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Abstract

Multilevel clustering problems where the con-
tent and contextual information are jointly clus-
tered are ubiquitous in modern datasets. Exist-
ing works on this problem are limited to small
datasets due to the use of the Gibbs sampler.
We address the problem of scaling up multi-
level clustering under a Bayesian nonparamet-
ric setting, extending the MC2 model proposed
in (Nguyen et al., 2014). We ground our ap-
proach in structured mean-field and stochastic
variational inference (SVI) and develop a tree-
structured SVI algorithm that exploits the in-
terplay between content and context modeling.
Our new algorithm avoids the need to repeat-
edly go through the corpus as in Gibbs sam-
pler. More crucially, our method is immediately
amendable to parallelization, facilitating a scal-
able distributed implementation on the Apache
Spark platform. We conduct extensive exper-
iments in a variety of domains including text,
images, and real-world user application activi-
ties. Direct comparison with the Gibbs-sampler
demonstrates that our method is an order-of-
magnitude faster without loss of model qual-
ity. Our Spark-based implementation gains an-
other order-of-magnitude speedup and can scale
to large real-world datasets containing millions
of documents and groups.

1 INTRODUCTION

A prominent feature in numerous modern datasets tackled
in machine learning is how the data are naturally layered
into groups in a hierarchical representation: text corpus as
collection of documents, which are subdivided into words,
user’s activities are organized by users, whose sessions di-
vided into actions, electronic medical records (EMR) orga-

nized as sets of ICD1 codes diagnosed for the patient. Prob-
abilistic modeling techniques for grouped data have be-
come a standard tool in machine learning, including topic
modeling (Blei et al., 2003; Teh et al., 2006) and multi-
level data analysis (Hox, 2010; Diez-Roux, 2000). An-
other important feature in such datasets is the availability
of rich sources of additional information known as contexts
and group-specific meta-data (Phung et al., 2012; Nguyen
et al., 2014). These include information about authorships,
timestamps, various tags associated with texts and images,
user’s demographics, etc. For consistency, we shall refer
to the content groups (e.g., text documents, images, user’s
activity session) broadly as documents, and its associated
context as document-specific context.

The rich and interwoven nature of raw document contents
and their contextual information provides an excellent op-
portunity for joint modeling and, in particular, clustering
the content-units (e.g., forming topics from words) and
the content-groups (e.g., forming cluster of documents)
— a problem known as multilevel clustering with context
(Nguyen et al., 2014). There have been several attempts
of multilevel clustering in the probabilistic topic model-
ing literature. A simple approach is to subdivide this task
into two phases: first learn a topic model and then per-
form document clustering using the topic-induced repre-
sentation of the documents (Lu et al., 2011; Nguyen et al.,
2013; Phung et al., 2014). An elegant approach is to unify
these two steps into a single framework (Nguyen et al.,
2014; Xie & Xing, 2013; Rodriguez et al., 2008; Wulsin
et al., 2012). Among these work, the Bayesian nonpara-
metric approach to multilevel clustering with group-level
contexts (MC2) (Nguyen et al., 2014) offers a powerful
method capable of jointly modeling both content and con-
text in a flexible and nonparametric manner, generalizing
on several previous modeling techniques. The key idea of
the MC2 model is a special Dirichlet Process (DP) whose
base-measure is a product between a context-generating
measure and a content-generating DP. This construct en-
ables both clustering of documents associating with their

1Stands for International Classification of Disease.



contexts and clustering of words into topics. Nguyen et al.
(2014) have shown that their MC2 integrates the nested DP
(Rodriguez et al., 2008) and DP mixture (DPM) (Antoniak,
1974) into one single unified model wherein marginalizing
out the documents’ contents results in a DP mixture, and
marginalizing out document-specific contexts results in a
nested DP mixture.

The need for jointly accounting for both context and con-
tent data in a flexible Bayesian nonparametric fashion also
underlies a formidable computational challenge for model
fitting. In fact, the MC2 model of Nguyen et al. (2014) was
originally equipped with a Gibbs sampler for inference;
hence the usefulness of the model could only be demon-
strated on relatively small datasets. This seriously hinders
the usefulness and applicability of MC2 in tackling big real
world datasets which can contain millions of documents or
more, along with it the millions of useful pieces of contex-
tual information.

Our goal in this work is to address the multilevel cluster-
ing with contexts problem at scale, by developing effec-
tive posterior inference algorithms for the MC2 using tech-
niques from stochastic variational inference. A challenging
aspect about inference for MC2 is the computational treat-
ment in the clustering of discrete distributions of contents
jointly with the context variables. Unlike either the Dirich-
let process or HDP mixtures, the context-content linkage
present in the MC2 model makes the model more expres-
sive, while necessitating the inference of the joint context
and content atoms. These are mathematically rich objects
— while the context atoms take on usual contextual values,
the content atoms represent probability distributions over
words. To maintain an accurate approximation of the joint
context and content atoms, we employ a tree-structured
mean-field decomposition that explicitly links the model
context and content atoms.

The result is a scalable stochastic variational inference
(SVI) algorithm for MC2 (SVI-MC2) that, unlike Gibbs
sampling, avoids the need to go through the corpus mul-
tiple times. Moreover, the SVI computation within each
mini-batch can be easily parallelizable. To fully exploit this
advantage of the SVI formulation, we further implement
our proposed SVI for the MC2 algorithm on the Apache
Spark platform. We demonstrate that even a sequential
implementation of SVI-MC2 is several times faster than
Nguyen et al. (2014)’s Gibbs sampler while yielding the
same model perplexity. A parallel implementation can gain
another order of magnitude improvement in speed; our
Spark implementation can simultaneously find topics and
clustering millions of documents and their context. Our
contributions then can be summarized as: (a) a new theoret-
ical development of stochastic variational inference for an
important family of models to address the problem of mul-
tilevel clustering with contexts. We note this class of mod-
els (MC2) include nested DP, DPM, and HDP as the special

cases; (b) a scalable implementation of the proposed SVI-
MC2 on Apache Spark; and (c) the demonstration that our
new algorithm can scale up to very large corpora.

2 RELATED WORK

Models for clustering documents

Two of the most well-known probabilistic models for learn-
ing from grouped data are Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and its nonparametric coun-
terpart, Hierarchical Dirichlet process (HDP) (Teh et al.,
2006). These models allow us to exploit the group structure
for word clustering but not to cluster the groups of data. To
clustering documents, some authors employed a two-step
process. In the first step, each document is represented by
the feature of its topic proportion using topic models, e.g.
LDA or HDP. Now each document is considered as an input
data point for some clustering algorithm. Elango & Jayara-
man (2005) used LDA combined with K-means to cluster
images while Nguyen et al. (2013) exploited features by
HDP and used Affinity Propagation for clustering human
activities.

Incorporating topic modeling and clustering in one unique
model is a more elegant approach. Nested DP (nDP) (Ro-
driguez et al., 2008) is the first attempt to handle this chal-
lenge in the context of Bayesian nonparametric. The model
by Rodriguez et al. (2008) has tried to group documents
into clusters each of which shares the same distribution
over the topics. However, in the original nDP, the doc-
uments do not share topics. An extension to nDP, the
MLC-HDP model with 3-level clustering, has been done
by Wulsin et al. (2012). This model can cluster words,
documents and document-corpora with shared topic atoms
throughout the group hierarchy with this model. Later,
Multi-Grain Clustering Topic Model which allows mix-
ing between global topics and document-cluster topics has
been introduced by Xie & Xing (2013). The most re-
cent work, the Bayesian nonparametric multilevel cluster-
ing with group-level contexts (MC2) (Nguyen et al., 2014),
offers a theoretically elegant joint model for both content
and context. To our best of knowledge, this model is the
current state-of-the-art for this problem.

However, authors in (Nguyen et al., 2014) only provide a
Gibbs sampling method for inference. This seriously hin-
der the usefulness and applicability of MC2 in tackling
modern datasets which can contain millions of documents.

Stochastic Variational Inference

Between two main inference approaches for graphical
model including MCMC and deterministic variational
methods, variational inference is usually preferred due
to its predictable convergence. In variational inference
scheme, the problem of computing intractable posterior
distribution is transformed into an optimization problem by



introducing tractable variational distribution. One of the
most popular approximation is mean-field which assumes
that the variational distribution is fully factorized. The ob-
jective function called Evidence Lower BOund (ELBO) is
defined as KL divergence between approximated distri-
bution and the posterior distribution plus a constant. To
solve this optimization problem, coordinate descent can be
used. However, this optimization method is not suitable for
modern datasets with millions of documents since all docu-
ment are visited in each iteration. To circumvent this chal-
lenge, the earliest, but very recent, attempt can be traced
back to (Hoffman et al., 2010) where SVI framework for
Bayesian nonparametric inference was proposed by com-
bining mean-field approximation and stochastic optimiza-
tion. SVI for the hierarchical Dirichlet process (HDP) was
also presented in (Wang et al., 2011).

Instead of using coordinate descent, stochastic variational
inference (SVI) (Hoffman et al., 2013) using stochastic
gradient descent to optimize the ELBO. In order to keep op-
timization process converge faster, SVI uses the coordinate
descent for the local update which is related to each data
point and update global variables involving multiple data
points with stochastic gradient. Moreover, as suggested by
Amari (1998), learning with natural gradient may lead to
faster convergence. In the SVI framework with exponen-
tial family distributions, the natural gradient updates are
not only more likely to improve optimization speed but also
produces simpler update equations.

We ground our methodology on (Hoffman et al., 2013) and
develop the SVI updates for MC2. However, we note at the
outset that, unlike HDP, our model is not completely fac-
torized, hence our solution does not simply follow a naive
mean field, but rather a variant of structured mean field ap-
proximation of Bayesian nonparametric models.

3 MULTILEVEL CLUSTERING WITH
CONTEXTS (MC2)

We first describe the MC2 model of (Nguyen et al., 2014).
The generative process for MC2 model (see Fig. 1a) is as
follows

U ∼ DP (γ (H × DP (υQ0))) where Q0 ∼ DP (ηS) ,
(θj , Qj) ∼ U for each group j

xj ∼ F (· | θj) , ϕji ∼ Qj , wji ∼ Y (· | ϕji) .

In the above, U is a DP realization, hence a discrete mea-
sure with probability 1, and therefore enforces the cluster-
ing of documents. The sample pair (θj , Qj) ∼ U repre-
sents the context parameter and content-generating mea-
sures of the j-th document. Distinct measures Qj are ef-
fectively drawn from DP(υQ0) where Q0 ∼ DP (ηS), so
the samples ϕji share atoms just like in a hierarchical DP
(HDP). F (.|θj) and Y (.|ϕji) are the likelihoods for con-

text and content with parameters θj and ϕji. Their base-
measures H and S are assumed to be conjugate with the
respective likelihoods.

The stick-breaking representation for the MC2 model is
given Fig. 1b. When integrated out the random stick
length, the model has an intuitive Polya-Urn view known as
the Chinese Restaurant Franchise Bus (CRF-Bus) (Nguyen
et al., 2014). Each word in a document is viewed as a cus-
tomer in a bus. The buses deliver customers randomly to
a set of restaurants following a Chinese Restaurant Pro-
cess (CRP). After getting off the buses, the customers in
the restaurants behave as in the HDP - Chinese Restau-
rant Franchise (CRF). The MC2 model thus inherits the
metaphor of tables at restaurants and global dishes from
the CRF. The detailed stick-breaking representations are

• Stick length for content generation ε = {εm}∞m=1 and
content shared atoms {ψm}∞m=1

ε ∼ GEM (1, γ) , ψm ∼ S, Q0 =
∞∑
m=1

εmδψm .

• Stick length for context generation β = {βk}∞k=1 and
context shared atoms {φk}∞k=1

β ∼ GEM (1, η) , φk ∼ H, G =
∞∑
t=1

βkδφk
.

• Choosing document group (restaurant) for document
j = 1, . . . , J and generating context observation

zj ∼ Cat (β1:∞) , xj ∼ F (· | φzi) .

• Stick length for each document group k = 1, . . . ,∞,
{τkt}∞t=1, choosing tables t, dishes c and generating
content word, j = 1, . . . , J and i = 1, . . . , nj

τk ∼ GEM (1, υ) , tji ∼ Cat
(
τzj

)
,

ckt ∼ Cat (ε) , wji ∼ Y
(
· | ψczj tji

)
.

We consider general exponential family forms for the
likelihoods2 Y (w | ψ) = exp (〈T (w) , ψ〉 −A (ψ))
and F (x | φ) = exp (〈T (x) , ψ〉 −A (φ)). The
prior S (ψ | ·) and H (φ | ·) have the conjugate
forms p

(
ψ | λψ∗

)
∝ exp

(〈
λψ∗ , [ψ;−A (ψ)]

〉)
and

p
(
φ | λφ∗

)
∝ exp

(〈
λφ∗ , [φ;−A (φ)]

〉)
. The notation

[v; c] represents the stacking of two column vectors.

2Note that T (w) and T (x) may have different forms.



(a) Generative view. (b) Stick-breaking view.

Figure 1: Graphical presentation for Multilevel clustering with contexts models.

4 SVI FOR MC2

4.1 TRUNCATED STICK-BREAKING
REPRESENTATIONS

The approximation of DP by truncated stick-breaking rep-
resentation has been introduced by (Ishwaran & James,
2001) and later used by (Blei & Jordan, 2006) for
variational inference in DP mixtures model. In this
work, we also use the truncated stick-breaking approx-
imation for all three stick-breaking length variables of
the model which are β, ε, and τ . As pointed by Ish-
waran & James (2001), the truncated stick-breaking is
equivalent to the generalized Dirichlet distribution (Con-
nor & Mosiman, 1969; Wong, 1998) which is a distribu-
tion on K − 1 simplex with 2 (K − 1)-parameter λ =(
λ11, . . . λ(K−1)1,, λ12, λ(K−1)2

)
. Each pair of parameters

(λk1, λk2) corresponds to the parameters for a Beta dis-
tribution in stick-breaking process. Generalized Dirichlet
(GD) distribution is a member of the exponential family
and is conjugate to Multinomial distributions (for more de-
tails, see the Appendix). For this reason, the mean-field up-
date of a GD-distributed stick length also has a GD form.
We used this conjugacy to compute the variational updates
for stick-breaking variables.

4.2 MEAN-FIELD VARIATIONAL
APPROXIMATION

The objective of inference problem with the model is to
estimate the posterior distribution p (Θ | x,w) where Θ is
the collection of parameter variable of the model, Θ ,
{β, ε, τ, c, z, t, ψ, φ}. In variational Bayes inference, this
intractable posterior will be approximated with a tractable
distribution called variational distribution, q (Θ). In order

to ensure that q (Θ) is tractable, one usually uses mean-
field assumption which assumes that all variational vari-
ables in Θ are independent. However, because of the na-
ture of the MC2 model, two group of variables zi (restau-
rant) and tj1, . . . , tjnj (tables) are highly correlated. We
will maintain the joint distribution of these variables in as
a collection of tree-structure graphical model. Thus, the
variational distribution q is factorized as

q (Θ) = q (β) q (ε) q (τ) q (c) q (z, t) q (ψ) q (φ) .

All the factorized q’s have exponential family form and for
convenience we shall use either the natural or mean param-
eterization when appropriate. We use the following con-
vention in naming the variational parameters: λ denotes a
natural parameter, µ denotes a mean parameter, superscript
denotes the collection of random variables of being param-
eterized and subscript denotes the index of variables. For
instance, under this convention, λφk is the natural parameter
for q(φk). The actual parameterization of q’s are

• For the group of stick-breaking variables q (β) =
GD

(
β | λβ

)
, q (ε) = GD (ε | λε), and q (τ) =∏K

k=1 GD (τk | λτk) where λβ , λε, and λτk are 2K−2,
2M − 2, and 2T − 2 dimension vector, respectively.
K, M and T are the truncated levels for restaurants,
dishes and tables in the CRF-Bus process respectively.

• For the group of content and context atoms q (ψ) =∏M
m=1 q

(
ψm | λψm

)
and q (φ) =

∏K
k=1 q

(
φk | λφk

)
.

• For the group of indicator variables q (c) =∏K
k=1

∏T
t=1 Mult (ckt | µckt) and q (z, t) =∏

j

[
Mult

(
zj | µzj

)∏nj

i=1 Mult
(
tji | µtjizj

)]
where

µzj , µckt, and µtjik are K, M , T -dimension vectors,



correspondingly. Note that two groups of variables
z and t are not fully factorized but form a forest of
trees, with each tree rooted at zj .

Figure 2: Variational factorization and global vs. local vari-
ables for SVI.

4.3 MEAN-FIELD UPDATES

All the individual q’s in our model are in the exponential
family and are locally conjugate. Thus, standard naive
mean-field updates (Bishop et al., 2006; Blei & Jordan,
2006), can be derived for all the variational parameters in
a straight-forward manner. We provide more details on the
update for the variational parameters of z and t since these
are coupled and structured mean-field is needed (Wain-
wright & Jordan, 2008). At a high-level, for each tree
rooted at zj , exact inference needs to be done to convert
from natural to mean parameters. The actual updates equa-
tion for these parameters are

µtjikl ∝ µ̃tjikl, (1)

µzjk ∝ exp(E [ln βkp(xj | φk)] +
∑
i

ln(
T∑
l=1

µ̃tjikl)),

where µ̃tjikl is the unnormalized value of µtjikl and is

exp
(∑M

m=1 µ
c
klmE [ln p (wji | ψm)] + E [ln τkl]

)
.

The update for the rest of the parameters uses naive mean-
field.

Two groups of variables, stick-breaking and atoms, contain
similar variables. One variable in each group will be pre-
sented, the others have a similar forms and can be found in
the appendix. The following equations includes updates for
the content side of the stick-breaking and atom variables.

For the stick-breaking variational distribution q(ε)

λεm1 = 1 +
∑
k,t

µcktm λεm2 = γ +
∑
k,t

M∑
l=m+1

µcktl. (2)

For the content-atom variational distribution q(ψ)

λψm = λψ∗ +
J∑
j=1

nj∑
i=1

(
K∑
k=1

µzjk

T∑
l=1

µcktmµ
t
jikl

)
[T (wji) ; 1] .

4.4 STOCHASTIC VARIATIONAL INFERENCE

We follow the SVI framework (Hoffman et al., 2013) and
divide the set of variables Θ in the posterior into the set of
local variables {z, t} with the rest as global variables (see
Fig. 2). The variational Evidence Lower BOund (ELBO)
function is

where Θg , Θ\ {z, t} is the global parameters of the
model.

We will reuse the coordinate descent updates for local vari-
ational parameters µzj and µtjik given in section 4.2. To
derive the stochastic gradient descent update for the global
parameters, instead of taking the gradient ofLwhich would
result in messages being passed from all the documents,
we take the gradient of Lj which is sufficient to yield a
stochastic gradient of L. The gradients are multiplied with
the inverse Fisher information matrix to obtain the natural
gradients (denoted as ∂(ng)

∂ ). The gradient with respect to
the content atom and stick breaking variational parameters
λψm and λεm1,2 are

∂(ng)Lj
∂λψm

= −λ
ψ
m + λψ∗
J

+
nj∑
i=1

(
∑
k,l

µzjkµ
c
klmµ

t
jikl) [T 〈wji〉 ; 1] .

(3)

∂(ng)Lj
∂λεm1

= −λ
ε
m1 + 1
J

+
∑
k,t

µcktm, (4)

∂(ng)Lj
∂λεm2

= −λ
ε
m2 + γ

J
+
∑
k,t

M∑
r=m+1

µcktr

Computing the gradient w.r.t. q(ckt) is easier using the
minimal natural parameterization of the multinomial. Let
λckt be the minimal natural parameter corresponding to the
mean parameter µckt, the gradient w.r.t λckt is

∂(ng)Lj
∂λcktm

=
−λcktm + E

[
ln εm

εM

]
J

+ (aktm − aktM ) (5)

where aktm = µzjk
∑nj

i=1 µ
t
jiklE [ln p (wji | ψm)] for m =

1 . . .M . Conversion from natural to mean parameters for
the multinomials are standard

µcktm = exp (λcktm)
1 +

∑M−1
m=1 exp (λcktm)

,m = 1, . . . ,M − 1

and µcktM = 1−
∑M−1
m=1 µktm.

With above derivations, we can summarize the procedure
of stochastic variational inference for MC2 model in Algo-
rithm 1.

In the above, the stochastic gradient is obtained for each
document. In practice, mini-batch of documents are used



Algorithm 1 Stochastic variational inference for MC2
Require: forgetting rate ι and delay %

Initialize λψ(0)
m , λ

φ(0)
k and set t = 1;

repeat
Choose uniformly document j from data
Compute µtjik and µzj with Eq. (1)
Set $t = (t+ %)−ι

Update stick-breaking variable hyperparameters λβ , λε, λτk
using corresponding gradient similar to Eq. (4) as follows

λ(t+1) = λ(t) + J$t
∂(ng)Lj

∂λ

Update content and context atom hyperparameters λψ, λφ

using corresponding gradient similar to Eq. (3) as follows

λ(t+1) = λ(t) + J$t
∂(ng)Lj

∂λ
Update “dish-table” indicator variable hyperparameters
µcktm using gradient in Eq. (5).

until convergence

in each update to reduce the variance (Hoffman et al., 2010,
2013). In this case, the gradients with a single document in
are replaced by the average gradients of all the documents
in a mini-batch.

5 EXPERIMENTS

We evaluate our inference algorithm on real datasets with
two different scale settings: small datasets with thousands
of documents which can also be run using Gibbs sampler;
large-scale data with millions of documents which can not
be practically run with sampling methods. For small-scale
settings, we illustrate competitive perplexity of our infer-
ence methods compare to Gibbs sampler but with much
less computation time. We also report the running time and
performance of our model for large-scale data sets.

5.1 DATASETS

As aforementioned, we use two groups of different scales
of datasets. For the small scale setting, in order to compare
with Gibbs sampler, we use the same datasets in (Nguyen
et al., 2014): a text dataset, NIPS, and image dataset, NUS-
WIDE.

• NIPS3 consists of 1740 document with the vocabulary
size 13,649. To evaluate predictive performance, we
randomly split into 90% training and 10% held-out for
computing perplexity.

• NUS-WIDE (Chua et al., 2009) contains a subset of
13 animal classes which totally include 3411 images.
Held-out data includes 1357 images and the rest is
used for training the model. For the image features,
we use bag-of-word SIFT vector with dimension 500.
For the context observations, we use the tags for each
image which are 1000-dimension spare vectors.

3http://www.cs.nyu.edu/~roweis/data.html

For the large-scale setting, we use three different datasets
including Wikipedia, Pubmed, and Application Usage Ac-
tivity (AUA).

• Wikipedia includes about 1.1 million documents
downloaded from wikipedia.com. We pre-process
data using a vocabulary list taken from the top 10,000
words in Project Gutenberg and remove all words less
than three characters (Hoffman et al., 2013). For the
context features we use the (first) writer of the articles
and the (top level) categories inferred from tagged cat-
egories in each article as described in (De Vries et al.,
2010).

• PubMed comprises 1.4 million abstracts acquired
from pubmed.gov. These documents are filtered with
the published year from 2000 onward. Similar to
Wikipedia, we also extracted the vocabulary from the
whole dataset and only kept words with more than
2 characters. A top list of 10.000 words is used as
vocabulary list for computing bag-of-word. We fur-
ther extract the Medical Subject Headings (MeSH)
and consider as the context.

• Application Usage Activity (AUA): This dataset con-
tains the usage behavior from more than one million
users of a popular software application. Each user
is treated as a document in which a word refers to
a specific functionality of the application and word
frequency refers to the number of times the user in-
teract with the corresponding functionality. The total
number of functionalities (vocabulary size) is roughly
10,000. In addition to the current application, each
user also uses a host of other related software prod-
ucts which can be used as the context of the user. Ap-
plying MC2 to this data effectively cluster the set of
users into different segments. To measure the cluster-
ing quality, we simply use a ground-truth of two clus-
ters of paid and free users. Note that this information
is not present in the context or the word content.

5.2 EXPERIMENT SETUPS

Since our observed data are discrete, we assume that
they are generated from either Categorical or Multinomial
distributions endowed with Dirichlet priors. The learn-
ing rate for stochastic learning at iteration t is $t =
(t+ %)−ιwhere % ≥ 0 is the delay parameter, and ι ∈
(.5, 1] is the forgetting rate which controls how quickly pre-
vious statistics is forgotten. In the experiment for comput-
ing perplexity, we fixed % = 1 and ι = 0.8. The hyperpa-
rameters for Dirichlet distributions are set to 0.01 and 0.1
for content and context, respectively.



Small-scale setting

The experiments for NIPS and NUSWIDE datasets are car-
ried out on an Intel Xeon 2.6GHz machine with 16 cores,
16GB RAM using a C# implementation running on Win-
dows 7. SVI method can be parallelized when computing
local updates. We run the experiment using both datasets
in serial and parallel modes. The parallel implementation
is accomplished using the Task Parallel Library (TPL) in
.NET framework.

Large-scale setting

In order to handle big datasets, we implement our algo-
rithms on Apache Spark platform4. The experiments for
Wikipedia, Pubmed, AUA are run in two main settings with
no context observations, and with full context observations
for each corresponding context. Since HDP implementa-
tion is not available on Spark, we use the LDA implementa-
tion provided by Spark machine learning library (MLLIB)
to compare perplexity with our algorithm. We set the num-
ber of topics for LDA equal to the number of topic trun-
cated in the MC2 model.

5.3 EVALUATION METRICS

Perplexity. We use perplexity as the evaluation metric to
compare the modelling performance between inference al-
gorithms (Gibbs vs. SVI) or between model (our model
vs. LDA). The perplexity is defined as perplexity (wtest ) =

exp
{
−
∑

j
ln p(wj.|D)∑

j
nj

}
where wtest is the content words

in the test set and D is the training data. Since we wish
to compare our SVI algorithm with Gibbs sampler, we im-
plemented importance sampling (Wallach et al., 2009) to
computed ln p (wj. | D) in both cases. In Spark MLLIB,
there is no implementation for computing perplexity with
importance sampling, we instead used the code given by
Wallach et al. (2009).

Clustering performance. Since our model can carry out
clustering for documents, we wish to compare clustering
performance. However, documents usually do not have a
“strong” ground truth and most of them are with multiple-
cluster. For instance, with PubMed data, we use MeSH
for each article as ground truth cluster but each article
usually associates with several MeSH terms. Some popu-
lar clustering performance metrics including purity, Ran-
dom Index(RI), Normalized Mutual Information (NMI),
Fscore (Manning et al., 2008, Chap16) are designed for
single cluster ground truth. Whenever there is single clus-
ter ground truth, for example, in the AUA dataset, we use
the above four metrics. In other cases, we use the extended
Normalized Mutual Information (eNMI) which is defined
as follows. Let suppose that we have N objects each of

4http://spark.apache.org/

Running time (s)
Sequential Parallel

NIPS 11213 1431

NUSWIDE 8373 682

Table 1: Running time of two implementation version

which is belong to one of K clusters. A clustering algo-
rithm will assign this object to one of T clusters. With
N objects, we denote W as an N × K ground truth ma-
trix where each row of this matrix represent a (transposed)
one-hot vector encoding of the cluster it belongs. Sim-
ilarly, we have N × T matrix as a result matrix. The
joint probability when an object has the ground truth clus-
ter k and is assigned to cluster t is p(w, c) = WTC.
The mutual information between discovered clusters and
ground truth cluster is MI(W,C) =

∑
k,t p(w = k, c =

t) ln p(w=k,c=t)
p(c=t)p(w=k) . The normalized mutual information is

NMI(W,C) = 2MI(W,C)
H(C)H(W ) where H (·) is the entropy of

histogram of clusters. In the case of multiple clustering,
we have the matrix W and C where each row is not one-
hot vector but a vector with the sum as 1. We use some
equations above for computing extended NMI (eNMI).

5.4 EXPERIMENTAL RESULT

Results on small -scale setting

First, we demonstrate the performance of our proposed
methods (SVI) compared with Gibbs sampler of (Nguyen
et al., 2014). For Gibbs samplers, we ran 1500 iterations
and SVI with 50 documents in each mini-batch and com-
pute perplexity. The Fig. 3 showed the predictive perfor-
mance of them over running time. In both datasets, SVI
can approach the performance of Gibbs sampler within one
epoch5; after the first epoch, the perplexity only improved
a little. To obtain the competitive performance with Gibbs
sampler, our algorithm needs only one-fourth of the amount
of running time. Furthermore, SVI algorithm is paralleliz-
able. As shown in Table 1, running time with parallelized
version on a single machine with 16 cores is further re-
duced significantly, 8 and 12 times for NIPS and NUS-
WIDE, respectively. Note that our parallel SVI-MC2 only
parallelize the local updates, hence, the per-core speedup
also depends on the fraction of parallelizable local updates
and the global update. In the case of NIPS data set, the
dimension of the (global) content and context topic are
13,649 and 2037, respectively, while those of NUS-WIDE
are 500 and 1000 which could explain why parallelization
is more effective for NUS-WIDE.

5Each epoch is an iteration in which algorithm visited all data
points.



0 200 400 600 800 1000 1200 1400

Time (minute)

2000

3000

4000

5000

6000

7000

8000

9000
p

er
p

le
xi

ty
Perplexity for NIPS data with author context with mini-batch size=50

 # docs=1566, training data proportion=90% iota=0.60                

SVI with two epoch
Gibbs from iteraton 100 to 1400 (+ 100 burnins)

End of epoch 2

End of epoch 1

(a) NIPS - context: author

0 100 200 300 400 500 600 700 800

Time (minute)

300

350

400

450

500

550

600

p
er

p
le

xi
ty

Perplexity for NUSWIDE with tag context with mini-batch size=64

 # docs=2054, Training Data=90% iota=0.60                      

SVI
Gibbs from iteration 100 to 1400 (+100 burnins)

End of epoch 2

End of epoch 1

(b) NUS-WIDE - context: tag

Figure 3: Perplexity with respect to running time on two datasets: NIPS and NUS-WISE. The blue line denotes the change
of perplexity over running time with two epochs of data for SVI learning algorithm while the green line depicts perplexity
running with Gibbs samplers. The results for Gibbs sampler is shown for every 100 iteration from 100-th to 1400-th
iteration (excluding 100 burn-in iteration).

Context availability LDA
100% 0%

Wikipedia - writer 2,167 2,280 2,635

Pubmed - MeSH 2,294 2.448 3,178

AUA - other products 142.3 149.7 209.3

Table 2: Log perplexity of Wikipedia and PubMed data

Results on large-scale setting

In this setting, we validate the robustness of our algo-
rithm with large-scale datasets. We ran our inference al-
gorithm with Wikipedia, PubMed, and AUA datasets to-
gether with the LDA baseline on an 8-node Spark cluster.
We used writer, MeSH, and other products used as con-
texts for Wikipedia, PubMed, and AUA, respectively. For
each dataset, we ran data with full observations of context
and without context. Table 2 depict the perplexity for these
datasets with and without context compared with LDA. The
predictive performance of SVI-MC2 improved remarkably
compared to LDA.

For PubMed dataset, we used MeSH as the ground truth for
clustering evaluation. As each document contains several
MeSH terms, we use extended NMI (eNMI) for computing
clustering performance. For each mini-batch, we compute
eNMI of this mini-batch with its ground truth. The table 3
depict the average eNMI for all mini-batches in an epoch.
With a very little availability of the ground truth as context,
our algorithm can considerably improve clustering perfor-
mance.

Context availability

1% 0%

eNMI 0.084 0.065

Table 3: Extended Normalized mutual information (NMI)
for Pubmed data

For AUA dataset, three different levels of context availabil-
ity are used including no context, 1%, and full context.
Since the ground truth clusters do not overlap, we can use
the conventional metrics for clustering evaluation such as
NMI, RI, purity, and Fscore. We also compute the average
of the above indices for all mini-batches in an epoch. The
clustering results are are shown in table 4. All clustering
metrics showed the advantage of context observation (very
small percentage is needed) to improve the clustering per-
formance.

It is not possible to run the Gibbs sampler for these large
datasets; even the serial version of SVI took too much time,
hence we only reported running time for Spark SVI-MC2.
With the mini-batch size of 500, the best running times are
achieved using an 8-node cluster: Wikipedia: 17 hours;
Pubmed: 18.5 hours; AUA: 18 hours. However, using a
single-node (with 16-core) could also suffice with running
time roughly 1.5 times slower than on a full 8-node cluster.
We note that the size of the mini-batch (500) in this case
strongly affects the effectiveness of the distributed-cluster
setting. For example, with a mini-batch size of 1000, the
speed-up factor on an 8-node cluster (compared to single-
node) increases from 1.5 to 1.8.



Context Avail. NMI Purity RI Fscore

Other
products
used

0% 0.027 0.14 0.284 0.12

1% 0.035 0.174 0.286 0.128

100% 0.033 0.179 0.287 0.131

Table 4: Clustering performance for AUA data

6 CONCLUSION

We have presented a scalable method for Bayesian non-
parametric multilevel clustering with contextual side infor-
mation. We proposed a tree-structured SVI approximation
for an efficient approximation of the model’s posterior. The
approach can be directly parallelizable, and we provide par-
allelized implementations that work both on a single ma-
chine and on a distributed Apache Spark cluster. The ex-
perimental results demonstrate that our method is several
orders of magnitude faster than existing the Gibb-sampler
while yield the same model quality. Most importantly, our
work enables the applicability of multilevel clustering to
modern real-world datasets which can contain millions of
documents.
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