Author(s)
|
Adams, T. (Florida State U.) ; Albright, Carl H. (Fermilab) ; Balbekov, V. (Fermilab) ; Barenboim, G. (Fermilab) ; Harris, Deborah A. (Fermilab) ; Chou, W. (Fermilab) ; DeJongh, F. (Fermilab) ; Geer, S. (Fermilab) ; Johnstone, C. (Fermilab) ; Mokhov, N. (Fermilab) ; Morfin, J. (Fermilab) ; Neuffer, D. (Fermilab) ; Raja, R. (Fermilab) ; Romanino, A. (Fermilab) ; Shanahan, P. (Fermilab) ; Spentzouris, P. (Fermilab) ; Yu, J. (Fermilab) ; Barger, V. (Wisconsin U., Madison) ; Marfatia, D. (Wisconsin U., Madison) ; Han, Tao (Wisconsin U., Madison) ; Aoki, M. (Osaka U.) ; Kuno, Y. (Osaka U.) ; Sato, A. (Osaka U.) ; Ichikawa, K. (Kyoto U.) ; Nakaya, T. (Kyoto U.) ; Machida, S. (KEK, Tsukuba) ; Nagamine, K. (KEK, Tsukuba) ; Yoshimura, K. (KEK, Tsukuba) ; Ball, R.D. (CERN) ; Campanelli, Mario (Geneva U. ; Zurich, ETH) ; Casper, D. (UC, Irvine) ; Molzon, W. (UC, Irvine) ; sobel, H. (UC, Irvine) ; Cline, D.B. (UCLA) ; Cushman, P. (Minnesota U.) ; Diwan, M. (Brookhaven) ; Kahn, S. (Brookhaven) ; Morse, W. (Brookhaven) ; Palmer, R. (Brookhaven) ; Parsa, Zohreh (Brookhaven) ; Roser, T. (Brookhaven) ; Fleming, Bonnie T. (Columbia U.) ; Formaggio, J.A. (Columbia U.) ; Garren, A. (LBL, Berkeley) ; Gavela, M.B. (Madrid, Autonoma U.) ; Gonzalez-Garcia, M.C. (CERN ; Valencia U., IFIC) ; Hanson, G. (Indiana U.) ; Berger, M. (Indiana U.) ; Kayser, Boris (NSF, Wash., D.C.) ; Jung, C.K. (SUNY, Stony Brook) ; Shrock, R. (SUNY, Stony Brook) ; McGrew, C. (SUNY, Stony Brook) ; Mocioiu, I. (SUNY, Stony Brook) ; Lindner, M. (Munich, Tech. U.) ; McDonald, K. (Princeton U.) ; McFarland, Kevin Scott (Rochester U.) ; Nienaber, P. (Holy Cross Coll.) ; Olness, F. (Southern Methodist U.) ; Pope, B. (Michigan State U.) ; Rigolin, S. (Michigan U.) ; Roberts, L. (Boston U.) ; Schellman, H. (Northwestern U.) ; Shiozawa, M. (Tokyo U., ICRR) ; Wai, L. (Stanford U., Phys. Dept.) ; Wang, Y.F. (Beijing, Inst. High Energy Phys.) ; Whisnant, K. (Iowa State U.) ; Zeller, M. (Yale U.) |
Abstract
| We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities. |