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Abstract

For a subset S of edges in a connected graph G, the set S is a k-restricted
edge cut if G− S is disconnected and every component of G− S has at
least k vertices. The k-restricted edge connectivity of G, denoted by
λk(G), is defined as the cardinality of a minimum k-restricted edge cut.
A connected graph G is said to be λk-connected if G has a k-restricted
edge cut. Let ξk(G) = min{|[X, X̄ ]| : |X| = k, G[X] is connected},
where X̄ = V (G)\X. A graph G is said to be maximally k-restricted
edge connected if λk(G) = ξk(G). In this paper we show that if G is a
λ4-connected graph with λ4(G) ≤ ξ4(G) and the girth satisfies g(G) ≥ 8,
and there do not exist six vertices u1, u2, u3, v1, v2 and v3 in G such that
the distance d(ui, vj) ≥ 3, (1 ≤ i, j ≤ 3), then G is maximally 4-restricted
edge connected.

∗ This work is supported by the National Natural Science Foundation of China (61772010).
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1 Terminology and introduction

We consider finite, undirected and simple graphs. For graph-theoretical terminology
and notation not defined here we follow [5]. Let G be a graph with vertex set
V = V (G) and edge set E = E(G). Given a nonempty vertex subset V ′ of V , the
induced subgraph by V ′ in G, denoted by G[V ′], is a graph, whose vertex set is V ′

and the edge set is the set of all the edges of G with both endpoints in V ′. For two
disjoint vertex sets X and Y of V , let [X, Y ] be the set of edges with one endpoint
in X and the other one in Y . The order of G is the number of vertices in G. The
degree of a vertex v in G, denoted by dG(v), is the number of edges of G incident
with v. The set of neighbors of a vertex v in G is denoted by NG(v). A (v0, vk)-path,
denoted by P = v0v1 . . . vk, is a sequence of adjacent vertices where all the vertices
are distinct. Likewise, a cycle is a path that begins and ends with the same vertex.
The length of a path or a cycle is the number of edges contained in the path or cycle.
The distance between two vertices x and y is, denoted by d(x, y), the length of a
shortest path between x and y in G. The girth g = g(G) is the length of a shortest
cycle in G.

Many multiprocessor systems have interconnection networks (networks for short)
as underlying topologies and a network is usually represented by a graph where nodes
represent processors and links represent communication links between processors. A
classical measurement of the fault tolerance of a network is the edge connectivity
λ(G). The edge connectivity λ(G) of a connected graph G is the minimum cardinality
of an edge cut of G. As a more refined index than the edge connectivity, Fàbrega
and Fiol [10] proposed the more general concept of the k-restricted edge connectivity
of G as follows.

Definition 1.1 [10] For a subset S of edges in a connected graph G, S is a k-
restricted edge cut if G − S is disconnected and every component of G − S has at
least k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined
as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted edge
cut is called a λk-cut. A connected graph G is said to be λk-connected if G has a
k-restricted edge cut.

There is a significant amount of research on k-restricted edge connectivity [2, 4, 7–
11, 13, 18–21, 27]. In view of recent studies on k-restricted edge connectivity, it seems
that the larger λk(G) is, the more reliable the network G is [3, 14, 22]. So, we expect
λk(G) to be as large as possible. Clearly, the optimization of λk(G) requires an
upper bound first and so the optimization of k-restricted edge connectivity draws
a lot of attention. For any positive integer k, let ξk(G) = min{|[X, X̄ ]| : |X| =
k, G[X] is connected}, where X̄ = V (G)\X. It has been shown that λk(G) ≤ ξk(G)
holds for many graphs [1, 6, 12, 15, 28].

Let G1, . . . , Gn be n copies of Kt. Add a new vertex u and let u be adjacent to
every vertex in V (Gi), i = 1, . . . , n. The resulting graph is denoted by G∗

n,t. It can
be verified that G∗

n,t has no (δ(G∗
n,t) + 1)-restricted edge cuts and G∗

n,t is the only
exception for the existence of k-restricted edge cuts of a connected graph G when
k ≤ δ(G) + 1.



M. WANG ET AL. /AUSTRALAS. J. COMBIN. 70 (1) (2018), 123–136 125

Theorem 1.2 [28]. Let G be a connected graph with order at least 2(δ(G)+1) which
is not isomorphic to any G∗

n,t with t = δ(G). Then for any k ≤ δ(G) + 1, G has
k-restricted edge cuts and λk(G) ≤ ξk(G).

A λk-connected graph G is said to be maximally k-restricted edge connected
if λk(G) = ξk(G). When k = 2, the k-restricted edge connectivity of G is the
restricted edge connectivity of G; a maximally k-restricted edge connected graph
is a maximally restricted edge connected graph. There has been much research on
maximally restricted edge connected graphs. See [13,17,22–24]. Let G be a λk-
connected graph and let S be a λk-cut of G.

In 1989, Plesńık and Znám [16] gave the following sufficient condition for a graph
to be maximally edge connected.

Theorem 1.3 [16] Let G be a connected graph. If there do not exist four vertices
u1, u2, v1, v2 in G such that the distance d(ui, vj) ≥ 3 (1 ≤ i, j ≤ 2), then G is
maximally edge connected.

In 2013, Qin et al. [17] gave the following theorem.

Theorem 1.4 [17] Let G be a λ2-connected graph with the girth g(G) ≥ 4. If there
are not four vertices u1, u2, v1, v2 in G such that the distance d(ui, vj) ≥ 3 (1 ≤
i, j ≤ 2), then G is maximally restricted edge connected.

In 2015, Wang et al. [25] gave the following theorem.

Theorem 1.5 [25] Let G be a λ3-connected graph with the girth g(G) ≥ 5. If there
are not five vertices u1, u2, v1, v2, , v3 in G such that the distance d(ui, vj) ≥ 3 (1 ≤
i ≤ 2; 1 ≤ j ≤ 3), then G is maximally 3-restricted edge connected.

In this article, we extend the above result to λ4-connected graphs.

2 Main results

We first give an existing result.

Lemma 2.1 [21] Let G be a λk-connected graph with λk(G) ≤ ξk(G) and let S =
[X, Y ] be a λk-cut of G. If there exists a connected subgraph H of order k in G[X]
with the property that

∑

v∈X\V (H)

|N(v) ∩ V (H)| ≤
∑

v∈X\V (H)

|N(v) ∩ Y |,

then G is maximally k-restricted edge connected.

Theorem 2.2 Let G be a λ4-connected graph with λ4(G) ≤ ξ4(G) and let the girth
g(G) ≥ 8. If there are not six vertices u1, u2, u3, v1, v2 and v3 in G such that
the distance d(ui, vj) ≥ 3 (1 ≤ i, j ≤ 3), then G is maximally 4-restricted edge
connected.
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Proof: We suppose, on the contrary, that G is not maximally 4-restricted edge con-
nected. Let S = [X, Y ] be a λ4-cut of G. Denote X1 = {x ∈ X : N(x) ∩ Y �= ∅}
and Y1 = {y ∈ Y : N(y) ∩ X �= ∅}. Let X0 = X \ X1, Y0 = Y \ Y1, and let
m0 = |X0|, m1 = |X1|, n0 = |Y0| and n1 = |Y1|. If |X| = 4 or |Y | = 4, then
λ4(G) ≤ ξ4(G) ≤ |S| = λ4(G), i.e., G is maximally 4-restricted edge connected, a
contradiction. Therefore |X| ≥ 5 and |Y | ≥ 5.

Claim 1. m0 ≥ 2 and n0 ≥ 2.

By contradiction. Without loss of generality, assume m0 ≤ 1. Let m0 = 0. By [26],
there is a connected subgraph H of order 4 such that X0 ⊆ V (H) in G[X]. Let
m0 = 1 and X0 = {x}. Since G[X] is connected, there is a spanning tree T in G[X].
Therefore x ∈ V (T ). Since T has two vertices of degree 1, there is a vertex v of
degree 1 such that v �= x. Then T − v is a tree and x ∈ V (T − v). Since there is a
vertex v2 of degree 1 such that v2 �= x, T − v − v2 is a tree and x ∈ V (T − v − v2).
Continuing this process, we can obtain a tree T ′ of order 4 such that x ∈ V (T ′).
Let H = (G[X])[V (T ′)]. Therefore, in G[X], there is a connected subgraph H of
order 4 such that X0 ⊆ V (H). Let u ∈ X\V (H). Then |[{u}, Y ]| ≥ 1. Since
|V (T ′)| = 4, the maximum cardinality of paths is less than or equal to 3. Since
g(G) ≥ 8, |[{u}, V (H)]| ≤ 1 holds. Therefore, we have that

∑

u∈X\V (H)

|N(u) ∩ V (H)| = |[X\V (H), V (H)]|

≤ |X\V (H)|
≤ |[X\V (H), Y ]|
=

∑

u∈X\V (H)

|N(u) ∩ Y |. (2.1)

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. There-
fore m0 ≥ 2. Similarly, we have n0 ≥ 2. The proof of Claim 1 is complete.

Claim 2. m0 = 2 or n0 = 2.

Suppose that m0 ≥ 3 and n0 ≥ 3. Then there are six vertices u1, u2, u3, v1, v2 and
v3 in G such that u1, u2, u3 ∈ X0 and v1, v2, v3 ∈ Y0. By the definition of X0 and Y0,
we have that |N(ui) ∩ Y | = 0 = |N(vj) ∩ X| for 1 ≤ i ≤ 3; 1 ≤ j ≤ 3. It follows
that d(ui, vj) ≥ 3 (i, j ∈ {1, 2, 3}), a contradiction. Combining this with Claim 1,
we have that m0 = 2 or n0 = 2. The proof of Claim 2 is complete.

Claim 3. In G[X], let H be a connected subgraph of order 4 such that it contains
X0 as most as possible and let V (H) = {x1, x2, x3, x4} . If X0 = {u1, u2}, then
(1) |X0 ∩ V (H)| = 1;
(2) H = u1x2x3x4 is a path of length 3, where u1 = x1, if u1 ∈ V (H); and u1x2x3x4u2

is a path of length 4 in G[X];
(3) (N(u1) ∩X)\V (H) = ∅ and (N(u2) ∩X)\V (H) = ∅.
Since |X0| = 2, 1 ≤ |X0 ∩ V (H)| ≤ 2 holds. We consider the following two cases.
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Case 1. |X0 ∩ V (H)| = 2.

Since g(G) ≥ 8, |[{u}, V (H)]| ≤ 1 for u ∈ X\V (H). Note that X0 = {u1, u2} ⊆
V (H). Then |[{u}, Y ]| ≥ 1 for u ∈ X\V (H). By (2.1), we have that

∑

u∈X\V (H)

|N(u) ∩ V (H)| ≤
∑

u∈X\V (H)

|N(u) ∩ Y |.

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction.

Case 2. |X0 ∩ V (H)| = 1.

In this case, suppose u1 ∈ V (H). Since g(G) ≥ 8, H is a tree of order 4, and
|[{u}, V (H)]| ≤ 1 for u ∈ X\V (H). If |N(u2) ∩ V (H)| = 0, then |[{u}, V (H)]| ≤
|[{u}, Y ]| for u ∈ X\V (H). Therefore, we have that

∑

u∈X\V (H)

|N(u) ∩ V (H)| ≤
∑

u∈X\V (H)

|N(u) ∩ Y |.

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Then
|N(u2) ∩ V (H)| = 1. Suppose that H is not a path. Then H has at least three
vertices of degree 1. Let u2 be adjacent to a vertex y of H . Then there is a vertex v
of degree 1 such that v �= u1 and y in H . Therefore, (G[X])[V (H − v) ∪ {u2}] is a
connected graph of order 4, a contradiction to H . Then H is a path P of length 3.
If u1 is not a vertex of degree 1, then there is a connected subgraph of order 4 such
that it contains u1, u2 in G[V (H) ∪ {u2}], a contradiction to H . Therefore u1 is a
vertex of degree 1 in P . Let P = u1x2x3x4. Suppose that N(u2) ∩ V (H) = ∅. Then
|[{u}, V (H)]| ≤ |[{u}, Y ]| for u ∈ X\V (H). Therefore, we have that

∑

u∈X\V (H)

|N(u) ∩ V (H)| ≤
∑

u∈X\V (H)

|N(u) ∩ Y |.

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. There-
fore, |N(u2) ∩ V (H)| = 1. If N(u2) ∩ {x2, x3} �= ∅, a contradiction to H . Then u2 is
adjacent to x4.

Suppose, on the contrary, that x ∈ (N(u1) ∩ X)\V (H). Then P ′ = xu1x2x3 is a
path of length 3 in G[X]. Since g(G) ≥ 8, |N(u) ∩ V (P ′)| ≤ 1 for u ∈ X\V (P ′). If
N(u2) ∩ V (P ′) �= ∅, then there is a connected subgraph H ′ of order 4 in G[X ] with
u1, u2 ∈ V (H ′), a contradiction to that |X0 ∩ V (H)| = 1. Therefore, we have that
|N(u2) ∩ V (P ′)| = 0 and |N(u) ∩ V (P ′)| ≤ |N(u) ∩ Y | for u ∈ X\V (P ′). Thus,

∑

u∈X\V (P ′)

|N(u) ∩ V (P ′)| ≤
∑

u∈X\V (P ′)

|N(u) ∩ Y |.

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. So
(N(u1) ∩X)\V (H) = ∅ and d(u1) = 1 in G[X].

Suppose, on the contrary, that x ∈ (N(u2)∩X)\V (H). By Claim 3 (2), P ′ = x3x4u2x
is a path of length 3 in G[X]. Since g(G) ≥ 8, |N(u)∩ V (P ′)| ≤ 1 for u ∈ X\V (P ′).
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Since d(u1) = 1 in G[X] and u1x2 ∈ E(G[Y ]), we have N(u1)∩V (P ′) = ∅. Therefore,
we have that |N(u) ∩ V (P ′)| ≤ |N(u) ∩ Y | for u ∈ X\V (P ′). Thus,

∑

u∈X\V (P ′)

|N(u) ∩ V (P ′)| ≤
∑

u∈X\V (P ′)

|N(u) ∩ Y |.

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. So
(N(u2) ∩X)\V (H) = ∅. The proof of Claim 3 is complete.

Similarly to Claim 3, we have that the following claim.

Claim 4. In G[Y ], let H∗ be a connected subgraph of order 4 such that it contains
Y0 as most as possible and let V (H∗) = {y1, y2, y3, y4} . If Y0 = {v1, v2}, then
(1) |Y0 ∩ V (H∗)| = 1;
(2) H∗ = v1y2y3y4 is a path of length 3, where v1 = y1, if v1 ∈ V (H∗); and v1y2y3y4v2
is a path of length 4 in G[Y ];
(3) (N(v1) ∩ Y )\V (H∗) = ∅ and (N(v2) ∩ Y )\V (H∗) = ∅.
Without loss of generality, suppose m0 = 2. We consider the following cases.

Case 1. n0 = 2.

Claim 5. |[{x2, x3, x4}, {y2, y3, y4}]| ≤ 1 in G (See Fig 1).

Suppose |[{x2, x3, x4}, {y2, y3, y4}]| ≥ 2. It is sufficient to show that |[{x2, x3, x4}, {y2,
y3, y4}]| = 2. Since x2x3x4 and y2y3y4 are paths, and |[{x2, x3, x4}, {y2, y3, y4}]| = 2,
we have that there is a cycle of G whose length is at most 6, a contradiction to
g(G) ≥ 8. The proof of Claim 5 is complete.

Suppose, first, that |[{x2, x3, x4}, {y2, y3, y4}]| = 1 and xi0yj0 ∈ E(G) (2 ≤ i0 ≤
4, 2 ≤ j0 ≤ 4). Let xi ∈ {2, 3, 4}\{i0} with xixi0 ∈ E(H) and yj ∈ {2, 3, 4}\{j0}
with yjyj0 ∈ E(H∗). By Claim 5, d(xi, yj) �= 1. If d(xi, yj) = 2, then there is a
vertex y in G[Y ] such that xiy, yyj ∈ E(G) or there is a vertex x in G[X ] such that
xix, xyj ∈ E(G). Without loss of generality, suppose that there is a vertex y in G[Y ]
such that xiy, yyj ∈ E(G). Then there is a cycle C in G, and xi0 , yj0, xi, yj, y ∈ V (C)
and the length of C is 5, a contradiction to g(G) ≥ 8. Therefore, d(xi, yj) ≥ 3. By
Claim 4 (3), d(xi, vi) ≥ 3 for {1, 2}. Similarly to the discussion on xi, we have that
d(yj, uk) ≥ 3 for k ∈ {1, 2}. Therefore we have d(x, y) ≥ 3 for every x ∈ {u1, u2, xi}
and y ∈ {v1, v2, yj}, a contradiction.

Suppose, second, that |[{x2, x3, x4}, {y2, y3, y4}]| = 0. Since there is no d(x, y) ≥ 3 for
every x ∈ {x2, x3, x4} and y ∈ {y2, y3, y4}, there are two vertices xi0 ∈ {x2, x3, x4} and
yj0 ∈ {y2, y3, y4} such that d(xi0 , yj0) = 2. Let i ∈ {2, 3, 4}\{i0} with xixi0 ∈ E(H)
and j ∈ {2, 3, 4}\{j0} with yjyj0 ∈ E(H∗). Since g(G) ≥ 8, d(xi, yj) ≥ 3 holds.
By Claim 4 (3), d(xi, vj) ≥ 3 for j ∈ {1, 2}. Similarly, d(yj, ui) ≥ 3 for i ∈ {1, 2}.
Therefore we have d(x, y) ≥ 3 for every x ∈ {u1, u2, xi} and y ∈ {v1, v2, yj}, a
contradiction.

Case 2. n0 ≥ 3.

Let Y0 = {y0, v1, v2, v3, . . .}. By Claim 3 (2), we have that H = u1x2x3x4 and
u1x2x3x4u2 is a path in G[X]. Since g(G) ≥ 8, we have |N(v) ∩ V (H∗)| ≤ 1 for
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v ∈ Y \V (H∗). If |N(y) ∩ V (H∗)| = 0 for y ∈ Y0\V (H∗), by Lemma 2.1, G is
maximally 4-restricted edge connected, a contradiction. Therefore, there is at least
a vertex y0 in Y0\V (H∗) such that |N(y0) ∩ V (H∗)| = 1.

Case 2.1. |Y0 ∩ V (H∗)| = 1.

Let Y0 ∩ V (H∗) = {v1}. Note that H∗ is a path of length 3 or a K1,3. Similarly to
the discussion on H , we have that G[V (H∗)∪{y0}] is a path of length 4, denoted by
P1 = y1y2y3y4y5, where v1 = y1, y5 = y0. Similarly to Case 1, there is a contradiction.

Case 2.2. |Y0 ∩ V (H∗)| = 2.

Let Y0 ∩ V (H∗) = {v1, v2}. Since H∗ is a path of length 3 or a K1,3, we have that
1 ≤ dH∗(v1, v2) ≤ 3.

Case 2.2.a. dH∗(v1, v2) = 3.

In this case, H∗ is a path of length 3, denoted by H∗ = y1y2y3y4, where v1 = y1, v2 =
y4. Similarly to the proof of Claim 5, we have the following claim.

Claim 6. |[{x2, x3, x4}, {y2, y3}]| ≤ 1 in G (See Fig 2).

Suppose, first, that |[{x2, x3, x4}, {y2, y3}]| = 1Without loss of generality, we consider
the following cases.

Case 2.2.a.1. x2y2 ∈ E(G).

In this case, x3x2y2y3 is a path in G. Since g(G) ≥ 8 and Claim 6, d(x3, y3) = 3
holds. Assume d(x3, v1) = 2. Since N(v1) ∩ X = ∅, there is a vertex y in G[Y ]
such that x3y, yv1 ∈ E(G). Thus, x3yv1y2x2x3 is a 5-cycle in G, a contradiction
to that g(G) ≥ 8. Therefore, d(x3, v1) = 3. Similarly, d(x3, v2) ≥ 3. By Claim 3,
d(y3, ui) ≥ 3 for i ∈ {1, 2}. Therefore we have d(x, y) ≥ 3 for every x ∈ {u1, u2, x3}
and y ∈ {v1, v2, y3}, a contradiction.

Case 2.2.a.2. x3y2 ∈ E(G).

In this case, x2x3y2y3 is a path in G. By Claim 6, x2y3 /∈ E(G). If d(x2, y3) = 2,
then there is a vertex y in G[Y ] such that x2y, yy3 ∈ E(G) or there is a vertex
x in G[X] such that x2x, xy3 ∈ E(G). Without loss of generality, suppose that
there is a vertex y in G[Y ] such that x2y, yy3 ∈ E(G). Note that x3y2y3yx2x3

is a 5-cycle in G, a contradiction to that g(G) ≥ 8. Therefore, d(x2, y3) = 3.
Assume d(x2, v1) = 2. Since N(v1) ∩ X = ∅, there is a vertex y in G[Y ] such
that x2y, yv1 ∈ E(G). Thus, x2yv1y2x3x2 is a 5-cycle in G, a contradiction to that
g(G) ≥ 8. Therefore, d(x2, v1) = 3. Assume d(x2, v2) = 2. Since N(v2) ∩ X = ∅,
there is a vertex y in G[Y ] such that x2y, yv2 ∈ E(G). Thus, x2yv2y3y2x3x2 is a
6-cycle in G, a contradiction to that g(G) ≥ 8. Therefore, d(x2, v2) ≥ 3. By Claim 3,
d(y3, ui) ≥ 3 for i ∈ {1, 2}. Therefore we have d(x, y) ≥ 3 for every x ∈ {u1, u2, x2}
and y ∈ {v1, v2, y3}, a contradiction.

Suppose, second, that |[{x2, x3, x4}, {y2, y3}]| = 0. Assume d(x, y) ≥ 3 for every
x ∈ {x2, x3, x4} and y ∈ {y2, y3}. If d(xi0 , v1) = 2 for xi0 ∈ {x2, x3, x4}, then
d(xi, v1) ≥ 3 for i ∈ {2, 3, 4}\{i0} by g(G) ≥ 8. Therefore we have d(x, y) ≥ 3
for every x ∈ {u1, u2, xi} and y ∈ {v1, y1, y2}, a contradiction. Then there are
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two vertices xi0 ∈ {x2, x3, x4} and yj0 ∈ {y2, y3} such that d(xi0 , yj0) = 2. Let
i ∈ {2, 3, 4}\{i0} with xixi0 ∈ E(H), and j ∈ {2, 3}\{j0} with yjyj0 ∈ E(H∗). Since
g(G) ≥ 8, d(xi, yj) ≥ 3 holds. Since d(xi0 , yj0) = 2, d(xi, vj) ≥ 3 for j ∈ {1, 2} by
g(G) ≥ 8. By Claim 3, d(yj, ui) ≥ 3 for i ∈ {1, 2}. Therefore we have d(x, y) ≥ 3 for
every x ∈ {u1, u2, xi} and y ∈ {v1, v2, yj}, a contradiction.

Case 2.2.b. dH∗(v1, v2) = 2.

Suppose, first, thatH∗ ∼= K1,3, where V (H∗) = {v1, v2, y1, y2} and dH∗(y2) = 3. Since
g(G) ≥ 8, we have |N(v) ∩ V (H∗)| ≤ 1 for v ∈ Y \V (H∗). If |N(y) ∩ V (H∗)| = 0
for y ∈ Y0\V (H∗), by Lemma 2.1, G is maximally 4-restricted edge connected,
a contradiction. Therefore, there is at least a vertex y0 in Y0\V (H∗) such that
|N(y0) ∩ V (H∗)| = 1. If y0 is adjacent to vi (i ∈ {1, 2}), then (G[Y ])[{v1, v2, y0, y2}]
is a connected subgraph of order 4, a contradiction to H∗. If y0 is adjacent to y2,
then (G[Y ])[{v1, v2, y0, y2}] is a connected subgraph of order 4, a contradiction to
H∗. Therefore, y0 is adjacent to y1 (See Fig. 3). Similarly to the proof of Claim 5,
we have the following claim.

Claim 7. |[{x2, x3, x4}, {y1, y2}]| ≤ 1 in G.

Suppose, first, that |[{x2, x3, x4}, {y1, y2}]| = 1 and xi0yj0 is an edge in G, where
i0 ∈ {2, 3, 4} and j0 ∈ {2, 3}. Without loss of generality, we consider the following
cases.

Case 2.2.b.1. x2y2 ∈ E(G).

If d(x3, vi) = 2 for 1 ≤ i ≤ 2 or d(x3, y0) = 2, then there is a vertex y in G[Y ] such
that x3y, yvi ∈ E(G) or x3y, yy0 ∈ E(G). Thus, there is a at most 6-cycle in G, a
contradiction to that g(G) ≥ 8. Therefore, d(x3, vi) ≥ 3 and d(x3, y0) ≥ 3. Therefore
we have d(x, y) ≥ 3 for every x ∈ {u1, u2, x3} and y ∈ {v1, v2, y0}, a contradiction.

Case 2.2.b.2. x2y1 ∈ E(G).

The proof of this case is the same as Case 2.2.b.1.

Case 2.2.b.3. x3y2 ∈ E(G).

If d(x2, vi) = 2 for 1 ≤ i ≤ 2 or d(x2, y0) = 2 , then there is a vertex y in G[Y ] such
that x2y, yvi ∈ E(G) or x2y, yy0 ∈ E(G). Thus, there is a at most 6-cycle in G, a
contradiction to that g(G) ≥ 8. Therefore, d(x2, vi) ≥ 3 and d(x2, y0) ≥ 3. Therefore
we have d(x, y) ≥ 3 for every x ∈ {u1, u2, x2} and y ∈ {v1, v2, y0}, a contradiction.

Case 2.2.b.4. x3y1 ∈ E(G).

The proof of this case is the same as Case 2.2.b.3.

Suppose, secondly, that |[{x2, x3, x4}, {y1, y2}]| = 0. Assume d(x, y) ≥ 3 for every
x ∈ {x2, x3, x4} and y ∈ {y1, y2}. If d(xi0 , v1) = 2 for 2 ≤ i0 ≤ 4, then d(xi, v1) ≥
3 for i ∈ {2, 3, 4}\{i0} by g(G) ≥ 8. Therefore we have d(x, y) ≥ 3 for every
x ∈ {u1, u2, xi} and y ∈ {v1, y1, y2}, a contradiction. Then there are two vertices
xi0 ∈ {x2, x3, x4} and yj0 ∈ {y2, y3} such that d(xi0 , yj0) = 2. Let i ∈ {2, 3, 4}\{i0}
with xixi0 ∈ E(H), and j ∈ {2, 3}\{j0} with yjyj0 ∈ E(H∗). Since g(G) ≥ 8,
d(xi, yj) ≥ 3 holds. Since d(xi0 , yj0) = 2, d(xi, vj) ≥ 3 for j ∈ {1, 2} by g(G) ≥ 8.
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By Claim 3, d(yj, ui) ≥ 3 for i ∈ {1, 2}. Therefore we have d(x, y) ≥ 3 for every
x ∈ {u1, u2, xi} and y ∈ {v1, v2, yj}, a contradiction.

Suppose, secondly, that H∗ is a path of length 3, denoted H∗ = y1y2y3y4. Without
loss of generality, suppose v1 = y1, v2 = y3.

Since g(G) ≥ 8, we have |N(v)∩V (H∗)| ≤ 1 for v ∈ Y \V (H∗). If |N(y)∩V (H∗)| = 0
for y ∈ Y0\V (H∗), by Lemma 2.1, G is maximally 4-restricted edge connected,
a contradiction. Therefore, there is at least a vertex y0 in Y0\V (H∗) such that
|N(y0) ∩ V (H∗)| = 1. If y0 is adjacent to vi (i ∈ {1, 2}), then (G[Y ])[{v1, v2, y0, y2}]
is a connected subgraph of order 4, a contradiction to H∗. If y0 is adjacent to y2,
then (G[Y ])[{v1, v2, y0, y2}] is a connected subgraph of order 4, a contradiction to
H∗. Therefore, y0 is adjacent to y4 (See Fig. 4). Similarly to the proof of Claim 5,
we have the following claim.

Claim 8. |[{x2, x3, x4}, {y2, y4}]| ≤ 1 in G.

Suppose, first, that |[{x2, x3, x4}, {y2, y4}]| = 1Without loss of generality, we consider
the following cases.

Case 2.2.b.5. x2y2 ∈ E(G).

Assume d(x3, vj0) = 2 for vj0 ∈ {v1, v2, y0}. Since N(vi) ∩ X = ∅ and N(y0) ∩ X =
∅, there is a vertex y in G[Y ] such that x3y, yvi(y0) ∈ E(G). Thus, there is a
cycle C in G whose length of C is at most 7, a contradiction to that g(G) ≥ 8.
Therefore, d(x3, vj) ≥ 3 and d(x3, y0) ≥ 3. Therefore we have d(x, y) ≥ 3 for every
x ∈ {u1, u2, x3} and y ∈ {v1, v2, y0}, a contradiction.

Case 2.2.b.6. x3y2 ∈ E(G).

Similarly, we have d(x, y) ≥ 3 for every x ∈ {u1, u2, x2} and y ∈ {v1, v2, y0}, a
contradiction.

Suppose, secondly, that |[{x2, x3, x4}, {y2, y4}]| = 0.

Assume d(x, y) ≥ 3 for every x ∈ {x2, x3, x4} and y ∈ {y2, y4}. Since g(G) ≥ 8,
there is one xi of x2, x3 such that d(xi, v1) ≥ 3. Therefore, by Claim 3, we have
d(x, y) ≥ 3 for every x ∈ {u1, u2, xi} and y ∈ {v1, y2, y4}, a contradiction. Then
there are two vertices xi0 ∈ {x2, x3, x4} and yj0 ∈ {y2, y3} such that d(xi0, yj0) = 2.
Let xi0xi ∈ E(H). Without loss of generality, we consider the following cases.

Case 2.2.b.7. d(xi0 , y2) = 2.

Since g(G) ≥ 8, d(xi, vj) ≥ 3 for j ∈ {1, 2} and d(xi, y4) ≥ 3 hold. Therefore,
by Claim 3, we have d(x, y) ≥ 3 for every x ∈ {u1, u2, xi} and y ∈ {v1, v2, y4}, a
contradiction.

Case 2.2.b.8. d(xi0 , y4) = 2.

Similarly, we have d(x, y) ≥ 3 for every x ∈ {u1, u2, xi} and y ∈ {v2, y0, y2}, a
contradiction.

Case 2.2.c. dH∗(v1, v2) = 1.

Suppose, first, that H∗ is a path of length 3, denoted by P3 = y1y2y3y4. If v1 =
y1, v2 = y2, then N(y0) ∩ V (H∗) = {y4}. Otherwise, there is a connected subgraph
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G∗ of order 4 in G[V (H∗) ∪ {y0}] such that v1, v2, y0 ∈ V (G∗), a contradiction to
H∗. Since dH∗(v2, y0) = 3, Similarly to Case 2.2.a, we have that there are six vertices
x1, x2, x3, z1, z2 and z3 in G such that the distance d(xi, zj) ≥ 3 (1 ≤ i, j ≤ 3), a
contradiction.

Suppose that H∗ ∼= K1,3, where dH∗(v1) = 3. Then there is a connected subgraph
G∗ of order 4 in G[V (H∗)∪{y0}] such that v1, v2, y0 ∈ V (G∗), a contradiction to H∗.

Case 2.3. |Y0 ∩ V (H∗)| = 3.

Let Y0 = {v1, v2, v3, . . .}. Suppose that n0 = 3. Since g(G) ≥ 8, |[{y}, V (H∗)]| ≤ 1
for y ∈ Y \V (H∗). Since Y0 ⊆ V (H∗), we have that

∑

y∈Y \V (H∗)

|N(y) ∩ V (H∗)| = |[Y \V (H∗), V (H∗)]|

≤ |Y \V (H∗)|
≤ |[Y \V (H∗), X ]|
=

∑

y∈Y \V (H∗)

|N(y) ∩X|. (2.2)

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Then
n0 ≥ 4. Suppose that v1, v2, v3 ∈ Y0 ∩ V (H∗). Since H∗ is a path of length 3 or a
K1,3, there is at least a vertex of degree 1 in v1, v2, v3. Without loss of generality,
suppose dH∗(v1) = 1 and v1 = y1.

Case 2.3.1. H∗ = y1y2y3y4 is a path of length 3.

Since |Y0 ∩ V (H∗)| = 3, we have that H∗ = v1v2v3y4 (See Fig. 5) or H∗ = v1v2y3v3.
We consider the following cases.

Case 2.3.1.1. H∗ = v1v2v3y4.

Since g(G) ≥ 8, we have the following claim.

Claim 9. |[{x2, x3, x4}, {y4}]| ≤ 1 in G.

Suppose, first, that |[{x2, x3, x4}, {y4}]| = 1 and xi0y4 ∈ E(G) for xi0 ∈ {x2, x3, x4}.
Let xixi0 ∈ E(H). Since g(G) ≥ 8, we have d(xi, vj) ≥ 3 for j ∈ {1, 2, 3}. Therefore
we have d(x, y) ≥ 3 for every x ∈ {u1, u2, xi} and y ∈ {v1, v2, v3}, a contradiction.

Suppose, secondly, that |[{x2, x3, x4}, {y4}]| = 0.

Since there is no d(xi, vj) ≥ 3 for every i ∈ {2, 3, 4} and every j ∈ {1, 2, 3}, there
is one d(xi0 , vj0) = 2 for i0 ∈ {2, 3, 4} and j0 ∈ {1, 2, 3}. Let xixi0 ∈ E(H). Since
g(G) ≥ 8, d(xi, vj) ≥ 3 for every j ∈ {1, 2, 3}. Therefore we have d(x, y) ≥ 3 for
every x ∈ {u1, u2, xi} and y ∈ {v1, v2, v3}, a contradiction.

Case 2.3.1.2. H∗ = v1v2y3v3.

Similarly to Case 2.3.1.1, we have that there are six vertices u1, u2, u3, v1, v2 and v3
in G such that the distance d(ui, vj) ≥ 3 (1 ≤ i, j ≤ 3), a contradiction.
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Case 2.3.2. H∗ ∼= K1,3.

Let d(y2) = 3 in H∗. Since |Y0 ∩ V (H∗)| = 3, we have that y2 = v2 and y2 �= v2 or v3
or v3. Similarly to Case 2.3.1, we have that there are six vertices u1, u2, u3, v1, v2
and v3 in G such that the distance d(ui, vj) ≥ 3 (1 ≤ i, j ≤ 3), a contradiction.

Case 2.4. |Y0 ∩ V (H∗)| ≥ 4.

If d(xi, vj) ≥ 3 for every i ∈ {2, 3, 4} and every j ∈ {1, 2, 3, 4}, then there are six ver-
tices u1, u2, x3, v1, v2 and v3 inG such that the distance d(ui, vj) ≥ 3 (i, j ∈ {1, 2, 3}),
a contradiction. Then d(xi0, vj0) = 2 for i0 ∈ {2, 3, 4} and j0 ∈ {1, 2, 3, 4}. Since
g(G) ≥ 8, d(xi0, vj) ≥ 3 for every j ∈ {1, 2, 3, 4}\{j0}. Therefore we have d(x, y) ≥ 3
for every x ∈ {u1, u2, xi0} and y ∈ {vj : j ∈ {1, 2, 3, 4}\{j0}}, a contradiction.

Summarizing Cases 1 and 2, we obtain that G is maximally 4-restricted edge con-
nected. �
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3 Conclusion

In this paper, we have investigated the problem of the maximally 4-restricted edge
connected graph and shown a sufficient condition for graphs to be maximally 4-
restricted edge connected, i.e., if G is a λ4-connected graph with λ4(G) ≤ ξ4(G) and
the girth satisfies g(G) ≥ 8, and there do not exist six vertices u1, u2, u3, v1, v2 and
v3 in G such that the distance d(ui, vj) ≥ 3, (1 ≤ i, j ≤ 3), then G is maximally
4-restricted edge connected. Our further work aims to investigate the problem of the
maximally k-restricted edge connected graph.
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