We study well-posedness of scalar conservation laws with moving flux constraints. In particular, we show the Lipschitz continuous dependence of BV solutions with respect to the initial data and the constraint trajectory. Applications to traffic flow theory are detailed.
Citation: |
[1] | Adimurthi, R. Dutta, S. S. Ghoshal and G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84-115. doi: 10.1002/cpa.20346. |
[2] | B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278. |
[3] | B. Andreianov, C. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802. doi: 10.1142/S0218202516500172. |
[4] | B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online. doi: 10.1007/s00211-009-0286-7. |
[5] | B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $ L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4. |
[6] | B. Andreianov, F. Lagoutière, N. Seguin and T. Takahashi, Well-posedness for a one-dimensional fluid-particle interaction model, SIAM J. Math. Anal., 46 (2014), 1030-1052. doi: 10.1137/130907963. |
[7] | F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870. doi: 10.1090/S0002-9947-98-02204-1. |
[8] | A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. |
[9] | A. Bressan and W. Shen, Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal., 34 (1998), 637-652. doi: 10.1016/S0362-546X(97)00590-7. |
[10] | R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014. |
[11] | R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772. doi: 10.1017/S0308210500002663. |
[12] | M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 4015-4029. doi: 10.1016/j.jde.2014.07.014. |
[13] | M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033. |
[14] | M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, Preprint, 2016. |
[15] | S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[16] | S. Villa, P. Goatin and C. Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2016, URL https://hal.archives-ouvertes.fr/hal-01347925, preprint. |