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Abstract

Deconstruction provides a novel way of dealing with the notoriously difficult ul-
traviolet problems of four-dimensional gravity. This approach also naturally leads to
a new perspective on the holographic principle, tying it to the fundamental require-
ments of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the
cosmological constant problem. The numerical smallness of the cosmological constant
is implied by a unique combination of holography and supersymmetry, opening a new
window into the fundamental physics of the vacuum.
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The validity of general relativity as a classical theory, at least at reasonable length scales

is by now beyond any doubt, yet a completely satisfying quantum theory of gravitation re-

mains elusive. The difficulty may be understood on many levels. The most straightforward

approach, that of treating general relativity as a local four-dimensional field theory and

quantizing it as such, fails unequivocally. The gravitational coupling, GN , is a dimensionful

quantity that renders the short-distance structure of the theory meaningless. Thus, at best,

general relativity should be regarded as a four-dimensional effective field theory that is re-

placed by something else at short distances, for example, a well-defined perturbative quantum

theory of gravity, such as string theory.

Yet, all is not well, even apart from the basic open question of how to formulate a

background independent non-perturbative version of quantum gravity. The low-energy ef-

fective field theory makes predictions wildly inconsistent with observation. Most notably,

when coupled to matter degrees of freedom, the energy density of the vacuum is extremely

large, scaling with the largest available energy in the theory. This is the essence of the

cosmological constant problem. The insidiousness of the renormalization of the cosmological

constant means that it is not even sufficient to find a principle that would set the vacuum

energy to some small value at a given ultraviolet (UV) scale; rather it must be canceled all

the way into the infrared (IR).

It has recently become clear that quantum gravitational systems display features that

cannot be accommodated by local four-dimensional field theories. In particular, the holo-

graphic principle [1] asserts that the degrees of freedom of such four-dimensional gravitational

systems are better accounted for by three-dimensional data. This principle stems from the

well-known non-extensive properties of the Bekenstein-Hawking entropy [2]

S =
A

4GN

, (1)

which scales as the area, not the volume, of a given region of space. Just how holography

might be implemented is a matter of some debate, but simple examples, possessing a high

degree of symmetry, have been well explored; this is what underlies the duality between grav-

itating systems on anti-de Sitter (AdS) background geometries and conformal field theories

(CFT) in one fewer dimension [3].

If holography is to be taken seriously, we should look to three-dimensional theories for

guidance. Recent astrophysical observations of the cosmic microwave background radiation

[4] and distant supernovae [5] together suggest that the expansion of the universe is ac-

celerating and that this acceleration is being driven by a “dark energy,” which comprises

three quarters of the total energy density of the universe. The leading candidate for dark

energy is the energy in the vacuum itself, and the observed value points to a positive small

cosmological constant. An extension of the ideas underlying the dualities mentioned above

would then seem to suggest looking for a de Sitter/CFT correspondence [6]. It is not clear

however, what three-dimensional CFT would be capable of fully describing the present state

of our Universe.

However, there is another possibility based on the idea of deconstruction [7]. In this

framework, one imagines that the short distance regime of a four-dimensional field theory is
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described by a three-dimensional theory. The most amazing possibility is that by introducing

supersymmetry into the three-dimensional theory, it is possible that the four-dimensional

theory has a small cosmological constant! This statement relies on specific properties of

three-dimensional supersymmetry, first noticed by Witten [8]. Furthermore, there are signals

that holography may be operating in this scenario, although in a much different guise than

in AdS/CFT.

In deconstruction, an infrared theory is placed on a one-dimensional lattice. The link

fields that connect adjacent lattice sites provide a Goldstone realization of an ultraviolet

theory in one lower dimension. The continuum limit of the lattice theory dynamically gen-

erates an additional spatial direction in the infrared. Gravity can be studied within this

formalism [9, 10, 11]. Remarkably, it can be argued that a four-dimensional quantum theory

of gravitation emerges as the infrared limit of coupled (2+1)-dimensional theories of gravity

on a lattice [10, 11]. The Bekenstein-Hawking entropy formula (up to the purely numerical

factor) is a universal statement about the mixing of the UV and IR physics, which violates

the basic principles of a local effective field theory [9, 11].

More explicitly, assuming a local spatial foliation of spacetime, the Einstein-Hilbert action

S =
1

GN

∫
εabcde

a ∧ eb ∧ Rcd, (2)

expressed in terms of the vierbein and curvature, is classically the deconstructed version

of N copies of three-dimensional general relativity (a Chern-Simons theory) coupled to a

set of three-dimensional currents [10]. The parameters of the three-dimensional theory are

regarded as fundamental. The four-dimensional Newton constant is a derived quantity that

is determined by the three-dimensional Newton constant and the lattice spacing a: GN =

1/M2
P l = G3a. Four-dimensional matter fields may also be defined in terms of a deconstructed

three-dimensional theory [7].

In a perturbative quantum theory of gravity, the exchange of gravitons — local, propa-

gating degrees of freedom — mediates the dynamical response of spacetime to the presence

of energy and, conversely, the dynamical response of matter to the geometry of spacetime.

However, in 2+1 dimensions, gravity is purely topological [12]. There are no local degrees of

freedom at all. To recover the local character of gravitational dynamics in 3 + 1 dimensions,

one needs the non-gravitational part of the ultraviolet completion. Indeed, “most” of four-

dimensional gravity is reconstructed from the matter sector (the link fields) of the lattice

realization. These are precisely the three-dimensional currents in our construction [10]. The

infrared theory organizes this co-dimension one skeleton into the architecture of spacetime

making four-dimensional Lorentz invariance an emergent property of the continuum limit.

One of the outstanding features of this construction is that it offers a new viewpoint on

the cosmological constant problem [10, 11]. In the deep ultraviolet, there are N essentially

independent copies of three-dimensional gravity coupled to three-dimensional sources. These

sources induce a conical geometry whose deficit angle prohibits spinor fields with covariantly

constant asymptotics [13]. This means that unbroken global supercharges do not exist.

We can have a supersymmetric vacuum without mass degenerate Bose/Fermi excitations

[8]. Three-dimensional supersymmetry therefore implies that the vacuum energy exactly
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vanishes at each lattice site. In the range of intermediate scales, there are N linked copies

of three-dimensional gravity, now coupled to three-dimensional currents. The geometry

is again conical, and the vacuum energy still vanishes. In the infrared, we recover four-

dimensional general relativity with non-zero cosmological constant. This is the consequence

of a gravitational see-saw, which balances the Planck mass against the infrared scale ∆m

determined by the Bose/Fermi mass splitting [11].

The crucial observation here is that the infrared dynamics ties together intimately with

the physics in the ultraviolet regime. A tree-level computation indicates that amplitudes

involving the longitudinal components of gravitons de-unitarize at a scale [9, 11]

µ ∼
(

M2
P l

L5a2

)1/9

, (3)

where L = Na is the lattice size. By demanding that the theory is truncated above the most

massive Kaluza-Klein states but below the unitarity threshold, we find that the maximum

possible cutoff is of order

µmax ∼
(

M2
P l

L

)1/3

. (4)

This exemplifies the phenomenon of UV/IR mixing: the ultraviolet cutoff is defined in terms

of purely infrared quantities, namely the size of the extra spatial dimension that arises from

deconstruction and the four-dimensional Planck mass.1

The scale µmax has an important holographic interpretation. We can compute the entropy

using the thermodynamic relation S ∼ V T 3, where the volume V ∼ AL and the temperature

T ∼ Λmax, the ultraviolet cutoff. Taking Λmax ∼ MP l yields the standard wrong result, but

if instead, we use the expression from eq. (4), we find that

S ∼ ALµ3
max ∼

NA

G3L
∼ A

GN

, (5)

which is nothing but the holographic bound on the number of degrees of freedom in the

ultraviolet theory, as it must be if deconstruction is expected to provide an ultraviolet defini-

tion of four-dimensional gravity. We conclude that unitarity plus diffeomorphism invariance

are sufficient to imply holography. The argument generalizes to an arbitrary number of

dimensions.

The infrared theory (i.e., the four-dimensional continuum limit of the lattice theory) lies

in the region where the three-dimensional interaction strength is strongly coupled. The

cosmological constant problem is to explain why the vacuum energy is small but non-

vanishing at long distances in this region of strong coupling.

There are two natural mass scales in the infrared. Each of these arise from the dimen-

sionful parameters in the ultraviolet, the lattice spacing a and the Newton constant G3.

One scale is simply the four-dimensional Planck mass, MP l, which sets the strength of the

gravitational interaction. Since GN = G3a, the three-dimensional scale is much higher than

the effective four-dimensional gravitational scale as we approach the continuum. Thus, MP l

1UV/IR mixing also signifies non-locality in the effective action for the Kaluza-Klein modes [9].
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is indeed an infrared scale from the three-dimensional point of view. A second low-energy

scale, ∆m, is defined by the mass difference between Bose and Fermi excitations in the

three-dimensional theory. Given these two scales and the requirement that the vacuum en-

ergy vanishes in the limit where the mass splitting between bosonic and fermionic degrees of

freedom goes to zero, we can associate a single scale ω with MP l and ∆m. This scale serves

as a cutoff in the computation of the four-dimensional vacuum energy. Dimensional analysis

informs us that

ω ∼ (∆m)2

MP l
. (6)

Since ω represents the ultraviolet scale in the computation of the vacuum energy density

and is determined by infrared quantities MP l and ∆m, this relation is also a manifestation

of the UV/IR correspondence.

When evaluating vacuum diagrams in order to estimate the upper bound on the vac-

uum energy in the infrared, we use ω as the only effective cutoff in the theory. The näıve

expression2 for the vacuum energy is bounded by ω4, or

Λ ∼ M4
P l

(
∆m

MP l

)8

. (7)

Therefore, the observed bound on the vacuum energy density can be realized by a large

separation between the mass splitting and the Planck scale.

This argument relies upon a few basic assumptions: dimensional analysis, the UV/IR

relation we have discussed previously, three-dimensional supersymmetry, and the notion

that the deconstruction of Witten’s argument for the vanishing of the cosmological constant

in 2 + 1 dimensions implies zero vacuum energy at a very low scale set by ∆m. The limit

∆m → 0, in which the four-dimensional cosmological constant vanishes, corresponds to the

restoration of the mass degeneracy in three dimensions. This observation is consistent with

the principle that vanishing dimensionful parameters correspond to enhanced symmetries.

Deconstruction offers a new way of dealing with the famously difficult ultraviolet problems

of four-dimensional gravity. In this approach, four-dimensional Lorentz invariance is an

emergent symmetry. Deconstruction also leads to a new perspective on the holographic

principle as well as on one of the outstanding puzzles of fundamental physics, the cosmological

constant problem. The numerical smallness of the cosmological constant is implied by a

unique combination of holography and supersymmetry. Given that the total energy density

of the universe today is apparently dominated by the energy in the vacuum and the critical

rôle supersymmetry has played in the effort to understand the stability of the vacuum, we

expect that the deconstruction of four-dimensional gravity will in the future provide many

additional insights about Nature.

2Of course, one should make a careful study of radiative corrections as well, even though these cannot
be disastrous if we remember that the vacuum energy is zero, by deconstruction, down to a very low energy
scale.
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