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Several million candidate events for physics have been recorded so far by the Opal detector
at LEP and are stored on disks for analyis. Today this corresponds to ~ 100 Gbytes of
disk space and will keep on growing with the machine performance upgrades. We have
developped a fast algorithm for data compression and expansion which reduces the disk
space by a factor of 3.0 while keeping the full number range and precision for both integer
and floating point numbers. This leads to a valuable apparent increase of the I/O bandwith
in the analysis environment at a moderate CPU cost for data unpacking.

1"~ Motivation for data compression

The Opal Detector [1] at LEP can be viewed as a mass producer of candidate events for physics
which, for convenient analyses, are stored on disk. The last stage of the ‘online‘ and ‘inline‘
system [2] is the writing of ‘production’ data-sets which contain both the compressed original
raw data, mainly used for detector calibration and monitoring, and the physics oriented DST
(Data Summary Tape). At a later stage, typically one year after these data-sets were written,
only the DST part is kept on disk, while the compressed raw data are dumped to tape.

This note adresses the further compression of the DST. The effort was triggered by the
following considerations which hold for the central analysis complex at Cern as well as for
an Institute environment. In both cases the typical configuration consists of several Unix
processors accessing data either from directly attached SCSI disks or from a disk server over a
high bandwidth network. Experience shows that:

e A physics analysis job running on the data cruncher to which the SCSI disks are attached
is in most cases I/O bound rather than CPU bound.

e I/O bandwith in the case where data are read over the network is always the limiting factor.
e Although SCSI disk storage is cheap, CPU is cheaper.

e Disk reliability may become a problem, especially in multi disk environments, while CPU
reliability is less a severe constraint.

¢ Anyhow there is a space shortage: a definite system can not handle more than a finite
number of disks. This disk shortage is usually felt before the CPU power shortage.

884



2 Constraints and basic principle

The main constraints in designing the system were:

e The packing should be done with no loss of integer number range or floating number
precision, and has to be robust against possible ‘pathological’ unexpected values.

¢ In order to be transparent to the user, unpacking should be performed on the fly, i.e. inside
the analysis program. The time overhead for this operation should be kept as small as
possible.

¢ All along the online and inline chain, memory management and data I/O is based on the
Zebra data management package [3]. The compressed data have to be in a Zebra format
in order to preserve all the already exisiting tools.

The first and natural idea is to try a standard Unix packer, based on the classical Lempel-
Ziv-Welch algorithm. This yields a modest compression ratio of < 1.5 because the DST consists
of very different quantities (e.g. the integer number of tracks found in the central detector and
the floating point number representing a vertex fitting chi-square). On the contrary, a program
source, for example, exhibits recurrent patterns and can therefore be packed efficiently.

The principle of our compression is the following: the DST consists of several matri-
ces, one per detector type (central detector chambers, electromagnetic calorimeters, hadronic
calorimeters, ...). In each matrix, the columns are the quantities of interest ( £ , 4, ...) while the
rows are the individual tracks/clusters. If one transposes it, one gets rows of similar numbers
that can be efficiently packed. The method is then simple (though cumbersome): compress each
quantity according to its own optimized packing scheme. These schemes are determined by an
evaluation program which is part of the system.

3 Compression of integer numbers

For each DST integer quantity, the best compression method is determined in two steps:

e Find the number of bits needed to code the quantity (with proper treatments of negative
numbers). Example: according to our evaluation sample, 7 bits are sufficient to code the
number of tracks in the central detector (0 to 127). The coding will use eight bits, the
extra one saying: ‘quantity is normal (or not)’. If for some pathological event the number
of tracks is 1234, the extra bit will say ‘abnormal quantity’ and 1234 will be written on
32 bits. This extra bit is the price for data integrity.

¢ Build the dictionary of the most frequent values taken by the quantity and find the optimal
length for dictionary encoding. In the above example, this optimal is reached for 32
entries in the dictionary, i.e. one bit is used to say ‘one of the 32 most frequents values (or
not)’, then either 5 bits to tell which value is coded or 7 bits representing the not coded
value.
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* Real life is actually more complex: sophisticated algorithms even use dictionaries with
words of different length. We restrict the dictionary tree depth to 2 , i.e. in some cases we
spend one bit to say : ‘this is the most frequent entry (or not)’. The reason is that there
remains very little to be gained when one has already done that.

Such a simple algorithm compresses the integer numbers in the DST with a factor of more
than 8.

4 Compression of floating point numbers

In spite of what the current wisdom claims ( ‘nothing can be done with random floating point
numbers’), we have reached a factor of 1.9 with the following simple method:

¢ Build the dictionary of the most frequent values: for example the distribution of ¢ for
electromagnetic clusters exhibits 160 spikes corresponding to single block clusters in the
barrel electromagnetic calorimeter which has this 160 fold symmetry. 8 bits instead of
32 are then needed to code the number between 1 and 160 instead of the corresponding
floating point values.

o In IEEE floating point number representations, 9 bits are used to represent the sign, the
exponent and the exponent sign while 23 bits represent the mantissa. For a particular
quantity, a very small subset of the exponent potential is used because the dynamical
range of any measurement is limited by apparatus response and most DST quantities are
directly related to a direct measurement (for example dE/dX, Energy,...). Applied to the
exponent, the above method of dictionary coding saves several bits per quantity.

To summarize, we take advantage that measured quantities often show recurrent values while
computed quantities have a limited exponent range.

S Performance

After some further ‘technical’ changes, such as simplification of the Zebra structure, the overall
compression ratio is 3.0 . The cost in CPU time to unpack the data was found to be very
moderate: if one considers the simplest analysis job, which does nothing but reading the DST
banks from disk and relocating them into memory, the ratio of elapsed CPU times with and
without unpacking is 1.9 .
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Distribution of the floating point numbers representing two DST quantities. For
each quantity 2 histograms are shown: the exponent distribution ranging from 0 to 511 and the

40

-—_ 13 ] Al T T Xa T T 1 T T T L L] ‘ LA T T I 4 T LS 1 "

o ut

- =

'E_ %

- :

: l L I 1 ! 1 1 l‘ H :1 0 |V T I 1 H 11 | ) . 1 L 1 1 H l

0 200 400 0 2000 4000 6000 8000
Signed exponent Mantissa x10

- LN A A L B xilwo LIS S AN RN S S S L B L B B

= 3 1600

E_ E 1400

- = 1200

2 3

= = 1000

: Elg:

i

3 -3 600§

;— —3 400 g

= o 1810 Y

E T I 1 L | ) .= 0 ‘__‘_.‘_._~..._..,J,_.,\L..J_!-__ u ! B E

0 200 400 0 2000 4000 6000 8000
Signed exponent Mantissa x10°

mantissa distribution ranging from 0 to 2**23-1.

e Above: a computed quantity. The value of Py for tracks in the central detector has a
limited exponent range (first histogram); the two peaks correspond to positive and negative
values. The mantissa do not exhibit a flat distribution (the original distribution of Py is

not flat), but can not be efficiently compressed.

e Below: a mainly measured quantity. The azimuthal angle of the center of gravity of
electromagnetic calorimeter clusters is often the geometrical angle of one calorimeter
elementary cell. This is the reason for the numerous peaks in the mantissa distribution.
In our algorithm, the recurrent values are first dictionary coded; the underlying flat
distribution corresponds to data which can’t be compressed, except for their exponent

part.
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