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ABSTRACT

When making judgements, humans are known to be bet-
ter at choosing a preferred option amongst a small num-
ber of options, rather than giving an absolute ranking of
all the options. This preference-based judgment rank-
ordering method is called Best-Worst Scaling (BWS). In-
spired by this concept, we propose a preference-based
framework to generate a relative rank-ordering of singing
vocals, and therefore, singers. We adopt a twin-neural net-
work (Siamese) that learns to choose a preferred candidate
in terms of singing quality between two inputs. With a
few such pairwise comparisons, this method generates a
relative rank-order of a complete list of singers. Addition-
ally, we incorporate a knowledge-based musically-relevant
pitch histogram representation, as a conditioning vector, to
provide explicit musical information to the network. The
experiments show that this method is able to reliably eval-
uate singing quality and rank-order singing vocals, inde-
pendent of the song or the singer. The results suggest that
the twin-neural network learns the underlying discerning
properties relevant to singing quality, instead of being spe-
cific to the content of a song or singer.

1. INTRODUCTION

Singing is a popular form of entertainment and a desirable
skill to develop [1]. In recent times, many online applica-
tions that provide a platform to showcase singing talent as
well as socially engage through music have become popu-
lar, such as Smule Sing! 1 , Starmaker 2 , Quanmin K Ge 3 ,
and SoundCloud 4 . With high volumes of singing perfor-
mances on such online platforms, there is a need to explore
automated methods of assessing the quality of singing for
the purpose of identifying singing talent as well as provid-
ing meaningful feedback to amateur and aspiring singers.

1 https://www.smule.com/
2 https://www.starmakerstudios.com/
3 https://kg.qq.com/
4 https://soundcloud.com/
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For example, such an automated evaluation method would
be useful for screening of the singers for popular singing
talent reality shows such as American Idol and The Voice.
In this work, we provide a data-driven and preference-
based framework for evaluating singing quality.

Previous work on automatic singing quality evaluation
has focused on comparing a test singing rendition against
the known musical notes of the song [2, 3] or against an
ideal singing rendition of the song by a professional singer
[4–6]. These methods extract audio features such as pitch
contour and mel-frequency cepstral coefficients that are
relevant to perceptual parameters used by music experts
to evaluate singing quality such as intonation accuracy,
rhythm consistency, and timbre brightness [7,8]. However,
such methods are constrained by the need for a reference
or ideal singing rendition for every song. Moreover, the
choice of an “ideal” reference singer introduces a bias of
subjective choice.

Another approach is the assessment of singing quality
without a reference singer. Studies have shown that mu-
sic experts can evaluate singers with a high level of con-
sensus even when the song is unknown to them [9, 10],
which implies that there are underlying inherent charac-
teristics of singing quality that differentiate between pre-
ferred and amateur singing. Previously, Nakano et al. [10]
designed features such as pitch interval accuracy that mea-
sure the offset of the pitch contour from the musical semi-
tone grid to evaluate singing quality without a reference
rendition. Gupta et al. [11, 12] designed hand-crafted fea-
tures that characterize the shape of the pitch histogram and
inter-singer distances to evaluate singing quality without a
reference. Such methods provide insight and explanation
to the objective evaluation, such as the measurement of the
sharpness of peaks in a pitch histogram correlating with the
consistency of hitting musical notes. However, such hand-
crafted features provide an approximate representation of
singing quality, that depend on manual thresholds that are
determined empirically. They do not capture all aspects of
singing and therefore are limited.

Previously in [11], the authors showed that since a song
can be sung correctly in one or a few similar ways, but
incorrectly in many different and dissimilar ways, it im-
plies that the quality of a singer is proportional to his/her
similarity with other singers. However, to obtain a relative
rank-order based on this idea, they needed to calculate the



distance of every singer in the dataset with respect to every
other singer, which becomes computationally demanding
as the size of the dataset increases. Moreover, this distance
calculation made sense only if the singers were singing the
same song, making the algorithm song-dependent.

Humans are known to be better at relative judgments,
i.e. choosing the most preferred singer among a small set
of singers, than giving an absolute rating [13, 14]. This is
the basis of the best-worst scaling (BWS) method used for
consumer value preference surveys [15]. Motivated by this
human behavior, we would like to develop a singing eval-
uation framework that is song-independent. The task is to
rank-order a list of singing vocals without the need of any
singing reference. We achieve a rank-ordering of a long
list of candidates through a number of pairwise decisions.

2. TWIN-NETWORK FOR RELATIVE SINGING
QUALITY EVALUATION

Twin-neural networks (or Siamese networks) have been
previously used to measure similarity between two audio
inputs, for example for vocal imitation [16–18], singing
style identification [19, 20], and singing query retrieval
[21]. The idea behind using twin-neural network for the
task of singer style identification is to map different singing
and song renditions of the same singer closer to each other
than those of different singers. However, to the best of our
knowledge, twin-neural network has not be explored for
the task of singing quality assessment.

In this work, we modify a twin-neural network such
that it learns which of the two given singing inputs is more
preferable in terms of singing quality. We then obtain the
rank-ordering of singing vocals by counting the number of
times a singing input is preferred in many such pairwise
comparisons across different singers, based on the concept
of BWS. A similar approach has been discussed by Niu et
al. [22] where a twin-neural network is applied for the task
of image quality assessment. The network learns to rank
the quality scores between the two input image patches,
where it applies cross entropy as the loss function. Our
work differs from [22] in that we propose a novel and in-
tuitive preference metric and comparative loss function for
training a siamese neural network to predict ranking.

Additionally, we include explicit musical knowledge in
this framework, by using the pitch histogram as a condi-
tioning vector. The two arms of the twin-network share
the same architecture as well as parameters, i.e., the two
inputs pass through exactly the same networks for feature
learning. Singers share a similar underlying singing vo-
cal production mechanism, however they differ in quality
due to prosodic characteristics such as the ability to consis-
tently hit the right notes. We hypothesize that the two arms
of the network should be able to project each singing vocal
to a compressed latent space that only represents the dis-
criminatory singing quality properties independent of the
song or the singer, thus making it suitable for the task of
singing quality comparison of two singing vocals. Further-
more, BWS rank-ordering method is known to provide a
reliable rank-ordering with fewer number of comparisons,
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Figure 1. Twin-neural network modified for preference-
based singing quality judgment.

which is helpful when the dataset size increases.

2.1 Model
A twin neural network consists of two identical sub-
networks that have the same configuration with the same
parameters and shared weights. During training, the pa-
rameter update is mirrored across both the sub-networks.
The two sub-networks extract features from the two inputs,
and then similarity between the two feature vectors is com-
puted by a distance metric. In general, in a twin neural
network, for a pair of inputs (x1, x2), the distance metric
of the output of the two sub-networks f(x1) and f(x2) is
given by Euclidean distance

D = ||f(x1)− f(x2)||2 (1)

The contrastive loss function, that needs to be minimized,
is defined as

L = yt ·max(1−D, 0)2 + (1− yt) ·D2 (2)

where yt is the ground truth label, such that yt = 1 when-
ever x1 and x2 are from the same class and yt = 0 oth-
erwise. This framework has been successfully used for
similarity detection tasks such as sound search and vocal
imitation detection [16, 18].

We modify this framework such that it learns to choose
the better singer amongst the two input singers, as shown in
Figure 1. To do this, we propose to replace (1) the distance
metric with a preference metric, and (2) the contrastive loss
with a comparative loss.

2.2 Preference Metric
We define the preference metric as the difference between
the L1 norm of the feature vectors,

Dp = |f(x1)| − |f(x2)| (3)

where |f(.)| is the L1 norm of the feature vector. This pro-
vides a direction to the comparison, i.e. if Dp ≥ 0 implies
singer 1 input rendition x1 is better than or similar to singer
2 input rendition x2, and Dp < 0 implies singer 2 is better
than singer 1. In contrast, a distance metric can only pro-
vide the magnitude, but not the direction of the difference.

2.3 Comparative Loss
Given the preference metric Dp, we compute the compar-
ative loss function to be minimized, as

Lc = yt ·max(1−Dp, 0)
2 + (1− yt) · (Dp + 1)2 (4)

where, yt is the ground truth label, such that yt = 1 when-
ever x1 is better than or similar to x2, and yt = 0 other-
wise. Note that the modification in comparative loss com-
pared to contrastive loss is to accommodate for the direc-
tional or signed property of the preference metric Dp. Let’s



(a) (b)
Figure 2. Pitch histograms of (a) a preferred singer (rank
1) and (b) an amateur singer (rank 99) from the song Let it
go of dataset 1 (Section 4.1.1). (1 bin = 10 cents).

examine this equation closely. If x1 is better than x2, then
yt = 1, so equation 4 will become

Lc = max(1−Dp, 0)
2 (5)

Minimizing this loss function, makes the preference metric
Dp close to 1. On the other hand, if x2 is better than x1,
then yt = 0, so equation 4 will become

Lc = (Dp + 1)2 (6)

For this loss function to be zero, the preference metric Dp

should be optimized to -1, thus preserving the signed prop-
erty of the preference metric Dp.

3. HYBRID TWIN-NEURAL NETWORK WITH
PITCH HISTOGRAM CONDITIONING VECTOR

We use mel-spectrogram as the input time-frequency rep-
resentation of the input audio waveforms. However, mea-
suring pitch correctness is a vital component of singing
quality evaluation. Therefore, we condition the twin-
network with pitch information in the form of pitch his-
togram. This unburdens the network from learning pitch-
related information from the input representation.

The pitch histogram represents the distribution of pitch
values in a sung rendition [23]. As demonstrated by [11],
a pitch histogram is a strong indicator of the quality of
singing. A pitch histogram is computed as the count of
the pitch values (calculated in the unit of cents) folded on
to the 12 semitones in an octave, where one semitone rep-
resents 100 cents on equi-tempered octave. The melody
of a song typically consists of a set of dominant musical
notes (or pitch values). These are the notes that are hit fre-
quently in the song and sometimes are sustained for long
duration. In the pitch histogram of a preferred singing ren-
dition, there are several narrow, sharp, and well-defined
spikes that indicate that the dominant notes are hit repeat-
edly and consistently (Figure 2(a)). On the other hand, an
amateur singing rendition has a dispersed distribution of
pitch values, that reflect that the singer is unable to hit the
dominant notes of the song consistently (Figure 2(b)).

Due to its strong relevance to singing quality, we con-
dition the twin-neural network by concatenating the pitch
histogram vectors of the two inputs, phA and phB to the
output vector of their respective sub-network intermediate
layer, as shown in Figure 3. Such a configuration, called
the hybrid twin-neural network, improves the performance
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Figure 3. Hybrid Twin-neural network conditioned on
pitch histogram.

of the network for singing quality evaluation, by providing
explicit pitch-related information to the network releasing
degrees of freedom to the network to learn other non-pitch
related properties.

4. EXPERIMENTAL SETUP

We conduct experiments to evaluate the performance of the
twin-neural network and the hybrid twin-neural network
for the task of automatic rank-ordering of singing vocals.
We analyse the performance of the framework when the in-
put pair of singing vocals belong to the same song, as well
as when they belong to different songs. We also compare
the performance and capabilities of this framework with
previous similar work in literature.

4.1 Dataset

4.1.1 Singing voice dataset 1

We use the subset of DAMP dataset 5 that was curated
by [11] for the purpose of singing quality evaluation. It
consists of solo-singing recordings (16 kHz sampling rate,
mono) of 4 popular Western songs each sung by 100
unique singers (50 male, 50 female). There were no com-
mon singers across different songs. The selection of songs
was based on the available number of unique singers in the
DAMP dataset, and equal distribution between males and
females, to avoid gender bias. The 4 popular songs are
Let it go (Idina Menzel), Cups (Anna Kendrick), When I
Your Man (Bruno Mars), Stay (Rihanna). All the songs are
rich in steady notes and rhythm, as summarized in Table
III of [11].

We use one 20-30 seconds long snippet from each
singing rendition. This snippet is a common section of the
song for all the singers singing that song. The ground-truth
subjective ranking provided with this dataset was a BWS
score obtained through a crowd-sourcing platform by ask-
ing listeners to choose the best and the worst amongst a
few singers singing the same song. This score resulted in a
rank-order of the singers of each song from 1 to 100, where
rank 1 means the best singer, and rank 100 means the worst
singer. We divide this dataset into a train set that has 80%,
i.e. 80 singers per song, and validation and test sets, each

5 https://ccrma.stanford.edu/damp/



Dataset Division #songs #singers
per song

#singer pairs
per same song

#singer pairs singing
same+different songs

1
Train 4 80 4 x 80 x 79 = 25,280

80x4=320 singers
320x319=102,080 pairs

Validation 4 10 4 x10 x 9 / 2 = 180
10x4=40 singers

40 x 39 / 2 = 780 pairs

Test 4 10 4 x 10 x 9 / 2 = 180
10x4=40 singers

40 x 39 / 2 = 780 pairs

2 Test 2 10 2 x 10 x 9 / 2 = 90
10x2=20 singers

20 x 19 / 2 = 190 pairs

Table 1. Summary of the number of singer pairs from the
different datasets used in this work.

consisting of 10%, i.e. 10 singers per song. To ensure sim-
ilar distribution of singing quality in all of these subsets,
we pick the singers with ranks [1,11,21,...91] for the test
set, [2,12,22,...92] for the validation set, and the rest for
the train set. Note that the test set consists of singers that
are not present in training or validation sets. However, the
songs in all three sets are the same.
4.1.2 Singing voice dataset 2
To test the trained models on unseen songs, we use a small
test dataset provided by [4] that consists of solo-singing
recordings (16 kHz sampling rate, mono) of 2 Western
pop songs (I have a dream (ABBA), Edelweiss (Sound
of Music)) each sung by 10 singers. Since this dataset
was recorded in a lab-controlled environment, the entire
spectrum of singing ability - from amateur singers to pro-
fessionally trained excellent singers - was covered. The
ground-truth singing quality annotations provided in this
dataset are absolute ratings on a scale of 1-5, 5 being the
best, provided by professional music teachers and/or per-
formers in a lab-controlled environment. Additionally, the
music experts evaluate and score the quality of pitch and
rhythm separately.
4.1.3 Singer pair inputs
The number of singer pairs singing the same song and dif-
ferent songs in the two datasets is summarized in Table
1. There exist a total of 25,280 ordered pairs of singers
singing the same song in the training set, and 102,080 or-
dered pairs of singers singing different as well as same
song. We treat ordered pairs, i.e. singer pairs (A,B) and
(B,A) as different training samples for the purpose of data
augmentation. Also this is helpful because the preference
metric is asymmetric. The validation set consists of 180
unordered pairs of singers singing the same, 780 unordered
pairs of singers singing the same and different songs. We
have two test sets, one each from singing vocals datasets 1
and 2. The number of pairs in test dataset 1 is same as the
validation set. The test dataset 2 consists of 90 unordered
pairs of singers singing the same song, and 190 unordered
pairs of singers singing the same and different songs.
4.1.4 Ground-truth Labels
The ground-truth label for each pairwise comparison of
singers is derived from the human scores provided in the
singing datasets 1 and 2. In dataset 1, the BWS score b
provided for every singer that ranges between -1 and 1 is
first normalized between 0 and 1. We then label a pair of
singers A and B as

ytrue =

{
1, if bA ≥ bB
0, otherwise

which implies that if singer A is better or similar to singer
B, the label is 1, and it is 0 otherwise. Similarly, in dataset
2, the absolute human ratings between 1 and 5 is normal-
ized between 0 and 1, and the same method is applied to
give a binary label every pair of singers.

4.2 Setup
The overall structure of the twin network is shown in Fig-
ure 1, and the hybrid twin network is a modified version of
the twin network, as shown in Figure 3.
4.2.1 Pre-processing
Both the input audio waveforms are converted to the 2-
D mel-spectrogram representations with 96 mel-bins over
the frequency range of 0–8 kHz, a window length of 512
and a hop-size of 256. The input waveforms are singing
vocal snippets of approximately 20 seconds in duration.
The number of frames of the two inputs are made equal by
appending zeros to the shorter spectrogram.
4.2.2 Twin-network
Each arm of the twin network consists of a 2D Convolu-
tional Neural Network (CNN) with 1 convolutional layer
having 64 filters with a kernel size of 3x3 and stride size
of 1x1, followed by a sigmoid activation function. They
are then each followed by a 2D global max-pooling layer,
and three fully-connected dense layers. There are 128 neu-
rons in the first dense layer, 10 in the second layer, and 1
in the third. The sigmoid activation function is used in all
of these layers, as it squashes the output of the layers be-
tween 0 and 1. Empirically, we observe that applying the
sigmoid activation at all the layers results in convergence
while training.

The preference metric is computed using the outputs of
these two arms, as discussed in Section 2.2. This value is
viewed as the preference judgment value between the input
singer pair, i.e. which of the two singers is better.
4.2.3 Hybrid twin-network
In order to incorporate musical relevance into the network,
we concatenate the normalized 120 dimensional pitch his-
togram vectors of the two inputs, at the output of the first
dense layer in both the arms of the twin network. We
chose to inject the pitch histogram information here be-
cause of the comparable number of dimensions of the la-
tent space and the histogram. Empirically, an additional
fully-connected layer was needed to gradually project the
dimensions of the output to 1, and for training to converge.

4.2.4 Training
Training the network requires positive (singer A better than
or similar to singer B) and negative pairs (singer B better
than A) of singer inputs. In our training, the ground truth
label is 1 for positive pairs and 0 for negative pairs.

The loss function we minimize is the comparative loss
which is a function of the probability output of the net-
work and the binary ground-truth label, as given in equa-
tion 4. We use the Adam optimization algorithm [24].
The learning rate is 0.0001. The batch size is 10. Max-
imum number of epochs is set to 250, though early stop-
ping based on training loss with patience of 5 epochs is em-
ployed for training termination. Back-propagation is car-



ried out through the twin-net arms. We choose the model
that shows minimum loss in the validation set.
4.2.5 Prediction
The preference judgment value, i.e. the preference metric
D from equation 3 of the twin network lies between -1 and
1. If this value is >=0, it implies singer A is preferred over
singer B, thus the verdict is 1, and vice versa.

After all the pairwise comparisons, the singers can be
rank-ordered according to the aggregate scores of each
singer, given by the BWS score defined as

B =
nbest − nworst

n
(7)

where nbest and nworst are the number of times the singer
is marked as preferred and not preferred respectively, and
n is the total number of times the singer appears.

4.3 Evaluation Metrics
We use three kinds of metrics to evaluate the performance
of the framework with respect to the human ground-truth
labels as described in section 4.1:
Pair prediction accuracy: This is defined as the percent-
age of input singer pairs for which the preference predic-
tion from the network is correct.
Pearson’s Score Correlation: This is the correlation be-
tween the machine BWS scores and human BWS scores.
Spearman’s Rank Correlation: This is the correlation
between the machine and human annotated singer rank-
orders based on the respective BWS scores.

5. EXPERIMENTS AND RESULTS

The inter-judge correlation between ratings from music ex-
perts is 0.82 [4], which means that experts do not always
agree with each other, and there is, in general, an upper
limit of the achievable performance of any machine-based
singing quality evaluation.

5.1 Twin-Net vs. Hybrid Twin-Net
We test our hypothesis that twin neural network can be ap-
plied for the task of learning singing quality preference in
pairwise comparisons of singers to predict rank-ordering
of singers. We train the twin-network and the hybrid-twin
network on the 25,280 same song singer pairs from the
training set of dataset 1. Since the two singers sing the
same sequence of words, the twin arms focus on learning
the discriminatory characteristics from the input represen-
tations which lie in the differences in the prosodic prop-
erties such as pitch harmonics of the two singing rendi-
tions. The hybrid network further helps in this process as
the pitch histogram provides a direct singing quality dis-
criminatory representation, as discussed in section 3.

From Table 2, we see that the both the twin-networks
are able to converge on the training dataset with a high pair
prediction accuracy and score correlation with humans.
This validates our hypothesis and technique of the adapta-
tion of a Siamese network for preference-based judgment
and hence rank-ordering of singers. We also observe that
the hybrid-twin network outperforms the twin-network on
the test set from dataset 1. This implies that conditioning

Dataset %Accuracy Pearson Corr.
Twin Hybrid Twin Hybrid

Train 88.3 81.3 0.91 0.82
Validation 73.8 73.3 0.63 0.62

Test Dataset 1 72.7 76.1 0.61 0.68

Table 2. Performance of twin-network and hybrid twin-
network in terms of pair classification accuracy and Pear-
son correlation between machine BWS scores and human
BWS scores. All correlation values are statistically signif-
icant with pvalue� 0.05.

the network on pitch histogram frees degrees of freedom
to model non-pitch related information via the network.

5.2 Comparison with Prior Studies
The prior studies that are closest to this work are the ones
by Gupta et al. [11] and Pati et al. [25]. In the former,
the authors studied various hand-crafted features to gener-
ate rank-ordering of singers, such as pitch histogram-based
absolute measures and inter-singer distance based relative
measures. They also performed late-fusion of these ranks
to get a good correlation with human annotations. Pati et
al. trained a supervised regression DNN model that uses
mel spectrograms of pitched wind instruments as input rep-
resentation to predict their subjective human scores.

In this experiment, we compare the performance of our
proposed hybrid twin-network against the relative mea-
sures performance of [11]. Both these techniques involve
same-song pair comparisons, and hence are conceptually
similar. Additionally, we train the absolute score predic-
tion network of [25] on our dataset. The ground-truth, in
this case, are the raw human BWS scores of every singer
that was provided with this dataset. This prediction net-
work is similar to the absolute measures prediction from
[11] in the sense that both involved direct assessment of
singers. Finally, in late-fusion, we compute the average of
the rank-order obtained from our hybrid twin network and
the absolute score prediction network, similar to [11].

In Table 3, we see that the proposed hybrid-twin net-
work performs better than the relative measures of [11].
Moreover, hybrid-twin outperforms the absolute score pre-
diction network. This implies that pairwise comparisons in
combination with pitch histogram representation results in
better modeling of singing quality, than hand-crafted fea-
tures. The late-fusion performances are comparable.

The inter-singer distances of relative measures in [11]
compare the features from one singer with that of the rest
of the singers in the dataset singing the same song. Thus,
the major drawback of this method is that the relative mea-
sures will make sense only if all the singers are singing
the same song. Moreover, for a new unseen song, there
needs to be a large number singers singing that song for
the thresholds designed for relative measures to be reliable.
The above drawbacks make the relative measures highly
song dependent. Moreover, any new test singer needs to be
compared to all the singers in the dataset to get a reliable
ranking. This becomes computationally cumbersome with
increasing size of dataset. In the next sections, we show
how our proposed framework overcomes these drawbacks.



Gupta et al. [11] This work
Framework Corr Framework Corr

Relative
Measures 0.64 Hybrid

Twin-network 0.68

Absolute
Measures 0.48

Absolute score
prediction

network [25]
0.62

Late-Fusion 0.71 Late-Fusion 0.71

Table 3. Comparison of the Spearman’s rank correla-
tion performance of the proposed hybrid twin network on
dataset 1 with that from a recent previous work on the same
dataset. All correlation values are statistically significant
with pvalue� 0.05.

Framework %Accuracy Pearson’s
Score Corr

Spearman’s
Rank Corr

Twin-net 65.9 0.39 0.41
Hybrid twin-net 77.7 0.63 0.65

Table 4. The performance of twin-net and hybrid twin-net
models on unseen songs from test dataset 2. The mod-
els are trained on the same song input training pairs from
dataset 1. All correlation values are statistically significant
with pvalue� 0.05.

5.3 Performance on Unseen Songs
To test the performance of the trained model on unseen
songs, we evaluate its performance on test dataset 2 (Ta-
ble 1). These songs and singers were not present in train-
ing set. The dataset consists of 90 same song singer pairs.
From Table 4, we observe that the hybrid twin net outper-
forms the twin-net by a significant margin. This shows
that the pitch histograms are a powerful representation of
singing quality that reduces the dependency of the network
on the identity of the song, thus confirming that our pro-
posed framework can reliably evaluate unseen songs.

5.4 Comparing Different Songs
We further test if our proposed framework can compare
singing vocals of different singing content. For this, we
train the hybrid-twin net singer pairs singing same as well
as different songs, for which we use the 102,080 ordered
singer pairs of the training dataset (Table 1). In Table 5,
we observe the performance of this model on the different
song singer pairs from both test dataset 1, where the songs
are seen by the trained model, and test dataset 2, where the
songs are not seen by the trained model. Rank-ordering
singing vocals with different-song singer-pair inputs (Table
5, row 1 and row 3) shows comparable results to same-
song singer-pair comparisons (Table 3 row 1 and Table 4
row 2). Moreover, when rank-ordering is done using both
different-song and same-song pair comparisons, the results
on unseen songs (Table 5, row 4) significantly outperforms
that from the same-song pair trained model (Table 4 row 2).
This experiment shows that our proposed preference-based
framework is able to learn discerning properties of singing
quality such that given any two singers singing the same or
different songs, it learns to choose the better singer.

5.5 Effect of Number of Comparisons
BWS method is known to be able to reliably rank-order
with fewer number of comparisons. We tested this idea by

Test
Dataset

No. of diff. songs
singer pairs

No. of same songs
singer pairs %Accuracy Pearson’s

Score Corr
Spearman’s
Rank Corr

1
600 0 72.3 0.64 0.64
600 180 72.7 0.65 0.65

2
100 0 77 0.68 0.68
100 90 78.6 0.70 0.73

Table 5. Performance of hybrid twin network trained on
the same and different song input pairs. All correlation
values are statistically significant with pvalue� 0.05.

Figure 4. Spearman’s rank correlation as the number of
pairwise comparisons is reduced.

reducing the number of paired comparisons in the test set,
while ensuring that each singer appears at least once. Out
of the 780 pairs, we randomly selected x number of unique
pairs three times, and calculated the average of the perfor-
mance of the three random trials. These average values of
Spearman’s rank correlation are plotted in Figure 4, where
the number of pairs selected ranged from 550 to all of the
780 pairs. We observe that for a reduction of 30% in the
number of pairs for comparison, there is a very small drop
in the correlation value, approximately 6%. This compu-
tational advantage will become more significant when the
size of the dataset increases.

6. CONCLUSIONS
In this work, we propose a preference-based framework in
which we adapt the twin neural network (Siamese) such
that given two input singers, it learns to choose the better
singer. We incorporate structural changes in the Siamese
network framework such as preference metric instead of
distance metric and comparative loss instead of contrastive
loss, so that it is able to learn a preference instead of simi-
larity. We show that with a few pairwise comparisons, this
modified Siamese network effectively gives a reliable rank-
order of singers. We also incorporate the musically rele-
vant pitch histogram representation in a hybrid twin net-
work framework, which shows to provide reliable singing
quality predictions in a singer and song independent way
on unseen data.
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