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ABSTRACT

Western classical music comprises a rich repertoire com-
posed for different ensembles. Often, these ensembles con-
sist of instruments from one or two of the families wood-
winds, brass, piano, vocals, and strings. In this paper, we
consider the task of automatically recognizing instrument
families from music recordings. As one main contribu-
tion, we investigate the influence of data normalization,
pre-processing, and augmentation techniques on the gen-
eralization capability of the models. We report on experi-
ments using three datasets of monotimbral recordings cov-
ering different levels of timbral complexity: isolated notes,
isolated melodies, and polyphonic pieces. While data aug-
mentation and the normalization of spectral patches turned
out to be beneficial, pre-processing strategies such as loga-
rithmic compression and channel-energy normalization did
not lead to substantial improvements. Furthermore, our
cross-dataset experiments indicate the necessity of further
optimization routines such as domain adaptation.

1. INTRODUCTION

In classical music, there are compositions for a variety of
distinct instrumentations. Chamber music, for example,
comprises ensembles of different size, which often consist
of instruments from a specific instrument family such as
woodwinds, brass, piano, vocal, or strings. Typical exam-
ples are brass quintets, piano duos, choirs, or string quar-
tets. While the automatic classification of such monotim-
bral recordings w.r.t. the instrument family is a simplifica-
tion of general instrument recognition, it still constitutes a
challenging task. Successfully tackling this problem could
help to organize and browse classical music collections.
Furthermore, recognizing instrument families from mono-
timbral recordings constitutes the first step towards han-
dling more complicated scenarios such as orchestra record-
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ings, where we often find passages featured by specific in-
strument families.

In this paper, we approach the task of music instru-
ment family recognition from classical music recordings.
For our experiments, we consider three scenarios using
datasets of monotimbral recordings with different levels
of timbral complexity. We start with analyzing record-
ings of isolated notes (IN) played by an individual in-
strument. Furthermore, we test on isolated, monophonic
melodies (IM) with a natural variety of note durations. For
the third scenario, we consider monotimbral, mostly poly-
phonic music recordings (MP), where one or more instru-
ments of the same instrument family are playing simulta-
neously. In Section 3, we describe these datasets in detail.

To approach the instrument family recognition task, we
make use of a state-of-the-art instrument recognition al-
gorithm [8] based on convolutional neural networks using
spectrogram segments as input. As our main contributions,
we apply this method to the instrument family scenario.
For the MP scenario, we investigate how the model perfor-
mance can be improved using strategies for data augmen-
tation and pre-processing. We systematically test the gen-
eralization capability of the trained models to previously
unseen datasets in a sequence of cross-dataset experiments.

2. RELATED WORK

Traditional algorithms for automatic instrument recogni-
tion (AIR) rely on audio features measuring instrument-
specific timbral properties of music signals. Fuhrmann [4]
provides a comprehensive overview of such techniques.
As an example with a focus on classical music, Eggink
& Brown [3] propose a system to recognize five wind and
string instruments based on partial frequency and magni-
tude features combined with a Gaussian classifier.

Due to the rapid proliferation of deep-learning tech-
niques, most recent publications mainly focus on data-
driven algorithms, which are the focus of this literature
review. These algorithms are trained to learn a direct map-
ping from low-level signal representations such as mel-
spectrograms to higher-level attributes such as instrument
labels. While data-driven approaches require less domain
knowledge, they usually need large amounts of training
data in order to learn models that generalize well to unseen
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datasets. However, popular AIR datasets such as Med-
leyDB [1], IRMAS [2], or MusicNet [21] are still of lim-
ited size. As a consequence, authors often apply data aug-
mentation techniques such as pitch shifting [7] to virtually
enlarge the number of audio files.

Concerning the generalization capability, AIR ap-
proaches based on deep neural networks (DNNs) show
good performance on particular datasets, but cross-dataset
experiments (as we present in Section 5.2) are rarely per-
formed. Such experiments are crucial for better under-
standing to which extent DNN models generalize to un-
seen datasets with different characteristics. In the related
field of audio event recognition, researchers often observe
this limitation of data-driven algorithms and suggest ad-
ditional domain adaptation steps [5]. Another challenge
is the entanglement between perceptual attributes such as
pitch and timbre in spectrogram representations. Lostanlen
et al. [14] propose weight-sharing strategies for DNN mod-
els in order to derive pitch-invariant representations, which
still maintain good timbre discriminability.

Typical model architectures used in recently proposed
AIR systems are convolutional neural networks (CNNs)
[6-9,12,17,20] and hybrid convolutional-recurrent neural
networks (CRNNs) [7]. Most of the CNN architectures
comprise several convolutional layers for feature learn-
ing and a set of dense layers for classification. Han et
al. [8] proposed such a CNN architecture to recognize
the predominant instrument in polyphonic and multitim-
bral recordings. The authors evaluate different late-fusion
techniques to aggregate frame-level model predictions in
order to obtain song-level instrument labels. This model
has been used and extended in recent AIR literature [6,20].
Takahashi et al. [20] show in a comparative experiment
that using horizontal and vertical filter shapes instead of
symmetrical ones improves recognition performance, but
requires more training time. Hung & Yang [9] tested an
alternative CNN model, which includes residual blocks
with additional skip connections to allow for reducing the
vanishing-gradient problem during training.

Concerning the input representation, most DNN-based
AIR systems process mel-spectrogram segments (patches).
As alternative, Hung & Yang test constant-Q spectrograms
and harmonic-series features as input to the models [9]. Li
et al. [12] propose an end-to-end-learning approach using
a CNN architecture that directly processes raw audio data.
Hung & Yang [9] show that using score information as an
additional cue leads to small improvements in the frame-
level recognition of seven classical instruments.

3. DATASETS

In this section, we describe three datasets that we use for
our instrument family recognition experiments. Regard-
ing the level of difficulty, the isolated-note scenario (IN)
constitutes the simplest task represented by the Studio On
Line Dataset (DB—SOL) presented in Section 3.1. A sce-
nario with increased level of difficulty comprises isolated
melodies (IM), represented by the University of Rochester
Multi-modal Music Performance Dataset (DB-URMP) de-

Table 1: Number of audio files, spectral patches, and aver-
age patches per file for each dataset and experiment.

Dataset Files  Patches Patches/file (avg)

Original Datasets (with silent patches)

DB-MTC 50 38078 762
DB-MTC™T 400 304624 762
DB-URMP 149 33693 226
DB-SOL 20604 225273 11

Experiment 1 (silent patches removed)

DB-MTC 50 34163 683
DB-MTCT 400 281841 705

Experiment 2 (3 classes, silent patches removed)

DB-MTC 30 20900 697
DB-URMP 149 31236 210
DB-SOL 20604 202486 10
DB-M/U/S 20783 254622 12

scribed in Section 3.2. As our most complicated scenario,
we consider monotimbral polyphonic recordings of clas-
sical music realized in the Monotimbral Classical Dataset
(DB-MTC), which comprises recordings of monotimbral,
mostly polyphonic classical pieces (MP, see Section 3.3).
Table 1 summarizes the properties of the three datasets.

3.1 Studio On Line Dataset (DB—SOL)

The Studio On Line dataset', recorded in 2002 at IR-
CAM (Paris), comprises over 25000 isolated note record-
ings from 16 different instruments covering the instrument
families woodwinds, brass, and strings. Recognizing the
instrument family of such isolated note recordings (IN)
constitutes a relatively simple scenario since there is no
spectral overlap of multiple notes. However, the large va-
riety of instrument playing techniques—in particular, fre-
quency modulation techniques such as vibrato and trill—
makes the recognition task more complex. For our exper-
iments, we discarded recordings from DB—SOL that only
comprise mechanical instrument sounds without a clear
pitch as well as breathing and speaking sounds.

3.2 University of Rochester Multi-modal Music
Performance Dataset (DB—URMP)

The University of Rochester Multi-modal Music Perfor-
mance (URMP) Dataset [11] was originally published
to study audio-visual music performance analysis. The
dataset comprises 44 ensemble pieces including duets,
trios, quartets, and quintets, most of which are arrange-
ments of popular classical pieces. For all pieces, multi-
track recordings are available with a total of 149 isolated
instruments tracks. Within each track, one melody instru-
ment from the families woodwinds, brass, and strings is
recorded in isolation. We use these individual tracks as the
basis for our isolated-melodies (IM) scenario.

! Freely available as part of the Orchids software at http://
forumnet.ircam. fr/product/orchids-en/. In [13], the
dataset was used for evaluating an instrument recognition system.
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3.3 Monotimbral Classical Dataset (DB—MTC)

To test the instrument family recognition task on a realis-
tic scenario, we compiled a dataset consisting of 50 tracks
from commercial recordings. The data comprises mostly
polyphonic classical pieces composed for instruments of
one family. For each of the five families, we included ten
audio files, each from a different CD. The total duration in
minutes for each instrument family is 63.2 (woodwinds),
37.6 (brass), 75.1 (piano), 51.4 (vocal), and 82.8 (strings).

The woodwind class mainly comprises chamber mu-
sic works such as wind quintets by Cambini, Danzi, Hin-
demith, Nielsen, and Reicha, as well as a quartet by
Rossini and a sextet by Janacek. Furthermore, we consider
a serenade by W.A. Mozart, an excerpt from Dvorak’s
Ninth symphony (New World), and a partita for wind en-
semble by Krommer. We are aware of the problem that
wind ensembles often include a french horn, which is a
brass instrument. While this is a typical situation in classi-
cal music, it might influence our recognition experiments.
For the brass selection, we use brass ensemble music for
five to ten players. We consider pieces by ten differ-
ent composers, played by Canadian Brass, German Brass,
Mnozil Brass, and other ensembles. Into the piano class
we placed solo sonatas and fugues by Beethoven, Berg,
C.P.E. Bach, and others, played by different pianists. Re-
garding vocal music, we include music for solo voice—
such as Berio’s Sequenza III—and choirs. The choir pieces
comprise a renaissance composition by Allegri, romantic
pieces by Bruckner and Janacek, modern pieces by Ligeti
and Scelsi, and more. The strings class consists of several
string orchestra pieces by Barber, Hindemith, Lutostawski,
Penderecki, and Rawsthorne. Additionally, we include
chamber music such as string quartets, a quintet by Schu-
bert and a sextet by Brahms. 2

4. SYSTEM OVERVIEW

In the following, we present our system for instrument
family recognition, which consists of three main compo-
nents. The first component (Section 4.1) transforms the
audio signal of a music recording into a mel-based time—
frequency representation. The second component (Sec-
tions 4.2 and 4.3) applies pre-processing techniques such
as normalization or compression to the time—frequency
representation. The third component (Section 4.4) consists
of a CNN that outputs class probabilities and is trained in
a supervised fashion. Figure 1 summarizes the main pro-
cessing steps together with additional details regarding the
network architecture (second and third columns of the fig-
ure).

4.1 Mel-spectogram Representation

For computing the time—frequency representation of the
recordings, we follow the work by Han et al. [8]. We re-

2 Due to copyright issues, we cannot publish the audio files. Instead,
we publish the spectrogram patch tensors and corresponding targets to al-
low for reproducibility of our experiments under https://doi.org/
10.5281/zenodo.32588209.
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Figure 1: Reference model proposed by Han et al. [8] with
slight modifications as discussed in Section 4.4. Spectro-
gram patches are processed by successive pairs of convo-
lutional layers followed by batch normalization and ReLU
activation function, max pooling (MaxPool), and global
max-pooling (GlobMaxPool).
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sample the audio signals to a sample rate of f; =22050 Hz
and compute the mel-spectrogram * using 128 mel-bands,
a hop size of 512 samples, and a window size of 1024 sam-
ples. Then, we normalize the magnitude in each frequency
band of the mel-spectogram via dividing by the number
of mel-bands. For each recording, we further segment
the resulting mel-spectrogram representation into time—
frequency patches with a length of 43 frames (approx. one
second) with an overlap of 21 frames (approx. 0.5 sec-
onds). This results in a tensor X € RV*43x128 where N
indicates the total number of computed patches. In order
to remove potential silent parts in the recordings, we dis-
card a patch as soon as the mean of its magnitude values is
below 5% of the entire file’s maximal magnitude.

4.2 Spectrogram Dynamic Range Compression

Classical music recordings commonly exhibit a large dy-
namic range. To account for this, we investigate the effect
of pre-processing strategies for compressing the dynamic
range of the mel-spectrograms. In the following, we com-
pare four different approaches for dynamic compression.
The first strategy, denoted as NO, does not apply any
dynamic range compression. In this case, we directly
use the mel-spectrogram as input to the model. The sec-
ond strategy applies logarithmic compression defined by
X < log(1+~X). For our experiments, we consider two
settings with v = 1 (denoted as LC 1) and v = 10000 (de-
noted as LC 10000), respectively. As the fourth strategy,
we employ Per-Channel Energy Normalization (PCEN)
proposed in [22] and further studied in [15]. PCEN ap-

3 We use the implementation from 1ibrosa (https://librosa.
github.io/librosa/), version 0.6.2.
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plies a first-order Infinite Impulse Response (IIR) filter,
which controls the gain of the spectral representation, fol-
lowed by dynamic range compression [22]. In principle,
PCEN enhances prominent spectral characteristics (such
as onsets), while attenuating low-energy frequency bands
that are correlated with reverberation or corrupted by noise
[22]. As the main benefit, the resulting spectral representa-
tion is robust against effects of reverberation and additive
noise. For our experiments, we use PCEN as implemented
in the 1ibrosa® Python library with default parameters
(gain=0.98, bias=2, power=0.5, time_constant=0.4).

4.3 Patch Pre-processing

After the dynamic range compression step of the mel-
spectrogram, we apply another pre-processing technique
in order to normalize the spectral patches before we feed
them to the CNN model. For this patch pre-processing step
(not to be confused with the batch normalization within the
CNN), we compare four different approaches. Let mean(-)
and std(-) denote the computation of the average and stan-
dard deviation, respectively. X.. ; denotes a slice of the
given tensor X € RN*43x128 for 3 fixed frequency index
f e {1,...,128}. Similarly, X,, .. denotes a slice of the
tensor X for a fixed patch index p € {1,..., N}. Based
on this, we define the four approaches as follows:

The first approach (2) performs frequency-based Zero-
Mean and Unit-Variance (ZMUV) normalization following
early approaches for efficiently training DNNs [10]. For
each f € {1,...,128}, it is computed via:

X..r—mean(X. . f)
X., r - 1
i f ST Std(X:,:,f) te v

The second approach (B) applies global ZMUV normaliza-
tion to the tensor X, following the work presented in [18]:

X — mean(X)

Std(X) + ¢ @

The third approach (C) employs local patch pre-processing,
where each patch p € {1,..., N} is normalized individu-
ally in the following way:

X, —mean(X, . .)

X, .. +—
LA std(X,,..) +e

3

73R

The fourth approach (denoted as ) does not apply any
pre-processing: The mel-spectral representation is pro-
vided directly to the CNN model.

For the approaches A and B, we apply ZMUV normal-
ization to the validation and test set using mean and stan-
dard deviation as computed from the training set.

4.4 CNN Model

For our experiments, we adopt a CNN architecture pro-
posed by Han et al. [8], illustrated in Figure 1. The model
is based on a VGG-type architecture [19] and consists of
four blocks that perform convolution operations. Each
block contains a pair of 2D convolutional layers, each

comprising K kernels of size 3x3. After each convolu-
tional layer, we apply batch normalization (BatchNorm)
followed by the Rectified Linear Unit (ReLU) activation
function. At the end of each convolutional block, we use
3 x 3 max-pooling and dropout (with probability 0.25).
Between subsequent convolutional blocks, we increase the
number of channels K by a factor of two.

After the fourth convolutional block, we use a global
max-pooling layer in order to flatten the latent represen-
tation. We give the flattened representation to a fully-
connected feed-forward layer with 1024 units, followed
by the final feed-forward layer that uses a soft-max activa-
tion function. We extend the architecture presented by Han
et al. [8] using additional batch normalization layers after
each convolutional layer. The batch normalization layers
perform ZMUV normalization across each batch of mel-
spectrogram patches. We train the model using categorical
cross-entropy loss, the Adam optimizer with a learning rate
of 104, and a batch size of 128. In order to reduce over-
fitting, we implement early stopping during model train-
ing with a patience of 20 epochs. Since the audio files
in DB-MTC substantially differ in length, we use a class-
weighting scheme during training to compensate for class
imbalance, which is computed as an inverse proportion of
the number of training items per class.

5. EXPERIMENTS

In this section, we present our experiments on instrument
family recognition. For Experiment 1 (Section 5.1), we
consider polyphonic, monotimbral recordings using the
DB-MTC dataset and test the improvement strategies dis-
cussed in Section 4. In Experiment 2 (Section 5.2), we in-
vestigate the generalization capabilities of the trained mod-
els in a cross-dataset experiment using the three datasets
described in Section 3. As evaluation measure, we re-
port the micro-average F'-score. The F'-score is computed
as the harmonic mean between precision and recall on a
patch-level and is not affected by potential class imbalance.

5.1 Experiment 1: Instrument Family Classification
in Monotimbral Classical Music Recordings

In this experiment, we evaluate whether data augmenta-
tion, spectrogram compression, and patch pre-processing
techniques lead to an improved classification performance.
We focus on the MP scenario using the DB-MTC dataset.

5.1.1 Data Augmentation

Due to the small number of 10 audio files per instrument
family in DB-MTC (see Section 3.3), we enlarge the dataset
using the data augmentation techniques shown in Table 2.
We apply algorithms taken from the Audio Degradation
Toolbox [16] that implement brown and white noise, two
room impulse responses, dynamic range compression, and
two kinds of signal attenuation. In total, we create seven
augmented versions of each audio file in the dataset, thus
increasing the size of the dataset from 50 to 400 files. We
refer to this augmented dataset as DB-MTC™.
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Table 2: Overview of applied data augmentation methods.
(def) indicates where default presets from [16] are used.

Abbr. Augmentation Type Approach

Brown noise, SNR -6 dB
‘White noise, SNR +22 dB
Great Hall (def)

Noi Noise

Imp Impulse Response

Classroom (def)
Dyn Dynamic Range Compression  (def)
Att Attenuation -3dB

-6 dB

5.1.2 Evaluation Procedure

We systematically evaluate 96 combinations of data aug-
mentation, spectrogram compression, and patch pre-
processing methods as listed in Table 4. For each config-
uration, we perform three validation runs and report the
mean F'-score. In each run, we randomly split the dataset
on file level into training (40%), validation (30%), and test
set (30%). We use the additional augmented versions of
the files for the training and validation sets and test only
on the clean, non-augmented signals.

5.1.3 Results

In Table 4, we show the results of Experiment 1. We
observe the highest F'-score of 0.89 for a system using
no compression of the mel-spectrogram (NO), frequency-
based patch normalization (2), and a fully augmented
training set. Independent of the applied data augmentation,
the results show that a normalization of spectral patches
before model training is very beneficial if no (NO) or only
mild spectrogram compression (LC 1) is applied. In con-
trast, strong compression (LC 10000) elevates the results
for systems without patch pre-processing (-) much closer
to the regions with pre-processing: Strong spectrogram
compression and the patch normalization techniques have
a similar effect, with the latter tending to have an even
greater impact. At least one of the methods should be
considered for usage. The simple logarithmic compression
strategies outperform the PCEN strategy, which we apply
using default parameters. We assume that using a trainable
PCEN front-end instead seems to be more promising for
future work.

In Table 3, we show a confusion matrix for this exper-
iment using the ideal parameter combination. While the
piano class is recognized best, confusions mainly occur be-
tween vocal and woodwinds or strings, and between wood-
winds and brass. Concerning the latter confusion, both
families are wind instruments and, therefore, exhibit cer-
tain timbral similarity. Furthermore, the presence of french
horns in both classes (as discussed in Section 3.3) might be
problematic.

5.1.4 Baseline System

To compare the CNN-based results to a simple baseline
system relying on standard audio features, we extract 20
mel-frequency cepstral coefficients (MFCC) per spectral
patch X, .. and average them over the patch duration.
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Table 3: Confusion matrix for the best parameter con-
figuration in Experiment 1 including all augmentations
(DB-MTC™), averaged over three folds. The overall F-
score is 0.89.

Predicted ‘ ‘ ‘ . ‘
woo | bra | pia | voc | str
True

woodwinds (woo) 0.92 | 0.06 | 0.02 | 0.00 | 0.00
brass (bra) 0.20 | 0.70 | 0.07 | 0.00 | 0.03
piano (pia) 0.01 | 0.01 | 0.97 | 0.01 | 0.01
vocal (voc) 0.09 | 0.00 | 0.01 | 0.82 | 0.08
strings (str) 0.00 | 0.02 | 0.02 | 0.02 | 0.94

This way, each spectral patch is represented by a 20-
dimensional MFCC feature vector. We train a random for-
est classifier with 50 estimators obtaining an F'-score of
0.75. This result—which could be further improved by us-
ing data augmentation and more diverse audio features—
indicates that the benefit of our deep learning strategy over
standard approaches is only weak when using datasets of
limited size such as DB-MTC.

5.2 Experiment 2: Cross-Dataset Evaluation

In this experiment, we evaluate how well the CNN model
generalizes to unseen datasets that represent different lev-
els of timbral complexity. Ideally, we expect the model to
learn spectro-temporal patterns that are unique to particu-
lar instrument families so that these patterns are recognized
independent of a dataset’s acoustic characteristics.

5.2.1 Evaluation Procedure

We split all three datasets DB—MTC, DB—SOL, DB—URMP
and, additionally, a combination of them called
DB-M/U/S, into individual training, validation, and
test sets and perform cross-dataset evaluations. Concretely
speaking, we train a model using training and validation
sets taken from one dataset and evaluate using the test
set of another dataset. Due to differences between the
datasets, we restrict ourselves in this experiment to
the three instrument families woodwinds, brass, and
strings which are consistently present over all datasets.
Consequently, we discard piano and vocal recordings
from DB-MTC. Data augmentation and a comparison
with the MFCC-based baseline system are not part of
this experiment as we solely focus on the cross-dataset
performance of the models.

We compare two approaches for splitting datasets into
training, validation, and test sets. We either randomly se-
lect patches (patch-based) or split patches based on
files (file-based) in order to avoid overfitting due to
patches from the same file ending up in both the train-
ing and test sets. For the patch-based approach,
we identify the smallest amount of available patches per
class among the datasets. The smallest class is the brass
class in DB-MTC with 4397 patches. Therefore, for the
patch-based evaluation, we sample the same amount
of patches from all other classes and datasets. We then use
a split ratio of 40%—-30%—-30% to create training, valida-
tion, and test sets. Hence, each dataset finally consists of



Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

Table 4: Mean F'-scores for the parameter optimization on the DB-MTC dataset (Experiment 1) described in Section 5.1.
The abbreviations for data augmentation methods (first four columns) are introduced in Table 2. The spectrogram com-
pression methods L.C 1, LC 10000, and PCEN, as well as the patch pre-processing methods —, 2, B, C in the remaining
columns are described in Section 4.2 and Section 4.3, respectively. The optimal parameter configuration (NO, A, full data
augmentation) is highlighted using gray background color. The average standard deviation between F'-scores over all three

validation runs is 0.03 (min: 0.003, max: 0.15).

Augmentation Types NO LC LC 10000 PCEN
Noi Imp Dyn Att - A B C - A B C - A B C - A B ¢
- - - - 040 0.78 0.82 085|034 076 0.84 0.84 | 0.66 0.76 082 0.75|0.70 0.67 0.67 0.65
v v v v 0.46 1 0.89 086 086 | 049 088 087 0.85 |08 086 085 083|079 080 0.79 0.80
v - - - 049 0.87 086 085|049 087 0.84 086|081 082 08 082|075 076 075 0.75
- v - - 042 0.86 0.85 0.85|042 084 085 085|084 0.83 081 083|079 077 079 0.78
- - v - 055 0.81 083 083|045 083 083 085|078 083 079 081|075 074 0.72 0.76
- - - v 035 0.8l 0.84 0.87 | 036 081 083 082|077 078 0.78 081|074 072 071 0.74

13191 patches. We create the fourth dataset DB-M/U/S
by equally sampling patches from the other datasets.

For the file-based approach, we split each dataset
using the same ratio of 40%—-30%-30% on a file level, i.e.,
patches from one file will exclusively end up in one of the
subsets. Here, no further steps are taken to balance out the
amount of patches. Since this procedure leads to class im-
balance, we use class weights as discussed in Section 4.4.
The file-based version of DB-M/U/S is generated by
accumulating all subsets over all datasets. Table 1 sum-
marizes all datasets used in this experiment. For model
training, we pick the parameters that lead to the best result
in Experiment 1, namely no compression (NO) and patch
pre-processing method C. We do not include any augmen-
tations in this experiment.

5.2.2 Results

Table 5 shows the results for the cross-dataset evaluation
on the patch-based data split. Due to the split strat-
egy, the classifier overfits to the training set and naturally
achieves high F'-scores on the corresponding test set when
patches are randomly mixed. This overfitting effect is sup-
ported by the fact that adding additional training data from
a different dataset in DB-M/U/ S even degrades the perfor-
mance for testing on DB-MTC and DB-SOL.

Table 6 shows the results for the file-based data
split. Due to its large size, DB-SOL has the highest
impact on the model performance in the mixed dataset
DB-M/U/S. When comparing the performance for train-
ing and testing on DB-MTC, the F-score drops by 0.12 for
the file-based split strategy. This confirms our expec-
tations since the DB-MTC dataset has a small number of
files per class and a large variance of file durations.

As a general observation for both split strategies, the
CNN approach for instrument family recognition shows
only a limited capability to generalize well towards unseen
data, which becomes apparent for all cross-dataset combi-
nations in both tables (high values on the diagonal).

6. CONCLUSIONS

In this paper, we investigated a state-of-the-art convo-
lutional neural network model for automatic instrument

Table 5: Resulting F'-scores for cross-dataset evaluation
using pat ch-based dataset split. The rows and columns
of the table indicate the training and test sets for each con-
figuration, respectively.

Test
. . DB-MTC | DB-URMP | DB-SOL | DB-M/U/S
Training
DB-MTC 0.96 0.70 0.62 0.77
DB-URMP 0.49 0.96 0.61 0.70
DB-SOL 0.64 0.78 0.95 0.79
DB-M/U/S 0.95 0.97 0.91 0.94

Table 6: Resulting F'-scores for cross-dataset evaluation
using £ile-based dataset split.

Test
. . DB-MTC | DB-URMP | DB-SOL | DB-M/U/S
Training
DB-MTC 0.84 0.60 0.68 0.68
DB-URMP 0.51 0.92 0.69 0.70
DB-SOL 0.69 0.74 0.99 0.94
DB-M/U/S 0.89 0.95 0.99 0.98

family recognition in Western classical music record-
ings. Focusing on monotimbral, polyphonic recordings,
we showed that increasing the amount of training data via
augmentation techniques leads to improved classification
performance. We also found that pre-processing is of cen-
tral importance for achieving a good system. Combin-
ing patch normalization with dynamic compression or per-
channel energy normalization does not further improve the
results, but these techniques may compensate the effect of
patch normalization to some degree. Given that a simple
MFCC-based baseline system already achieves good per-
formance in Experiment 1, the possible superiority of more
complex data-driven methods such as CNNs needs to be
assessed carefully. In a cross-dataset experiment, we fur-
ther tested how well the CNN model generalizes towards
unseen data. Our results indicate that current CNN mod-
els lack generalization capability across different datasets,
thus indicating the need for applying further optimization
methods such as domain adaptation [5].
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