
Nesting Probabilistic Programs – Supplementary Material

Tom Rainforth
Department of Statistics

University of Oxford
rainforth@stats.ox.ac.uk

A PROOFS

Theorem 1. Let g(x, y, z) be an integrable function,
let γ0 = Epo(x,y,z)[g(x, y, z)], and let I0 be a self-
normalized MC estimate for γ0 calculated using p̂(·) as
per (9). Assuming that q(x, y, z) forms a valid impor-
tance sampling proposal distribution for po(x, y, z), then

E
[
(I0 − γ0)

2
]

=
σ2

N0
+

δ2

N2
1

+O(ε) (10)

where σ and δ are constants derived in the proof and, as
before, O(ε) represents asymptotically dominated terms.

Proof. Though informally the high-level result follows
directly from (Rainforth et al., 2018, Theorem 3), there
are three subtleties that require further attention. Firstly,
unlike (Rainforth et al., 2018, Theorem 3), this result is
an asymptotic equality rather than a bound – in the limit
of large N0, N1 it holds exactly. This more powerful
result is made possible by knowing the exact form of the
nonlinearity. Secondly, our overall estimator uses the
ratio of two NMC estimators. Though Slutsky’s Theorem
means this does not create complications in the general
demonstration of convergence, additional care is required
when calculating the exact rate. Finally, samples are
reused in both the inner and outer estimators. This could
easily be avoided by sampling an additional z for the
outer estimator, thereby giving an estimator trivially of the
form considered by (Rainforth et al., 2018, Theorem 3).
However, doing so would be less efficient and is expected
to have a larger variance than the estimator used.
We start by considering the the partition function estimate,
noting that true value is Z =

∫∫∫
πo(x, y, z)dxdydz,

Ẑ =
1

N0

N0∑
n=0

1

N1

N1∑
m=1

ψ(xn, yn, zn,m)πi(yn, zn,m)

q(xn, yn, zn,m)

1

N1

N1∑
m=1

πi(yn, zn,m)

q(zn,m|yn)
(21)

=
1

N0

N0∑
n=0

1
N1

∑N1

m=1 vn,m
1
N1

∑N1

m=1 un,m
(22)

where

un,m =
ψ(xn, yn, zn,m)πi(yn, zn,m)

q(xn, yn, zn,m)
and (23)

vn,m =
πi(yn, zn,m)

q(zn,m|yn)
(24)

will be used as shorthands. Further defining

πi(yn) =

∫
πi(yn, z)dz, (25)

Vn =
1

N1

N1∑
m=1

vn,m, and Un =
1

N1

N1∑
m=1

un,m, (26)

and using Taylor’s Theorem on 1/Un about πi(yn) gives

Ẑ = O(ε) +
1

N0

N0∑
n=0

Vn
πi(yn)

×

(
1 +

πi(yn)− Un
πi(yn)

+

(
πi(yn)− Un
πi(yn)

)2
) (27)

provided each Un, π(yn) 6= 0 to avoid singularity issues.
We have by assumption that π(yn) 6= 0 for all possible
yn as otherwise the problem becomes ill-defined. On
the other hand, if Un = 0, it must also be the case that
Vn = 0. Here by taking the convention Vn/Un = 0
when Un = Vn = 0, we can avoid all further possible
singularity issues, such that (27) always holds.
Meanwhile, the standard breakdown of the mean squared
error to the variance plus the bias squared gives

E
[(
Ẑ − Z

)2]
= Var

[
Ẑ
]

+
(
E
[
Ẑ − Z

])2
.

Using (27), we see that the first term in the expansion
dominates for the variance (as πi(yn) − Un decreases
with N1), such that the weak law of large numbers gives

Var
[
Ẑ
]

=
1

N0
Var

[
V1

πi(y1)

]
+O(ε).

Now we have

V1 = E[v1,1|x1, y1] +
1

N1

N1∑
m=1

(v1,m − E[v1,m|x1, y1])

and we further see from the weak law of large numbers
that the second term tends to 0 as N1 increases, but the
first term remains fixed. Thus the first term is dominant
and we have

Var
[
Ẑ
]

=
1

N0
Var

[
E[v1,1|x1, y1]

πi(y1)

]
+O(ε) (28)

=
1

N0
Var

[∫
ψ(x1, y1, z)πi(y1, z)dz

q(x1, y1)πi(y1)

]
+O(ε) (29)

=
σ2
z

N0
+O(ε) (30)

where

σ2
z = Var

[∫
πo(x1, y1, z)dz

q(x1, y1)

]
. (31)

Switching focus to the bias we have

E
[
Ẑ − Z

]
= O(ε) + E

[(
V1

πi(y1)

)
×

(
πi(y1)− U1

πi(y1)
+

(
πi(y1)− U1

πi(y1)

)2
)]

= O(ε) + E
[
E
[(

v1,1
πi(y1)

)
×

(
πi(y1)− U1

πi(y1)
+

(
πi(y1)− U1

πi(y1)

)2
)∣∣∣∣y1]].

For the first order term in the expansion, only the compo-
nent with respect to u1,1 is non-zero as, for m 6= 1,

E[v1,1 (πi(y1)− u1,m) |y1] =

E[v1,1|y1]E[(πi(y1)− u1,m) |y1] = 0.
(32)

Denoting the first order term as T1, we thus have

T1 = E

v1,1
(

1
N1

∑N1

m=1 πi(y1)− u1,m
)

(πi(y1))
2

=

1

N1

(
E
[
v1,1
πi(y1)

]
− E

[
v1,1u1,1

(πi(y1))
2

])

=
1

N1

(
Z −

∫∫∫
ψ(x, y, z) (πi(y, z))

2

q(z|y)
(∫
πi(y, z′)dz′

)2 dxdydz
)

=
1

N1

(
Z −

∫∫∫
πo(x, y, z)pi(z|y)

q(z|y)
dxdydz

)
.

For the second order term, T2, components of u1,m for
m 6= 1 are no longer zero as follows

T2 = E

E
 v1,1
πi(y1)

(
1

N1

N1∑
m=1

πi(y1)− u1,m
πi(y1)

)2
∣∣∣∣∣∣y1

=
1

N2
1

E

[
v1,1 (πi(y1)− u1,1)

2

(πi(y1))
3

]
+

1

N2
1

E

[
1

(πi(y1))
3×

E

[
v1,1

N1∑
m=2

N1∑
`=1

(πi(y1)− u1,m) (πi(y1)− u1,m)

∣∣∣∣∣y1
]]
,

now using an argument akin to (32) shows that terms for
which m 6= ` are all zero. Further noticing that the first
term is asympotitically dominated gives
= O(ε)+

1

N2
1

E

[
1

(πi(y1))
3E

[
v1,1

N1∑
m=2

(πi(y1)− u1,m)
2

∣∣∣∣∣y1
]]
,

= O(ε) +

(
N1 − 1

N2
1

)
×

E

[
E
[
v1,1
πi(y1)

∣∣∣∣y1]E
[(

πi(y1)− u1,1
πi(y1)

)2
∣∣∣∣∣y1
]]

,

= O(ε)+

1

N1
E

[∫
πo(x, y1, z)dxdz

q(y1)
Var

[
u1,1
πi(y1)

∣∣∣∣y1]
]
,

= O(ε)+

1

N1
E

[∫∫
πo(x, y1, z)dxdz

q(y1)
Var

[
pi(z1,1|y1)

q(z1,1|y1)

∣∣∣∣y1]
]
,

Putting the bias terms together now gives

E
[
Ẑ − Z

]
=

δz
N1

+O(ε) (33)

where

δz =

∫∫∫
πo(x, y, z)Var

[
pi(z1,1|y1)

q(z1,1|y1)

∣∣∣∣y1 = y

]
dxdydz

+ Z −
∫∫∫

πo(x, y, z)pi(z|y)

q(z|y)
dxdydz. (34)

We thus have that the mean squared error is

E
[(
Ẑ − Z

)2]
=
σ2
z

N0
+

δ2z
N2

1

+O(ε) (35)

where σ2
z and δz a respectively defined in (31) and (34).

If we now consider the estimator for the unnormalized tar-
get expectation (i.e. the numerator in the self-normalized
estimator), we see that we can use the same arguments
with ψ(x, y, z) replaced by ψ(x, y, z)g(x, y, z). Thus de-
noting this estimator as Ĝ and its true value as G = γ0Z,
we have

E
[(
Ĝ−G

)2]
=
σ2
g

N0
+

δ2g
N2

1

+O(ε) (36)

where

σg = Var

[∫
g(x1, y1, z)πo(x1, y1, z)dz

q(x1, y1)

]
(37)

δg = G−
∫∫∫

g(x, y, z)πo(x, y, z)pi(z|y)

q(z|y)
dxdydz+∫∫∫

πo(x, y, z)Var

[
pi(z1,1|y1)

q(z1,1|y1)

∣∣∣∣y1 = y

]
dxdydz.

(38)

Now the self-normalized estimator we actually use is
I0 = Ĝ/Ẑ. To assess this, we represent

Ĝ = G+
δg
N1

+
σgξ1√
N0

+O(ε) (39)

Ẑ = Z +
δz
N1

+
σzξ2√
N0

+O(ε) (40)

where ξ1 and ξ2 are correlated random variables, each
with mean zero and variance 1 under their marginal distri-
butions. Now again using Taylor’s theorem

1

Ẑ
=

1

Z

(
1 +

Z − Ẑ
Z

)
+O(ε)

=
1

Z

(
1− 1

Z

(
δz
N1

+
σzξ2√
N1

))
+O(ε) (41)

where singularity issues are again dealt with because Z 6=
0 by our assumptions, noting Ĝ = 0 if Ẑ = 0, and taking
the convention Ĝ/Ẑ = 0 whenever Ĝ = 0. Thus

I0 =
1

Z2

(
G+

δg
N1

+
σgξ1√
N0

)(
Z − δz

N1
− σzξ2√

N0

)
+O(ε)

= γ0 +
δg − γ0δz
ZN1

+
σgξ1 − γ0σzξ2

Z
√
N0

− σgξ1σzξ2
Z2N0

+O(ε)

Therefore,

Var [I0] =
σ2
g + γ20σ

2
z − 2σgγ0σzCov(ξ1, ξ2)

Z2N0
+O(ε)

(42)
and

E [I0 − γ0] =
δg − γ0δz
ZN1

− σgσz
Z2N0

E [ξ1ξ2] +O(ε)

(43)
and therefore

E
[
(I0 − γ0)

2
]

=
σ2

N0
+

δ2

N2
1

+O(ε) (44)

where

σ2 =
σ2
g + γ20σ

2
z − 2σgγ0σzCov(ξ1, ξ2)

Z2
(45)

and δ =
δg − γ0δz

Z
. (46)

A full characterization of Cov(ξ1, ξ2) can further be cal-
culated by considering the full expansions for Ĝ and
Ẑ. Though we do not trawl through the necessary al-
gebra here, we note that Corr(ξ1, ξ2) = 1 if g(x, y, z)
is constant, in which case we also have δg = γ0δ and
σ2
g = γ20σ

2
z and so δ = σ2 = 0. This is to be ex-

pected as, in this scenario, we have the trivial estimator
I0 = γ0 = g(x, y, z)∀x, y, z.

Corollary 2. The un-Rao-Blackwellized form of the es-
timator given in (11), whereby only a single sample is
returned from the inner query sampled in proportion to
its weight, also converges. Specifically, it has the same
rate of convergence for the bias, but has a constant factor
increase in the variance.

Proof. The un-Rao-Blackwellized estimator for the parti-
tion function can be represented as

Ẑ ′ =
1

N0

N0∑
n=0

ψ(xn, yn, zn,m∗(n))

q(xn, yn)
(47)

where

m∗(n) ∼ DISCRETE

(
πi(yn, zn,m)/q(zn,m|yn)∑N1

`=1 πi(yn, zn,`)/q(zn,`|yn)

)
We first show Ẑ from (21) is a true Rao-Blackwellization
of Ẑ ′ by noting that

E
[
Ẑ ′
∣∣∣x1:N0 , y1:N0 , z1:N0,1:N1

]

=
1

N0

N0∑
n=0

N1∑
m=1

ψ(xn, yn, zn,m)

q(xn, yn)

πi(yn, zn,m)

q(zn,m|yn)
N1∑
m=1

πi(yn, zn,m)

q(zn,m|yn)

= Ẑ.

We thus see that Ẑ ′ and Ẑ have the same expectation as
required. Equivalent arguments can further be applied
to show the unnormalized target estimate has the same
expectation as before.
For the variance, we can consider that

Var
[
Ẑ ′
]

=
1

N0
Var

[
ψ(x1, y1, z1,m∗(n))

q(x1, y1)

]

=
1

N0
Var

[
ψ(x1, y1, z

∗)

q(x1, y1)

−
ψ(x1, y1, z

∗)− ψ(x1, y1, z1,m∗(n))

q(x1, y1)

]
where z∗ ∼ pi(z|y). Now as N1 increases, the second of
these terms will diminish while the first does not, meaning
the first is dominant.
By following the same steps as Theorem 1, we thus
achieve the same result for the convergence rate except
for substituting in for the following definitions

σ2
z = Var

[
ψ(x1, y1, z

∗)

q(x1, y1)

]
(48)

σ2
g = Var

[
g(x1, y1, z

∗)ψ(x1, y1, z
∗)

q(x1, y1)

]
. (49)

Note that these variances are always larger than those
from Theorem 1.

Theorem 2. If each τk(n0) ≥ A (log(n0))
α
,∀n0 > B

for some constants A,B, α > 0 and each fk is continu-
ously differentiable, then the mean squared error of J0 as
an estimator for γ0 converges to zero as N0 →∞.

Proof. Let f̂no := f0

(
y
(0)
n0 , I1

(
y
(0)
n0 , τ1:D(n0)

))
and let

I0(n0) be a NMC estimator that uses τk(n0) samples at
each layer. We have

E
[
(J0 − γ0)

2
]

= Var [J0] + (E [J0 − γ0])
2

=
1

N2
0

N0∑
n0=1

Var
[
f̂no

]
+

(
1

N0

N0∑
n0=1

E
[
f̂no − γ0

])2

=
1

N2
0

N0∑
n0=1

n0Var [I0(n0)]+

(
1

N0

N0∑
n0=1

E [I0(n0)−γ0]

)2

Substituting in for the variance and bias terms from (3)
now gives

E
[
(J0 − γ0)

2
]
≤ O(ε) +

ς20
N0

+ (50)(
1

N0

N0∑
n0=1

(
C0ς

2
1

2τ1(n0)
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2τk+2(n0)

))2

Here ς20/N0 clearly tends to zero as N0 → ∞. For the
bias squared term, which we denote S(N0)2, we use the
assumption that τk(n0) ≥ A (log(n0))

α
,∀n0 > B. In

the following analysis, we will assume that α < 2, noting
that if the result of the overall theorem holds for α1, then
it trivially holds for α2 > α1. We now have

S(N0)2 ≤

bBc
N0

S(bBc) +
1

N0

N0∑
n0=dBe

β

A (log(n0))
α

2

≤ 2

(
bBcS(bBc)

N0

)2

+ 2

 1

N0

N0∑
n0=dBe

β

A (log(n0))
α

2

≤ 2

(
bBcS(bBc)

N0

)2

+
2β2

A2Nα
0

 N0∑
n0=dBe

1

(log(n0))
2

α

where β is as per (19). Here the first term clearly goes
to zero because the assumption τk(n0) ∈ N+ ensures
bBcS(bBc) is a finite constant. For the second term, we
first note from using a condensation test that

N0∑
n0=dBe

1

n0 (log(n0))
2 <∞. (51)

Now by invoking Kronecker’s lemma, namely that
lim
N→∞

1
N

∑N
n Xn = 0 if

∑∞
n=1Xn/n < ∞, it follows

that this term tends to zero. Note that because we are
examining the bound itself, rather than any random vari-
ables, this is a result which holds surely. We have thus
shown that all non-dominated terms in (50) tend to zero
as N0 →∞, giving the required result.

Theorem 3. If each τk(n0) ≥ Anα0 , ∀n0 > B for some
constants A,B, α > 0 and each fk is continuously differ-
entiable, then

E
[
(J0 − γ0)

2
]
≤ ς20
N0

+

(
βg(α,N0)

ANα
0

)2

+O(ε), (17)

where g(α,N0) =

1/(1− α), α < 1

log(N0) + η, α = 1

ζ(α)Nα−1
0 , α > 1

; (18)

β =
C0ς

2
1

2
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2
; (19)

η ≈ 0.577 is the Euler–Mascheroni constant; ζ is the
Riemann–zeta function; andCk,Kk, and ςk are constants
defined as per the corresponding NMC bound given in (3).

Proof. Starting at (50) and following on in the same man-
ner as the proof for Theorem 2, we have

S(N0)2 ≤

bBc
N0

S(bBc) +
1

N0

N0∑
n0=dBe

β

Anα0

2

=

(
βHα[N0]

AN0

)2

+O(ε)

whereHα[N0] :=
∑N0

n0
n−α0 is theN0-th generalized har-

monic number of order α. For α = 1 and α > 1, it is well
known that H1[N0]→ log(N0) +η and Hα[N0]→ ζ(α)
respectively. For, α < 1, we apply the Euler-Maclaurin
formula giving

Hα[N0] = 1 +

∫ n0=N0

n0=1

n−α0 dn0 +
N−α0 − 1

2
+R1

→ N1−α
0 /(1− α).

where the dominant term originates from the integral.
Putting everything back together, namely substituting
in turn for the bound on S(N0)2 and then this bound
into (50), now yields the desired result.

Corollary 1. Let J0 be an ONMC estimator setup as per
Theorem 3 with N0 outermost samples and let I0 be an
NMC estimator with a matched overall sample budget.
Defining c = (1 + αD)(−1/(1+αD)), then

Var[J0]→ cVar[I0] as N0 →∞.
Further, if the NMC bias decreases at a rate proportional
to that implied by the bound given in (3), namely

|E[I0 − γ0]| = b

Mα
0

+O(ε) (20)

for some constant b > 0, where M0 is the number of
outermost samples used by the NMC sampler, then
|E[J0 − γ0]| ≤ cαg(α,N0) |E[I0 − γ0]|+O(ε).

Proof. We first consider how to match the sample budgets
between the two estimators. Noting that asymptotically,
the computational cost is dominated by calculations for

the innermost estimator (see (Rainforth, 2017, Appendix
G)), we have for large N0,

CostONMC →
N0∑
n0

D∏
k=1

τk(n0) = AD
N0∑
n0

nαD0

= ADH−αD[N0].

The respective asymptotic cost for an NMC using M0

outermost samples is
CostNMC → ADM1+αD

0 .

Thus matching the computational budgets gives

M0 = (H−αD[N0])
1

1+αD . (52)
Now by applying the Euler-Maclaurin formula to
H−αD[N0] in similar manner to Theorem 3, we get

H−αD[N0]→ N1+αD
0

1 + αD
, and thus M0 → cN0.

Using (3) and Theorem 3 we thus have
Var [J0]→ ς20/N0 → cς20/M0 → cVar [I0] .

Now considering the biases,

|E[J0 − γ0]| =

∣∣∣∣∣ 1

N0

N0∑
n0=1

E [I0(n0)−γ0]

∣∣∣∣∣
≤ 1

N0

N0∑
n0=1

|E [I0(n0)−γ0]|

and whenever (20) holds,

=
1

N0

N0∑
n0=1

b

nα0
+O(ε)

=
bHα[N0]

N0
+O(ε)

=
bg(α,N0)

Nα
0

+O(ε).

By comparison, (20) also gives us

|E[I0 − γ0]| = b

cαNα
0

+O(ε)

and so
|E[J0 − γ0]| ≤ cαg(α,N0) |E[I0 − γ0]|+O(ε)

as required.

B OBSERVING THE OUTPUT OF A
NESTED QUERY

As discussed in Section 3, one can construct nested infer-
ence problems where one observes the output of, rather
than sampling from, the nested query. For example, we
could think about adjusting our previous example to the
following
(defquery inner [y D]
(let [z (sample (gamma y 1))]
(observe (normal y z) D)
z))

(defquery outer [D]
(let [y (sample (beta 2 3))

x (sample (gamma 1 1))
dist (conditional inner)]

(observe (dist y D) x)
(* y x)))

Statistically, this problem is still well defined and can be
represented in the same form as (7); Anglican’s sample
and observe have the same impact on the distribution
defined by a program, varying only in whether the variable
already exists or not (Rainforth et al., 2016b).
However, in general we are not able to evaluate even
the unnormalized density of a program’s outputs due
to change-of-variables complications (Rainforth, 2017,
Chapter 4). This creates an ABC-style problem (Csilléry
et al., 2010), wherein we can generate weighted samples
from the inner query, but we cannot evaluate its density
for a given output. This creates a substantial computa-
tional issue for actually observing a nested query that
must be dealt with on top of any complications from the
nested estimation. Dealing with these is beyond the scope
of this paper and is left to future work.

C DISCRETE OR DETERMINISTIC
INPUT VARIABLES

One special case where consistency can be maintained
without requiring infinite computation for each nested
call is when the variables passed to the inner query can
only take on, say C, finite possible values. Of particu-
lar note, is the case when only deterministic variables
are passed to the inner query, corresponding to C = 1,
which, for example, forms the theoretical basis for the
“programs as proposals” approach of Cusumano-Towner
and Mansinghka (2018). As per Theorem 5 of Rainforth
et al. (2018), we can rearrange such problems to C sepa-
rate estimators such that the standard Monte Carlo error
rate can be achieved. This is perhaps easiest to see by
noting that for such problems,

∫
πi(y, z)dz can only on

C distinct values, leading to a separate, non nested, in-
ference problem through enumeration. For repeated nest-
ing, the rearrangement can be recursively applied until
one achieves a complete set of non-nested estimators. To
avoid inferior NMC convergence rates, this special case re-
quires explicit rearrangement or a specialist consideration
by the language back-end (as done by e.g. Stuhlmüller
and Goodman (2012, 2014); Cornish et al. (2017)). For
example, one can dynamically catch the inner query being
called with the same inputs, e.g. using memoization, and
then exploit the fact that all such cases target the same
inference problem. Care is required in these approaches
to ensure the correct combination with outer query, e.g.
returning properly weighted samples and ensuring the
budget of the inner queries remains fixed.

D EXACT SAMPLING
It may, in fact, be possible to provide consistent estimates
for many nested query problems without requiring infinite
computation for each nested call by using exact sampling
methods such as rejection sampling or coupled Markov
chains (Propp and Wilson, 1996). Such an approach is
taken by Church (Goodman et al., 2008), wherein no
sample ever returns until it passes its local acceptance
criterion as a hierarchical rejection sampler. Church is
able to do this because it only supports hard condition-
ing on events with finite probability, allowing it to take a
guess-and-check process that produces an exact sample
in finite time, simply sampling from the generative model
until the condition is satisfied. Although the performance
still clearly gets exponentially worse with nesting depth,
this is a change in the constant factor of the computation,
not its scaling with the number of samples taken: generat-
ing a single exact sample of the distribution has a finite
expected time using rejection sampling which is thus a
constant factor in the convergence rate.
Unfortunately, most problems require conditioning on
measure zero events because they include continuous data
– they require a soft conditioning akin to the inclusion of a
likelihood term – and so cannot be tackled using Church.
Constructing a practical generic exact sampler for soft
conditioning in an automated way is likely to be insur-
mountably problematic in practice. Nonetheless, it does
open up the intriguing prospect of a hypothetical system
that provides a standard Monte Carlo convergence rate for
nested inference. This assertion is a somewhat startling
result: it suggests that Monte Carlo estimates made us-
ing nested exact sampling methods have a fundamentally
different convergence rate for nested inference problems
(though not nested estimation problems in general) than,
say, nested self-normalized importance sampling.

E CASE STUDY: SIMULATING A
POKER PLAYER

As a more realistic demonstration of the utility for al-
lowing nested inference in probabilistic programs, we
consider the example of simulating a poker player who
reasons about another player; we will refer to the two
players respectively as P1 and P2. Anglican code for this
example is given in Figure 3. Though the model has been
kept deliberately simple for exposition, one could easily
envisage adapting it to a higher fidelity simulation. In
particular, one could easily adapt the model to consider
multiple players, additional betting options for the second
player, and multiple rounds of betting (for which addition
levels to the nesting might be required).
At a high level, we a trying to estimate the distribution of
payoffs (i.e. the net money received) by P1 for different
hands and bets. This can then in turn be used to, for

example, optimize the bet made. The starting situation is
that P1 is on the small blind (£1) and P2 on the big blind
(£2), with no other players currently in the game. This
means that P1 and P2 have already have committed (as
required by the rules of the game) £1 and £2 respectively
to the pot and it is P1’s turn to act. P1 can now choose
between three actions

Fold – P1 declines to commit any more money. P2 takes
the pot giving P1 a payoff of −£1.

Call – P1 matches the stake from the big blind. For sim-
plicity, we are ignoring further rounds of betting and
the scenario where P2 makes a further bet. There
will, therefore, be a showdown where the better hand
takes the pot. Here P1’s payoff is +£2 if they tran-
spire to have the better hand and −£2 otherwise.

Bet – P1 increases their stake to between twice the big
blind (i.e. £4) and the maximum allow bet size
(which we take to be £10). P2 then themselves
subsequently decides whether they will call this bet
or fold. If they fold, P1 receives a payoff of +£2. If
they call, a showdown occurs as before, except that
the win/lose payoffs are now ± the size of P1’s bet.

Estimating the payoff distributions for the cases where P1
folds or calls is straightforward. Folding always yields
a payoff of −£1. Calling yields +£2 with probability
equal to the probability that P1’s hand is better than a
randomly generated hand and−£2 otherwise. Thus if we
represent hand strength as a uniform distribution between
0 and 1, the expected payoff of calling when P1 has hand
strength h1 becomes simply 2h1−2(1−h1) = 2(2h1−1).
Consequently, the expected payoff of calling is better than
that of folding if and only if h1 > 0.25

If P1 instead decides to bet, estimating the payoff distri-
bution becomes substantially more complicated as it no
longer depends only on the respective strength of the two
hands, but also the action P2 takes. This action will be
influenced not only by P2’s hand, but also the size of P1’s
bet: P2 can draw inferences about likely hands for P1
using the information conveyed in P1’s bet. To reflect this,
our model for P2, p2-sim, uses a likelihood function for
P1’s betting, p1-bet-dist, to condition on the actual
bet made. This likelihood is based on the, slightly naı̈ve,
sentiment that P1 will bet more with a better hand, while
also allowing provision for P1 generating their bet at ran-
dom as a bluff. P2 decides to call P1’s bet if their hand is
better than the hand they simulate for P1. Thus denoting
c2 as the boolean variable indicate if P2 calls then we have
P ({c2 = 1}) = P (h2 > h1|b1) = E[h2 > h1|b1] where
b1 represents P1’s bet.1 Note that, from P2’s perspective,
h2 and b1 are known, but h1 is a random variable.

1In practice, it may be more realistic to assume that, rather

(defdist hand-strength []
;; Samples the strength of a hand
[dist (uniform-continuous 0 1)]
(sample* [this] (sample* dist))
(observe* [this value] (observe* dist value)))

(defdist p1-bet-dist [hand]
;; Likelihood model used by player 2 to infer the strength of player
;; 1’s hand
[mean-bet (if (< hand 0.5) 0 (* 8 hand))]
(sample* [this] nil) ;; No need to support sampling here
(observe* [this value]
(log-sum-exp
(+ (log 0.95) (observe* (normal mean-bet 2) value))
(+ (log 0.05) (observe* (uniform-continuous 4 10) value)))))

(with-primitive-procedures [hand-strength p1-bet-dist]
(defm calc-payoff [p1-hand p1-bet p2-hand p2-call]
;; Calculate payoff given actions and hands.
(let [small-blind 1

big-blind 2]
(case (< p1-bet big-blind)

true (- small-blind) ;; Lose small blind if fold
false (case p2-call

false big-blind ;; Pick up big blinds
true (if (> p2-hand p1-hand);; Showdown

(- p1-bet)
p1-bet)))))

(defquery p2-sim [p2-hand p1-bet]
;; Simulator for player 2 who knows player 1’s bet but not her
;; hand. Returns boolean of whether bet is called
(let [p1-hand (sample (hand-strength))] ;; Simulate a hand for player 1
(observe (p1-bet-dist p1-hand) p1-bet) ;; Condition on player 1’s known bet
(> p2-hand p1-hand)))

(defquery p1-payoff [p1-hand p1-bet N_1]
;; Estimator for distribution of player 1’s payoff for given hand and action
(let [p2-hand (sample (hand-strength)) ;; Sample hand for opponent

dist (conditional p2-sim :smc :number-of-particles N_1)
p2-call (sample (dist p2-hand p1-bet))] ;; Simulate player 2

(calc-payoff p1-hand p1-bet p2-hand p2-call)))) ;; Return payoff

(defn estimate-payoff [p1-hand p1-bet N_0 N_1]
;; Estimates the relative probability of actions given a hand
(let [samps (->> (doquery :importance p1-payoff [p1-hand p1-bet N_1])

(take N_0))]
(empirical-distribution (collect-results samps))))

Figure 3: Code simulating the behavior of a poker player who reasons about the behavior of another player. Explanation
provided in text.

(a) Expected payoff with N1 = 1 (b) Expected payoff with N1 = 1500

Figure 4: Contour plots for P1’s expected payoff using the poker model given in Figure 3 as a function of their hand
strength and amount bet (in £). On the left is the naı̈ve estimator using N1 = 1, which is an equivalent to ignoring
the observe statement in p2-sim, such P2 bets when their hand is better than one drawn uniformly at random. On
the right is the output of produced by using the empirical measured given in (9) based on self-normalized, nested
importance sampling, with N1 = 1500. For both models, an evenly spaced 17× 13 grid (hand strength by bet size) of
estimates was calculated using N0 = 2× 106 outer samples, which was in turn converted to the shown contour plots
using MATLAB’s contourf plot function. Note the difference colorbar scaling between the plots.

To estimate the payoff when P1 bets, we nest this model
for P2. Specifically, the payoff for P1 is given by
E[PAYOFF(h1, b1, h2, c2)] where h1 and b1 are fixed, h2
is drawn uniformly at random, and c2|h2 is sampled using
a nested inference on p2-sim.
Keen-eyed readers may have noticed that the use of
conditional in p1-payoff is distinct to elsewhere in
the paper as we have explicitly used SMC inference with a
provided number of particles N1 for conditional. This
provides a roundabout means of controlling the computa-
tional budget for calls to conditional, as we showed is
required for convergence in Section 3.
Figure 4 shows contour plots for P1’s expected payoff as
a function of their hand strength and amount bet when P2
naı̈vely simulates P1’s hand strength from the prior (left)
and uses inference to try and infer P1’s hand strength from
their bet (right). As expected, for the naı̈ve model then it
is better for P1 to make larger bets when she has a strong
hand and smaller bets when she has a weak hand. When
she has a weak hand, the expected payoff of all possible
bets is worse than folding or calling.

than aiming to call in proportion to P (h2 > h1|b1), P2 instead
tries to directly estimate this probability and deterministically
chooses to call if this estimate some threshold determined by
the pot odds. This would then lead to an ”estimates as variables”
nested estimation, instead of a nested inference model.

In our nested model, a number of more complex behaviors
arise. Firstly, we note that the overall variation in expected
payoff is less: making significant bets with a weak hand
becomes less detrimental, while the expected rewards of
a large bet with a strong hand are also diminished. This
occurs because the act of betting portrays a stronger hand
and so P2 is more likely to fold when they condition
their assessment of P1’s hand on the fact that P1 bet.
Consequently, a bluff with a weak hand is more likely
to steal the blinds, while a bet with a strong hand is less
likely to get paid off by a call. In fact, we see that, for this
model, it is beneficial to take a hyper-aggressive stance
and always bet: P2 is sufficiently passive that the risk of
betting is always worthwhile even for a very weak hand.
Another, more subtle, effect that transpires is that, when
P1 has a weak hand, it is possible to both bet too much
and bet too little. Too small a bet is more likely to get
called – even when P2 has a weak hand, they are being
offered very favorable odds to call the bet in hope that P1
is bluffing. Too large a bet exposes P1 to unnecessarily
large losses when P2 transpires to have a strong hand
and decides to call. A medium sized bluff thus offers
the best balance between being believable and not being
unnecessarily risky. A different effect is seen when P1
has a strong hand: small bets are likely to get paid-off by
a large number of hands, while large bets may yield large

Figure 5: Convergence of ONMC, NMC, and fixed N1

for expected payoff in poker example with hand strength
set to 0.1 and bet size set to 6. Results are averaged over
1000 runs, with solid lines showing the mean and shading
the 25-75% quantiles. Ground truth was estimated empiri-
cally using a large scale NMC run withN0 = 5×107 and
N1 = 5000. The theoretical rates for NMC are shown by
the dashed lines.

rewards or potentially cause an even stronger hand to fold.
Thus a mid-level bet actually becomes the worst option.
For this problem, nesting has allowed us to emulate a
player that assumes simplistic play from their opponent
to outsmart them. One could clearly envisage making
the model even smarter by adding additional layers of
nesting. Suppose that P2 is actually a good player that
more explicitly reasons about the fact that P1 will be
reasoning about them. We could then, for example, use
the model developed so far for P2’s simulation of P1,
meaning that they will be more attuned to the fact that
P1 might be bluffing. Amongst other things, this is then
likely to make them more likely to call, knowing that P1 is
playing an aggressive game and they have a good chance
of catching a bluff. P1 could then in turn use this a higher
fidelity model for P2, replacing the current p-sim. It is
easy to see how such a meta-reasoning hierarchy could
potentially lead to smarter and smarter players. However,
the NMC converges rates tell us that doing so comes at a
substantial cost in terms of the difficultly of solving the
resulting nested estimation problem: the required number
of samples increases exponentially with the depth of the
nesting.
We finish by comparing the empirical performance of
ONMC and NMC for this particular problem. Here we
consider a fixed bet of £6 and hand strength of 0.1. The
convergence, shown in Figure 5, demonstrates extremely
similar performance for the two approaches, while again
highlighting the danger of keepingN1 fixed. Note that the
slightly different setup used for τ to that used in the Gaus-
sian example does not make any noticeable difference to
the performance (not shown), with the different choice
stemming from a desire to better highlight the problem of
keeping N1 fixed.

F SIMPLE ANALYTICAL MODEL
DETAILS

We consider the following simple analytic model intro-
duced by (Rainforth et al., 2018) for which the true nested
expectation is γ0 = 1

2 log
(

2
5π

)
− 2

15

y(0) ∼ Uniform(−1, 1), (53a)

y(1) ∼ N (0, 1), (53b)

f1(y(0), y(1)) =

√
2

π
exp

(
−2(y(0) − y(1))2

)
, (53c)

f0(y(0), γ1(y(0))) = log(γ1(y(0))). (53d)
Results for this model are shown in Figure 2 in the main
paper.

G EXPERIMENTAL DESIGN
EXAMPLE

An example application of using estimates as first class
variables if provided by Bayesian experimental de-
sign (Chaloner and Verdinelli, 1995). One can implic-
itly use expectation estimates as first class variables in
Anglican by either calling doquery inside a defdist
declaration or in a defn function passed to a query using
with-primitive-procedures, a macro providing the
appropriate wrappings to convert a Clojure function to an
Anglican one. Anglican code using the latter approach
to create generic estimator for Bayesian experimental
design problems is shown in Figure 6, providing a consis-
tent means of carrying out this class of nested estimation
problems. (Rainforth et al., 2018, Figure 6) shows the
convergence code equivalent to that of Figure 6 for a delay
discounting model. This shows the convergence (or more
specifically lack there of) in the case where M = N1 is
held fixed and the superior convergence achieved when
exploiting the finite number of possible outputs to pro-
duce a reformulated, standard Monte Carlo, estimator. It
therefore highlights both the importance of increasing the
number of samples used by the inner query and exploiting
our outlined special cases when possible.

(defm prior [] (normal 0 1))
(defm lik [theta d] (normal theta d))

(defquery inner-q [y d]
(let [theta (sample (prior))]
(observe (lik theta d) y)))

(defn inner-E [y d M]
(->> (doquery :importance

inner-q [y d])
(take M)
log-marginal))

(with-primitive-procedures [inner-E]

(defquery outer-q [d M]
(let [theta (sample (prior))

y (sample (lik theta d))
log-lik (observe*

(lik theta d) y)
log-marg (inner-E y d M)]

(- log-lik log-marg))))

(defn outer-E [d M N]
(->> (doquery :importance

outer-q [d M])
(take N)
collect-results
empirical-mean))

Figure 6: Anglican code for Bayesian experimental design. By changing the definitions of prior and lik, this code
can be used as a NMC estimator (consistent as N,M → ∞) for any static Bayesian experimental design problem.
Here observe* is a function for returning the log likelihood (it does not affect the trace probability), log-marginal
produces a partition function estimate from a collection of weighted samples, and ->> successively applies a series
of functions calls, using the result of one as the last input the next. When outer-E is invoked, this runs importance
sampling on outer-q, which, in addition to carrying out its own computation, calls inner-E. This, in turn, invokes
another inference over inner-q, such that a MC estimate using M samples is constructed for each sample of outer-q.
Thus log-marg is MC estimate itself. The final return is the (weighted) empirical mean for the outputs of outer-q.

Acknowledgements
I would like to thank Yee Whye Teh, N. Siddharth, and
Benjamin Bloem-Reddy for feedback on drafts of this
work. My research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Programme
(FP7/2007-2013) ERC grant agreement no. 617071.
Some of the work was undertaken while I was at the
Department of Engineering Science and was supported
by a BP industrial grant.

References
C. Andrieu and G. O. Roberts. The pseudo-marginal

approach for efficient Monte Carlo computations. The
Annals of Statistics, pages 697–725, 2009.

C. Andrieu, A. Doucet, and R. Holenstein. Particle
Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 2010.

G. Casella and C. P. Robert. Rao-Blackwellisation of
sampling schemes. Biometrika, 83(1):81–94, 1996.

K. Chaloner and I. Verdinelli. Bayesian experimental
design: A review. Statistical Science, 1995.

R. Cornish, F. Wood, and H. Yang. Efficient exact infer-
ence in discrete Anglican programs. 2017.

K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François.
Approximate Bayesian Computation (ABC) in practice.
Trends in Ecology & Evolution, 25(7):410–418, 2010.

M. F. Cusumano-Towner and V. K. Mansinghka. Using

probabilistic programs as proposals. arXiv preprint
arXiv:1801.03612, 2018.

G. Fort, E. Gobet, and E. Moulines. MCMC design-based
non-parametric regression for rare-event. application to
nested risk computations. Monte Carlo Methods Appl,
2017.

H. Ge, K. Xu, and Z. Ghahramani. Turing: a language for
composable probabilistic inference. In AISTATS, 2018.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz,
and J. B. Tenenbaum. Church: a language for genera-
tive models. UAI, 2008.

N. D. Goodman and A. Stuhlmüller. The Design and Im-
plementation of Probabilistic Programming Languages.
2014.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K.
Rajamani. Probabilistic programming. In Proceedings
of the on Future of Software Engineering. ACM, 2014.

R. Hickey. The Clojure programming language. In
Proceedings of the 2008 symposium on Dynamic lan-
guages, page 1. ACM, 2008.

L. J. Hong and S. Juneja. Estimating the mean of a non-
linear function of conditional expectation. In Winter
Simulation Conference, 2009.

T. A. Le, A. G. Baydin, and F. Wood. Nested compiled
inference for hierarchical reinforcement learning. In
NIPS Workshop on Bayesian Deep Learning, 2016.

V. Mansinghka, D. Selsam, and Y. Perov. Ven-
ture: a higher-order probabilistic programming plat-
form with programmable inference. arXiv preprint

arXiv:1404.0099, 2014.
T. Mantadelis and G. Janssens. Nesting probabilistic

inference. arXiv preprint arXiv:1112.3785, 2011.
I. Murray, Z. Ghahramani, and D. J. MacKay. MCMC for

doubly-intractable distributions. In UAI, 2006.
C. A. Naesseth, F. Lindsten, and T. B. Schön. Nested

sequential Monte Carlo methods. In ICML, 2015.
L. Ouyang, M. H. Tessler, D. Ly, and N. Goodman. Prac-

tical optimal experiment design with probabilistic pro-
grams. arXiv preprint arXiv:1608.05046, 2016.

M. Plummer. Cuts in Bayesian graphical models. Statis-
tics and Computing, 25(1):37–43, 2015.

J. G. Propp and D. B. Wilson. Exact sampling with cou-
pled Markov chains and applications to statistical me-
chanics. Random structures and Algorithms, 9(1-2):
223–252, 1996.

T. Rainforth. Automating Inference, Learning, and Design
using Probabilistic Programming. PhD thesis, 2017.

T. Rainforth, R. Cornish, H. Yang, and F. Wood. On
the pitfalls of nested Monte Carlo. NIPS Workshop on
Advances in Approximate Bayesian Inference, 2016a.

T. Rainforth, T. A. Le, J.-W. van de Meent, M. A. Osborne,
and F. Wood. Bayesian optimization for probabilistic
programs. In NIPS, pages 280–288, 2016b.

T. Rainforth, R. Cornish, H. Yang, A. Warrington, and
F. Wood. On nesting Monte Carlo estimators. In ICML,
2018.

A. Scibior and Z. Ghahramani. Modular construction of
Bayesian inference algorithms. In NIPS Workshop on
Advances in Approximate Bayesian Inference, 2016.

D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks.
BUGS 0.5: Bayesian inference using Gibbs sampling
manual (version ii). MRC Biostatistics Unit, Cam-
bridge, 1996.

A. Stuhlmüller and N. D. Goodman. A dynamic program-
ming algorithm for inference in recursive probabilistic
programs. In Second Statistical Relational AI workshop
at UAI 2012 (StaRAI-12), 2012.

A. Stuhlmüller and N. D. Goodman. Reasoning about
reasoning by nested conditioning: Modeling theory of
mind with probabilistic programs. Cognitive Systems
Research, 28:80–99, 2014.

D. Tolpin, J.-W. van de Meent, and F. Wood. Probabilistic
programming in Anglican. Springer, 2015.

D. Tolpin, J.-W. van de Meent, H. Yang, and F. Wood.
Design and implementation of probabilistic program-
ming language Anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of
Functional Programming Languages. ACM, 2016.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new

approach to probabilistic programming inference. In
AISTATS, pages 2–46, 2014.

R. Zinkov and C.-C. Shan. Composing inference algo-
rithms as program transformations. In UAI, 2017.

