for the vortex state.

spherical traps, the improvements introduced in the trial g5sed on the virial theorem, one can again derive a rela-

wave function by a diffusion Monte Carlo calculation, yion petween the different contributions to the energy
which, in principle, allows for an exact solution of the many-

body problem, are rather small and the variational wave 2B — 2Eho+ 3E1 + gEz +2E,;=0. (26)

function of Eq.(10) provides a very good description of the The thermodynamic critical angular frequeney, re-

system. Therefore we assume that the same will be true for . dt q " f vorticis is obtained b
deformed traps. Furthermore, for these values of the dilutedU!Tea to produce a vortex ot vor icity IS obtained by com-
aring the energy of the system in the rotating frame with

ness parameter, the MGP equation is very useful to calculaf® '
the eﬁergy, chemical potenczial, and den)éity profiles of theand without the vortex20]
ground state of the system for condensates with larger num- 1
ber of particles, which would be computationally prohibitive Q= M[EK ~Eol. (27)
for a Monte Carlo calculation.
A main feature of a vortex state is the hdlore of the
IIl. VORTEX STATES vortex) that appears in the center of the density profile along
the rotation axis. From E@25), it is clear that the solution of
The existence of these excited condensate states is cructhlis equation has to vanish on thexis because of the pres-
to studies of the superfluid behavior of trapped atomic conence of the centrifugal term. The size of the core is charac-
densates. In this section we study the effects of correlationterized by the healing length.
in vortex states. We consider a singly quantized vortex line For the microscopic description of the vortex state we use
along thez axis. This means that all the atoms rotate arouncan Onsager-Feynman-type trial wave functj@ni]
the z axis with a quantized circulation. The GP equation can

easily be generalized to describe this kind of vortex stges We(l, ... N) = ei"zid’iH f(r )Wo(l, ... N), (28

by using the following ansatz for the condensate wave func- !

tion whereWy(1,...,N) is the ground-state wave function. The
W(r) = lr)exdi e, (21) phase factowX;¢; depends on the angular variables of the

particles and is the equivalent to the phase factor introduced
where ¢ is the angle around the axis andx is an integer. in the mean-field description of E(R1). The functionf(r ;)
This vortex state has a tangential velocity modulates the density as a function of the radial coordinate
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TABLE Il. Chemical potential and energies in units#d ; from the GP and MGP calculations for the
one-vortex state with the vortex line along theaxis. The scattering length B=35ag,=0.151 5%, \

=8, N=500.
u E/N Egin/N Eqo/N E/N E,/N Ero/ N
GP-1v 13.187 9.7835936 0.42508 5.74271  3.403871 0.211 93
MGP-1v  15.623 11.305 0.37692 7.03774 2482418 1223280 0.18492

r.. We examine three types &fr ). In the first ansatz we MGP corrections to the energy are sizable and of the same

use the simple option order as those in the ground state, the critical frequency,
Ocp=0.2%, , is barely affected as both energies, the energy
far)=r,. (29 of the vortex state and the ground-state energy, are shifted by
In the second case we consider, similar amounts, yieldingygp=0.24w, .
The GP and MGP profiles for the vortex state are shown
fa(ri)=1-exg-r,/d), (30 in Fig. 2. As a consequence of the repulsive character of the

whered is a variational parameter. Note that fd=1, the =~ MGP corrections, the central density of the GP ground-state

behavior off,(r ) for smallr, coincides with the behavior density profile is higher than the .M.GP one and, therefore, the
of f4(r,). Finally, the third function is that of Ref22], depth of the hole around theaxis is larger in the GP ap-

which has been used in the context of quantum liquids, proach. However, the healing length is almost the same.
As can be seen from Table 1ll, the Monte Carlo results for

fa(r,)=1-expg~(r,/d)?, (31)  the energies are in good agreement with the MGP ones for alll
the trial wave functions considered. This table shows two

whered is again a variational parameter. ; . .
These three trial wave functions describe a singly quangypes of calculations. In the first three rows we list the ener-
tized vortex statdx=1), whose axis lies in the direction gies obtained by keepingf, equal to the ground-state wave

and with a tangential velocity field,=#/mr, . The evalua- function and performing the minimization with respect to the

tion of the expectation value of the HamiltonigBg. (6)] parameted in the modulating function, except in the case of

with these wave functions is equivalent to calculate the meafl’ which has no variational parameters. In the second set of
oo q pesults, we perform a minimization allowing to vary also the
value of the Hamiltonian

harmonic oscillator parameter of the wave functionW¥,,.
52 N N 2 2 N The changes inr andd do not yield significant changes in
H=- %2 Vi+ 2 omiz T 2 ViragT') the computed energy.
i=1 i=1 Lii=l The density profiles seem to be more sensitive to the

N modulating function, as one can see from Fig. 2. These pro-
+ 2 Vid|ri = 1)), (32) files correspond to the case where the ground-state wave

R 0.04 T T T T T T T T T T

with W(1,...,N)=IL;f(r | )Wo(1,...,N). In this way the ro-

tational contribution to the energy has been directly incorpo- I — ap

rgted in the Hamiltonian. Minimizing this new prqble_m pro- 0.03 ;;Q;ﬁg[ﬁ]

vides the best energy and wave functions inside this _ @-8 VMC[2]

subspace of wave functions. In the context of liqdide ’§ *=% VMCI3]

there have been attempts to perform a full minimization al- & 0.02 |

lowing for a more general phase function. The analysis indi- § '

cates that the present procedure provides very accurate re- §

sults[23].

We start by discussing the GP and MGP res(dtstained
by the steepest descent metHdd] as done for the ground
state as wellwith an initial condensate wave function

(r) o f1(r )Wo(r). (33 0 1 2 radial d3istance 4 s

It is worth mer_1t|on|r_19, as a check of the numerical proce- FIG. 2. Vortex column density.(r ;) as a function of the dis-
dure, that starting W'_trﬁZ(ri) or f5(r ) to modulate the con- tance to the z axis, foN=500 particles, comparing GRolid line)
dgnsate wave function we converge to the same results a$q MGP (dashed ling results for a=35ag,=0.151 5%, . Also
with fy(r ). shown are the results of variational Monte Carlo calculatidines

As expected, the presence of the vortex increases thgith symbols using the different Onsager-Feynman ansatzes. The
chemical potential. Alsd,o has a small increase, related to deformation\ =8 and the oscillator lengths are defined as in Refs.
the enlargement of the profile because of the presence of th&8,19. The radial distance is given in units af, =(%/mw )2
vortex hole. These results are listed in Table II. Although theThe column density is dimensionless. See text for further details.

0.01
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TABLE |lIl. Variational Monte Carlo results obtained with different Onsager-Feynman ansatzes. The
results labeled VM{1], VMC[f2], and VM{f3] stand for the modulating wave functions in E(28), (30),

and(31), respectively.

@ d E/N Eein/N Enol/N Erot
VMC[fl]  0.7685 11.334348)  4.1480426)  7.0217%19)  0.164 52744)
VMC[f2] 07685  1.175  11.3627188) 4.2359431) 6.9398724)  0.186 91258
VMC[f3] 07685 0425 11.391718) 4.2884530) 6.9136823  0.189 58030)
VMC[fl]  0.775 11.334147) 41863429  6.9821322  0.165 67960)
VMC[f2] 0745 1425 11.354%I5  4.0781631)  7.096 9625  0.179 44693)
VMC[f3] 0745 0550  11.3868B9)  4.1490233)  7.0644626)  0.173 35026

function W is kept fixed when we minimize the energy of ab initio variational Monte Carlo calculations for Bose-
the vortex state. Fof; we obtain a radial structure, which is Einstein condensates of atoms in deformed traps. We have
not present in the mean-field appro&2]. The MGP profile  studied both the ground state and excited states having a
shows a broader surface region than the VMC profiles. In thgortex line along thez axis. The interatomic potential has
core of the vortex, the MGP profile looks very similar to the peen characterized by a hard-sphere potential with a radius
VMC results with the modulating functiof, of Eq. (30).  that coincides with the scattering length used in the GP and
These two re_sults e_xhlblt a smaller healing length than the gp equations.
VMC calculation which employs,. . We have performed the calculations for 500 particles. The
From the variational point of view, the best description of 53 meters characterizing the trap and the scattering length
the vortex should correspond to the wave function that Prohave been chosen to reach values of the gas parameter where
vides the minimum energy. Accordi_ng to _this _criterion, thisthe MGP calculations provide corrections of the order of
g{;gsﬁj%rgéé?ltgfe ér(lqal(zvg)ive function built with the mOOIu'20% compared to the GP results. It is indeed very interesting
B P ' ; - : that even at such values of the gas parameter one can still
Finally, in Fig. 3 we plot the density profiles for all VMC |describe the system in terms of mean-field approaches. We

calculations, with and without vortices. We note that they al find. f | I b H
provide a similar healing length and that the asymptotic beflnd for example, an excellent agreement between the MGP

havior is almost equal for both the ground state and the vor@"d VMC results, especially for the energies of the ground
tex states. state and the vortex states. The MGP and VMC density pro-

files for the ground state are also in good agreement. The
IV. CONCLUSIONS situation is different for the vortex state. Three different trial
We have compared the results of the Gross-Pitaevskijvave functions produce similar energies but slightly different

the profiles obtained with the ansatd@gsandf, of Egs.(29)

01— T T 1 and(30), respectively. These functions yield also the lowest
energies. Whether a diffusion Monte CafloMC) calcula-
::ng] tion will show a similar trend remains to see. We are plan-
0.03| v m—8 VMC[f2] ning DMC studies of the systems discussed here. Our pre-
2 ,,Wi Fx =% VMC[f3] liminary DMC calculations for the energy of the ground state
2 H%m show little change with respect to the VMC results and,
T 0.02F _.",dA.A ‘“\% . hence, a very good agreement with the MGP results.

5 5 \.\ In summary, we would like to point out that the good
3 I j‘ agreement between the VMC and MGP is rather encouraging
0_01_’%" \\ i and allows for further MGP explorations of vortex states in

% \g& condensates with both a larger number of interacting atoms
r .i? and large scattering lengths.
0 L | 1 | 1 \.e’\.kk —ac
0 1 2 3 4 5 6

radial distance
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