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In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations withab
initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps.
We examine both the ground state and excited states having a vortex line along thez axis at high values of the
gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii andab initio
Monte Carlo methods, both for the ground and vortex states.
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I. INTRODUCTION

Most theoretical studies of Bose-Einstein condensates
sBECd in gases of alkali atoms confined in magnetic or op-
tical traps have been conducted in the framework of the
Gross-PitaevskiisGPd equationf1g. The key point for the
validity of this description is the dilute condition of these
systems, i.e., the average distance between the atoms is much
larger than the range of the interatomic interaction. In this
situation the physics is dominated by two-body collisions,
well described in terms of thes-wave scattering lengtha.
The crucial parameter defining the condition for diluteness is
the gas parameterxsr d=nsr da3, wherensr d is the local den-
sity of the system. For low values of the average gas param-
eterxavø10−3, the mean-field Gross-Pitaevskii equation does
an excellent jobssee, for example, Ref.f2g for a reviewd.
However, in recent experiments, the local gas parameter may
well exceed this value due to the possibility of tuning the
scattering length in the presence of a Feshbach resonance
f3,4g.

Under such circumstances it is unavoidable to test the
accuracy of the GP equation by performing microscopic cal-
culations. If we consider cases where the gas parameter has
been driven to a region were one can still have a universal
regime, i.e., that the specific shape of the potential is unim-
portant, we may attempt to describe the system as dilute hard
spheres whose diameter coincides with the scattering length.
However, the value ofx is such that the calculation of the
energy of the uniform hard-sphere Bose gas would require to
take into account the second term in the low-density expan-
sion f5g of the energy density
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wherem is the mass of the atoms treated as hard spheres. For
the case of uniform systems, the validity of this expansion
has been carefully studied using diffusion Monte Carlof6g
and hypernetted-chain techniquesf7g.

The energy functional associated with the GP theory is
obtained within the framework of the local-density approxi-

mation sLDA d by keeping only the first term in the low-
density expansion of Eq.s1d
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where
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2z2d s3d

is the confining potential defined by the two angular frequen-
ciesv' andvz. The condensate wave functionC is normal-
ized to the total number of particles.

By performing a functional variation ofEGPfCg with re-
spect to C* one finds the corresponding Euler-Lagrange
equation, known as the Gross-PitaevskiisGPd equation
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where m is the chemical potential, which accounts for the
conservation of the number of particles. Within the LDA
framework, the next step is to include into the energy func-
tional of Eq.s2d the next term of the low-density expansion
of Eq. s1d. The functional variation gives then rise to the
so-called modified GP equationsMGPd f8g
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The MGP corrections have been estimated in Ref.f8g in a
cylindrical condensate in the range of the scattering lengths
and trap parameters from the first JILA experiments with
Feshbach resonances. These experiments took advantage of
the presence of a Feshbach resonance in the collision of two
85Rb atoms to tune their scattering lengthf3g. Fully micro-
scopic calculations using a hard-spheres interaction have also
been performed in the framework of variational and diffusion
Monte Carlo methodsf10–13g.
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In this work we compare the results of the GP and MGP
equations discussed above, Eqs.s4d ands5d, with variational
Monte CarlosVMCd calculations for axially symmetric traps
in a regionsx.10−3d, where the validity of the GP equation
is not clear. We examine both the ground state and excited
states having a vortex line along thez axis.

In the next section we present our numerical approaches
together with a discussion of ground-state properties. In Sec.
III we proceed to study several trial wave functions to de-
scribe the excited state with one vortex. A comparison be-
tween VMC and the GP and MGP equations is done. We
summarize our results in Sec. IV.

II. NUMERICAL APPROACHES AND GROUND-STATE
PROPERTIES

The starting point of the Monte Carlo calculations is the
Hamiltonian forN trapped interacting atoms given by

H = −
"2

2m
o
i=1

N

¹i
2 + o
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N

Vtrapsr id + o
i, j

N

Vintsur i − r jud. s6d

The two-body interactionVintsur i −r jud between the atoms is
described by a hard-core potential of radiusa, wherea is the
scattering length. The atoms are thus treated as hard spheres.
The next step is to define a trial wave function

CTs1, ... ,Nd = Fs1, ... ,NdCMFs1, ... ,Nd, s7d

where Fs1,… ,Nd is a many-body correlation operator ap-
plied to the mean-field wave functionCMF. The advantage of
using a correlated trial wave function lies in the fact that
nonperturbative effects, as the short-range repulsion between
atoms may be directly incorporated into the trial wave func-
tion. The simplest correlation operator has the Jastrow form
f14g,

Fs1, ... ,Nd = p
i, j

fsr ijd. s8d

In our variational calculations we use a two-body correlation
function, which is the solution of the Schrödinger equation
for a pair of atoms at very low energy interacting via a hard-
core potential of diametera. The ansatz for the correlation
function fsrd reads

fsrd = Hs1 − a/rd r . a

0 r ø a.
J s9d

This type of correlation, besides being physically motivated,
has been successfully used in Refs.f10,11g to study both
spherically symmetric and deformed traps. These authors
have also explored the quality of this correlation function by
comparing variational Monte CarlosVMCd and diffusion
Monte CarlosDMCd calculations for the case of spherically
symmetric trapsf12g, with a good agreement between the
VMC and DMC results.

The deformation of the trap is incorporated in the mean-
field wave functionCMF, which is taken as the product ofN
single-particle wave functions

wsr d = Asadl1/4 expf− 1
2asx2 + y2 + lz2dg , s10d

wherea is taken as the variational parameter of the calcula-
tion, andAsad=sa /pd3/4 is the normalization constant. The
parameterl=vz/v' is kept fixed and set equal to the asym-
metry of the trap. In this way the mean-field wave function
CMF has all the particles in the condensate, the latter being
described by the wave functionw.

The evaluation of the expectation value of the Hamil-
tonian with this correlated trial wave function provides an
upper bound to the ground-state energy of the system

ET =
kCTuHuCTl
kCTuCTl

. s11d

This expectation value has been evaluated by the Metropolis
Monte Carlo method of integrationf15,16g.

The energy obtained with the Hamiltonian of Eq.s6d can
be directly compared to the output of the GP and MGP equa-
tions, see Eqs.s4d and s5d. The Gross-Pitaevskii equations
represent a mean-field description, with all the atoms in the
condensate. In fact, the additional correlations, which are
taken into account in the second-order term of the low-
density expansion of the energyfsee Eq.s1dg, are incorpo-
rated in the density functional and, therefore, in the solution
of the MGP equation. In contrast, the Monte Carlo calcula-
tion explicitly incorporates the interatomic correlations, and
therefore one could, in principle, find the natural orbits and
extract the occupation of the condensatef10g.

The GP and MGP equations have been solved by the
steepest descent methodf17g for the deformed harmonic os-
cillator trap previously described in Eq.s3d. An initial de-
formed trial state is projected onto the minimum of the func-
tional by propagating it in imaginary time. In practice, one
chooses a small time stepDt and iterates the equation

Csr ,t + Dtd < Csr ,td − DtHCsr ,td s12d

by normalizingC at each iteration. When the gas parameter
becomes large, the time step, which governs the rate of con-
vergence, should be taken accordingly small. Convergence is
reached when the chemical potential becomes a constant in-
dependent of the position, see Eqs.s4d and s5d.

For the comparison of the results obtained with the differ-
ent GP-type equations and the variational Monte Carlo cal-
culations, we consider a disk-shaped trap withl=vz/v'

=Î8, see Ref.f18g. We have fixed the scattering length to
a=35aRb, with aRb=100a0, a0 being the Bohr radius. We set
the number of confined atoms toN=500 in order to keep the
amount of computing time acceptable when using the Monte
Carlo method. All the numerical results are given in units of
the harmonic oscillator lengtha'=s" /mv'd1/2 and the har-
monic oscillator energy"v'.

First we analyze the GP and MGP results reported in
Table I. For a scattering lengtha=35aRb, the corrections of
the MGP approach to the chemical potential are of the order
of 20%. The energy corrections are also relevant, and it is
interesting to study the different contributions to the energy.
The kinetic energy is given by
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Ekin =
"2
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while the harmonic oscillator energy due to the trapping po-
tential reads

EHO =
m
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and the interaction energiesE1 andE2 are given by
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m
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The virial theorem is used to establish a relation between the
different contributions to the energy, viz.,

2Ekin − 2EHO + 3E1 + 9
2E2 = 0, s17d

which serves as a proof of the numerical accuracy of the
solution of the GP equations. The results in Table I show that
this test is well satisfied by all calculations.

Note that the kinetic energy associated with the mean-
field descriptions is not negligible, indicating that the regime
where the Thomas-Fermi approximation to the GP equation
is valid has not been reached. In this limit, the chemical
potential is

mTF = 1
2s15āNld2/5"v', s18d

where ā=a/a' is the dimensionless scattering length, and
the energy per particleETF/N=5mTF/7. In this approach we
haveETF/N=9.03"v' andmTF=12.64"v'. Both these val-
ues differ from the values reported in Table I. However, this
approximation can still be used to estimate the peak value of
the gas parameter, namely,

xTF
pk = ns0da3 =

1

8p
s15āNld2/5ā2, s19d

which yields xTF
pk =0.023. At this rather large value of the

diluteness parameter, the corrections brought by the MGP
equation to the GP results are expected to be relevantf6,7,9g.
However,x is low enough to allow for a mean-field approach
sas it is the case of the MGP equationd. For such density
regimes, a mean-field approach provides a rather good de-
scription when compared to a microscopic calculationf8g.

The variational Monte Carlo results are also given in
Table I and show a close agreement with the results provided

by the MGP equation. Note that in this approach, and using
the Hamiltonian of Eq.s6d, the potential energy is zero since
the wave function is strictly zero inside the core. The total
energy in this case is distributed betweenEHO and the true
kinetic energy. Actually the only energies that can be directly
compared to the GP results are the total and the harmonic
oscillator energies.

The Monte Carlo results obtained with the Metropolis al-
gorithm take into account the energy of 27 000 configura-
tions, grouped in 90 blocks of 300 movements. At each
Monte Carlo step we move all the particles and the accep-
tance is around 58%. A thermalization process is incorpo-
rated at the beginning of the Monte Carlo process and before
each block. In the Monte Carlo calculation we have used the
Pandharipande-Bethe prescription for the kinetic energy
f16g, which produces a smaller variance. To get a feeling for
the numerical accuracy of our VMC results, we list here GP,
MGP, and VMC results in the dilute limit. We employN
=500 particles and a scattering length for87Rb considered by
Dalfovo and Stringarif19g, which in units of the oscillator
parameter perpendicular to thez axis is 4.33310−3. We ob-
tain energies in units of the oscillator energy of 3.303 2151,
3.308 0392, and 3.324 1881s10d for GP, MGP, and VMC
calculations, respectively. The VMC results are for an opti-
mum variational parametera=0.475. Taking into account
that the two-body correlation has been kept fixed, and that
the only variational parameter isa, these results indicate that
our ansatz for the variational wave function is a viable one.
Actually, as the reader will note from the discussion below,
this discrepancy of roughly 0.5% is of the same relative or-
der as for the higher density cases reported here.

In the minimization process we keep fixed the parameter
l in the single-particle wave function of Eq.s10d, i.e., we
assume that the deformation of the trap is transferred to the
wave function, and vary onlya. At the minimum, a
=0.7687. One can also explore the effects of the correlations
in the density profiles. These profiles, which represent a col-
umn density defined according to

ncsr'd =E dz nsr',zd s20d

and normalized such that 2pedr'r'ncsr'd=1, are shown in
Fig. 1 for the various approximations used in this work. The
repulsive character of the correction term of the MGP equa-
tion translates into a decrease of the value of the column
density at the origin and an increase of the size of the con-
densatef8,9g. This gives a slightly more extended profile for
the MGP approach compared to both the GP and the VMC
results. As one can see from Fig. 1, there is a much better

TABLE I. Chemical potential and energies in units of"v' from the GP, MGP, and VMC calculations for
the ground state. The scattering length isa=35aRb=0.151 55a', l=Î8, N=500.

m E/N Ekin/N EHO/N E1/N E2/N

GP 12.980 9.496 836 0.394 95 5.619 11 3.482 7765

MGP 15.453 11.061 08 0.353 53 6.940 92 2.516 691 1.249 938

VMC 11.121 09s14d 4.215 20s24d 6.905 90s19d
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agreement between the Monte Carlo and MGP profiles than
with the corresponding profile from the GP calculation, par-
ticularly at small values of the radial distance where the den-
sity is larger.

The good agreement between VMC and MGP does not
guarantee that these methods give a good description of the
system. However, as it was shown in Ref.f11g for the case of
spherical traps, the improvements introduced in the trial
wave function by a diffusion Monte Carlo calculation,
which, in principle, allows for an exact solution of the many-
body problem, are rather small and the variational wave
function of Eq.s10d provides a very good description of the
system. Therefore we assume that the same will be true for
deformed traps. Furthermore, for these values of the dilute-
ness parameter, the MGP equation is very useful to calculate
the energy, chemical potential, and density profiles of the
ground state of the system for condensates with larger num-
ber of particles, which would be computationally prohibitive
for a Monte Carlo calculation.

III. VORTEX STATES

The existence of these excited condensate states is crucial
to studies of the superfluid behavior of trapped atomic con-
densates. In this section we study the effects of correlations
in vortex states. We consider a singly quantized vortex line
along thez axis. This means that all the atoms rotate around
the z axis with a quantized circulation. The GP equation can
easily be generalized to describe this kind of vortex statesf2g
by using the following ansatz for the condensate wave func-
tion

Csr d = csr dexpfikfg, s21d

wheref is the angle around thez axis andk is an integer.
This vortex state has a tangential velocity

vf =
"

mr'

k, s22d

wherer'=Îx2+y2 is the distance to the symmetry axis of the
vortex. The numberk represents the quantum of circulation,
and the total angular momentum along thez axis is given by
Nk". Introducing the wave function of Eq.s21d, in the GP
energy functional of Eq.s2d, one gets the corresponding GP
energy functional for the vortex state

EGP+vorfCg =E drF "2

2m
u ¹ csr du2 +

"2

2m

k2

r'
2 ucu2 + Vtrapsr ducu2

+
2p"2a

m
ucu4G , s23d

which incorporates a centrifugal term in the density func-
tional, arising from the quantized flow of atoms around the
vortex core. This term defines a rotational energy

Erot =
"2

2m
E dr

k2

r'
2 ucsr du2. s24d

The corresponding nonlinear Schrödinger equation ob-
tained by functional variation is

F−
"2

2m
¹2 +

"2

2m

k2

r'
2 + Vtrapsr d +

4p"2a

m
ucu2Gc = mc.

s25d

Adding E2 to the density functional and after performing
a functional variation one gets the corresponding MGP equa-
tion for the vortex state.

Based on the virial theorem, one can again derive a rela-
tion between the different contributions to the energy

2Ekin − 2EHO + 3E1 + 9
2E2 + 2Erot = 0. s26d

The thermodynamic critical angular frequencyVc re-
quired to produce a vortex of vorticityk is obtained by com-
paring the energy of the system in the rotating frame with
and without the vortexf20g

Vc =
1

N"k
fEk − E0g. s27d

A main feature of a vortex state is the holescore of the
vortexd that appears in the center of the density profile along
the rotation axis. From Eq.s25d, it is clear that the solution of
this equation has to vanish on thez axis because of the pres-
ence of the centrifugal term. The size of the core is charac-
terized by the healing length.

For the microscopic description of the vortex state we use
an Onsager-Feynman-type trial wave functionf21g

CFs1, ... ,Nd = eiko jf jp
j

fsr',jdC0s1, ... ,Nd, s28d

where C0s1,… ,Nd is the ground-state wave function. The
phase factorko jf j depends on the angular variables of the
particles and is the equivalent to the phase factor introduced
in the mean-field description of Eq.s21d. The functionfsr'd
modulates the density as a function of the radial coordinate

FIG. 1. Ground-state column densityncsr'd as a function of the
distance to the z axis, forN=500 particles, comparing the GPssolid
lined and MGPsdashed lined results fora=35aRb=0.151 55a'. Also
shown are the results of variational Monte Carlo calculationssline
with symbolsd. The deformationl=Î8 and the oscillator lengths are
defined as in Refs.f18,19g. The radial distance is given in units of
a'=s" /mv'd1/2. The column density is dimensionless. See text for
further details.
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r'. We examine three types offsr'd. In the first ansatz we
use the simple option

f1sr'd = r'. s29d

In the second case we consider,

f2sr'd = 1 − exps− r'/dd, s30d

whered is a variational parameter. Note that ford=1, the
behavior off2sr'd for small r' coincides with the behavior
of f1sr'd. Finally, the third function is that of Ref.f22g,
which has been used in the context of quantum liquids,

f3sr'd = 1 − exp„− sr'/dd2
…, s31d

whered is again a variational parameter.
These three trial wave functions describe a singly quan-

tized vortex statesk=1d, whose axis lies in thez direction
and with a tangential velocity fieldvf=" /mr'. The evalua-
tion of the expectation value of the HamiltonianfEq. s6dg
with these wave functions is equivalent to calculate the mean
value of the Hamiltonian

H = −
"2

2m
o
i=1

N

¹i
2 + o

i=1

N
"2

2m

k2

r',i
2 + o

i=1

N

Vtrapsr id

+ o
i, j

N

Vintsur i − r jud, s32d

with Cs1,… ,Nd=p j fsr',jdC0s1,… ,Nd. In this way the ro-
tational contribution to the energy has been directly incorpo-
rated in the Hamiltonian. Minimizing this new problem pro-
vides the best energy and wave functions inside this
subspace of wave functions. In the context of liquid4He
there have been attempts to perform a full minimization al-
lowing for a more general phase function. The analysis indi-
cates that the present procedure provides very accurate re-
sults f23g.

We start by discussing the GP and MGP resultssobtained
by the steepest descent methodf17g as done for the ground
state as welld with an initial condensate wave function

csr d ~ f1sr'dC0sr d. s33d

It is worth mentioning, as a check of the numerical proce-
dure, that starting withf2sr'd or f3sr'd to modulate the con-
densate wave function we converge to the same results as
with f1sr'd.

As expected, the presence of the vortex increases the
chemical potential. AlsoEHO has a small increase, related to
the enlargement of the profile because of the presence of the
vortex hole. These results are listed in Table II. Although the

MGP corrections to the energy are sizable and of the same
order as those in the ground state, the critical frequency,
VGP=0.29v' , is barely affected as both energies, the energy
of the vortex state and the ground-state energy, are shifted by
similar amounts, yieldingVMGP=0.24v'.

The GP and MGP profiles for the vortex state are shown
in Fig. 2. As a consequence of the repulsive character of the
MGP corrections, the central density of the GP ground-state
density profile is higher than the MGP one and, therefore, the
depth of the hole around thez axis is larger in the GP ap-
proach. However, the healing length is almost the same.

As can be seen from Table III, the Monte Carlo results for
the energies are in good agreement with the MGP ones for all
the trial wave functions considered. This table shows two
types of calculations. In the first three rows we list the ener-
gies obtained by keepingC0 equal to the ground-state wave
function and performing the minimization with respect to the
parameterd in the modulating function, except in the case of
f1, which has no variational parameters. In the second set of
results, we perform a minimization allowing to vary also the
harmonic oscillator parametera of the wave functionC0.
The changes ina and d do not yield significant changes in
the computed energy.

The density profiles seem to be more sensitive to the
modulating function, as one can see from Fig. 2. These pro-
files correspond to the case where the ground-state wave

TABLE II. Chemical potential and energies in units of"v' from the GP and MGP calculations for the
one-vortex state with the vortex line along thez axis. The scattering length isa=35aRb=0.151 55a', l
=Î8, N=500.

m E/N Ekin/N EHO/N E1/N E2/N Erot/N

GP-1v 13.187 9.783 5936 0.425 08 5.742 71 3.403 871 0.211 93

MGP-1v 15.623 11.305 0.376 92 7.037 74 2.482 418 1.223 280 0.184 92

FIG. 2. Vortex column densityncsr 'd as a function of the dis-
tance to the z axis, forN=500 particles, comparing GPssolid lined
and MGP sdashed lined results for a=35aRb=0.151 55a'. Also
shown are the results of variational Monte Carlo calculationsslines
with symbolsd using the different Onsager-Feynman ansatzes. The
deformationl=Î8 and the oscillator lengths are defined as in Refs.
f18,19g. The radial distance is given in units ofa'=s" /mv'd1/2.
The column density is dimensionless. See text for further details.
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function C0 is kept fixed when we minimize the energy of
the vortex state. Forf3 we obtain a radial structure, which is
not present in the mean-field approachf22g. The MGP profile
shows a broader surface region than the VMC profiles. In the
core of the vortex, the MGP profile looks very similar to the
VMC results with the modulating functionf2 of Eq. s30d.
These two results exhibit a smaller healing length than the
VMC calculation which employsf1.

From the variational point of view, the best description of
the vortex should correspond to the wave function that pro-
vides the minimum energy. According to this criterion, this
corresponds to the trial wave function built with the modu-
lating function f1 of Eq. s29d.

Finally, in Fig. 3 we plot the density profiles for all VMC
calculations, with and without vortices. We note that they all
provide a similar healing length and that the asymptotic be-
havior is almost equal for both the ground state and the vor-
tex states.

IV. CONCLUSIONS

We have compared the results of the Gross-Pitaevskii
sGPd and the modified Gross-PitaevskiisMGPd equations to

ab initio variational Monte Carlo calculations for Bose-
Einstein condensates of atoms in deformed traps. We have
studied both the ground state and excited states having a
vortex line along thez axis. The interatomic potential has
been characterized by a hard-sphere potential with a radius
that coincides with the scattering length used in the GP and
MGP equations.

We have performed the calculations for 500 particles. The
parameters characterizing the trap and the scattering length
have been chosen to reach values of the gas parameter where
the MGP calculations provide corrections of the order of
20% compared to the GP results. It is indeed very interesting
that even at such values of the gas parameter one can still
describe the system in terms of mean-field approaches. We
find, for example, an excellent agreement between the MGP
and VMC results, especially for the energies of the ground
state and the vortex states. The MGP and VMC density pro-
files for the ground state are also in good agreement. The
situation is different for the vortex state. Three different trial
wave functions produce similar energies but slightly different
profiles. In the core of the vortex, the MGP profile is close to
the profiles obtained with the ansatzesf1 and f2 of Eqs.s29d
and s30d, respectively. These functions yield also the lowest
energies. Whether a diffusion Monte CarlosDMCd calcula-
tion will show a similar trend remains to see. We are plan-
ning DMC studies of the systems discussed here. Our pre-
liminary DMC calculations for the energy of the ground state
show little change with respect to the VMC results and,
hence, a very good agreement with the MGP results.

In summary, we would like to point out that the good
agreement between the VMC and MGP is rather encouraging
and allows for further MGP explorations of vortex states in
condensates with both a larger number of interacting atoms
and large scattering lengths.

ACKNOWLEDGMENTS

The authors are grateful to Professor A. Fabrocini and
Professor J. Boronat for many useful discussions. This re-
search was also partially supported by DGICYTsSpaind
Project No. BFM2002-01868 and from Generalitat de Cata-
lunya Project No. 2001SGR00064. J. Mur-Petit acknowl-
edges support from the Generalitat de Catalunya. Support
from the Research Council of Norway is acknowledged.

TABLE III. Variational Monte Carlo results obtained with different Onsager-Feynman ansatzes. The
results labeled VMCff1g, VMCff2g, and VMCff3g stand for the modulating wave functions in Eqs.s28d, s30d,
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VMCff3g 0.7685 0.425 11.391 71s18d 4.288 45s30d 6.913 68s23d 0.189 580s30d
VMCff1g 0.775 11.334 15s17d 4.186 34s29d 6.982 13s22d 0.165 679s60d
VMCff2g 0.745 1.425 11.354 57s15d 4.078 16s31d 7.096 96s25d 0.179 446s93d
VMCff3g 0.745 0.550 11.386 83s19d 4.149 02s33d 7.064 46s26d 0.173 350s26d

FIG. 3. Column densityncsr 'd as a function of the distance to
the z axis, comparing the VMC profiles for the vortex state corre-
sponding to the different Onsager-Feynman ansatzesslines with
symbols as in Fig. 2d and the ground statesdashed line with full
circlesd. The trap parameters and the scattering length are the same
as in the two preceding figures. The radial distance is given in units
of a'=s" /mv'd1/2. The column density is dimensionless. See text
for further details.
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