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Abstract 

This work has evaluated the probability of earthquake-triggered landslide occurrence in the whole of El Salvador, with a 
Geographic Information System (GIS) and a logistic regression model. Slope gradient, elevation, aspect, mean annual precipitation, 
lithology, land use, and terrain roughness are the predictor variables used to determine the dependent variable of occurrence or non­
occurrence of landslides within an individual grid cell. The results illustrate the importance of terrain roughness and soil type as key 
factors within the model — using only these two variables the analysis returned a significance level of 89.4%. The results obtained 
from the model within the GIS were then used to produce a map of relative landslide susceptibility. 
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1. Introduction 

An earthquake is a major natural process of high 
destructive potential, often resulting in both human and 
material losses as the direct consequence of the seismic 
phenomenon. However, some processes derived from an 
earthquake such as liquefaction, landslides, and tsunamis 
can often be more dangerous than the initial earthquake. 
The 2004 Southeast Asian tsunami and the 2001 
landslides in El Salvador represent good examples. 
One of the earliest known studies on earthquake-induced 
landslide hazards was conducted by Keefer (1984), who 

analysed the types and magnitude of mass movements in 
tectonically active regions. 

Landslides are significant natural hazards in many 
areas of the world. Each year they cause more than a 100 
000 deaths and injuries, with damage costing more than a 
lbillion USD (Schuster, 1996). In many countries, the 
economic losses and casualties due to landslides are 
greater than commonly recognized, and landslides 
generate a yearly loss of property larger than that from 
any other natural disaster including earthquakes, floods 
and windstorms. Generally, landslides are triggered by 
seismicity or heavy rains. Other possible causes are 
anthropogenic, including deforestation, road cutting, and 
mining. The study of earthquake-induced landslides 
plays an important role in determining seismic risk, as 
earthquakes and landslides can result in considerable 
damage to infrastructure, in addition to a massive loss of 



life (Marzorati et al., 2002). In January and February of 
2001, El Salvador experienced several destructive 
earthquakes, which caused hundreds of landslides of 
various sizes. In this study, we have used a logistic 
regression model to assess the susceptibility of earth­
quake-induced landslides for the whole country of El 
Salvador. 

Two factors are important when modelling any 
natural phenomena in experimental science: data quality 
and the choice of scientific models. When data are 
incomplete or inaccurate, natural phenomena are usually 
analysed intuitively with ad hoc methods (e.g., Anbala-
gan, 1992; Anbalagan and Singh, 1996). When studying 
landslides in small geographical areas, methods most 
often used are GPS measurements, photogrammetry, or 
detailed field surveys (Casson et al., 2003; Agnesi et al., 
2005); however, for larger geographical areas such as an 
entire country, methods usually used include remote 
sensing and thematic cartography Some studies have 
used satellite imagery as a substitute for large- to 
medium-scale aerial photography of landslides (Nichol 
and Wong, 2005; Nichol et al., 2006). The scale of the 
model depends on the purpose of the investigation and 
the specifications of the user. Hazard assessment of 
earthquake-triggered landslides may be developed at 
different scales or detail levels, ranging from site-specific 
evaluation to regional studies (Bommer and Rodriguez, 
2002). The framework for our study is classified as 
Grade 2 with a scale of 1:10 000-1:100 000 (ISSMGE, 
1999). Our aim is to produce an earthquake-triggered 
landslide susceptibility map for the entire country of El 
Salvador, which requires certain data approximations 
and generalisations. The available data include topo­
graphical maps, geological maps (1:100 000), digital 
cartography (1:25 000), landslide inventories, and the 
rainfall database. The data were provided by the Servicio 
Nacional de Estudios Territoriales de El Salvador 
(SNET), and the Universidad Centroamericana Simeon 
Canas (UCA), whose databases are well-documented 
and useful for both landslide hazard evaluation and 
model definition. 

2. Summary of previous studies 

A variety of approaches have been used in mapping 
slope instability, and they can be classified into 
qualitative and quantitative methods. Most of qualitative 
methods tend to be subjective, since they depend on 
expert opinions and portray hazard levels in descriptive 
terms (Anbalagan, 1992). Quantitative methods are 
based on the numerical expression of the relationship 
between instability factors and landslides, which can be 

divided into deterministic and statistical. Deterministic 
methods depend on engineering principles of slope 
instability, expressed in the factor of safety (Refice and 
Capolongo, 2002; Zhou et al., 2003). Typical multivar­
iate statistical approaches used to map landslide sus­
ceptibility are discriminant analyses and logistic 
regression. Brenning (2005) reviewed several methods 
and found logistic regression with stepwise variable 
selection an adequate method for the prediction of 
landslide susceptibility. Lee (2005) also used a logistic 
regression model to evaluate the hazard of landslides 
induced by rainfall. The results were verified using 
remote sensing data and GIS-based landslide locations, 
and were compared with the results from a probabilistic 
model. It was demonstrated that a logistic regression 
model is better than a probabilistic model in terms of 
hazard prediction. 

Logistic regression belongs to the statistical family of 
generalized linear models, which are all well-suited for 
analysis of a presence/absence dependent variable. The 
linear models have been used to predict slope instability 
(Carrara et al., 1991; Mark and Ellen, 1995; Rowbotham 
and Dudycha, 1998). Logistic regression has also been 
applied to landslide susceptibility mapping in various 
studies including Wieczorek (1996), Atkinson and 
Massari (1998), Guzzetti et al. (1999), Gorsevski et al. 
(2000), Lee and Min (2001),Dai et al. (2001), Dai and 
Lee (2002, 2003), Ohlmacher and Davis (2003), and 
Ayalew and Yamagishi (2005). The primary objective of 
logistic regression is to model the probability of 
appearance of a habitually dichotomic event, the 
presence/absence of diverse factors, and the significance 
of this presence/absence. Recently, landslide suscepti­
bility has been studied using rare events logistic 
regression (Van Den Eeckhaut et al., 2006). This differs 
from ordinary logistic regression in that it takes into 
account the high proportion of no non-landslides to 
landslides. Depending on the proportion of landslides, 
either one of these analyses could be used. 

Despite many efforts, no agreement has yet been 
reached on the best techniques and methods for landslide 
susceptibility mapping (Yesilnacar and Topal, 2005). 
The arguments revolve around comparisons of data from 
several authors employing different techniques (Guzzetti 
et al., 2000), to analyze data from diverse terrains at 
various scales, with different types of inventories and 
characteristic factors. 

The main assumption in slope instability modelling is 
that the past occurrence of landslides in a specific site is 
indicative of the potential for future landslides to occur in 
sites with similar characteristics. By identifying physical 
parameters contributing to the formation of landslides, 



and by incorporating them in GIS-based, logistic 
multiple regression models, regional slope instability in 
El Salvador was modelled. This involved the identifica­
tion and mapping of a group of physical factors that are 
directly or indirectly correlated with slope instability. 
The evaluation of susceptibility requires data input of 
variables representing physical parameters known to 
contribute to the initiation of landslides. 

3. Description of the study area 

El Salvador is one of the smallest but most densely 
populated countries in Central America, with an area of 
just over 20 000km . The country is located on the 
Pacific coast and bordered by Guatemala to the west and 
Honduras to the north and east (Fig. 1), and is affected by 
earthquakes from two main sources of seismicity. The 
largest shocks are generated in the Benioff-Wadati zones 
of the subducted Cocos plate, which is converging with 
the Caribbean plate in the Middle America Trench at an 
estimated rate of 7cm year-1 (Dewey and Suarez, 1991). 
The second source of seismicity is a zone of upper-
crustal earthquakes that coincides with the locations of 
Quaternary volcanoes, forming part of a chain extending 
east-west throughout the isthmus from Guatemala to 
Panama (Bommer et al., 2002a). Due to their shallow 
foci and their proximity to population centres, the 
earthquakes of the volcanic chain have been responsible 
for greater damage in El Salvador, than that from the 
larger earthquakes in the subduction zone (White and 
Harlow, 1993; Bommer et al., 2002a). 

Historical evidence shows that landslides triggered by 
earthquakes in El Salvador occur as rock slides on 
volcanic slopes, and more abundantly as soil falls and 
slips on slopes composed of volcanic ash. The first 
evidence of earthquake-induced landslides dates from 
1576, when landslides in the Sierra Los Texacuangos 
were reported to be triggered by an earthquake 
(Montessus de Ballore, 1884). Since then more than 20 
earthquakes have caused widespread landslides in El 
Salvador. An important fact is that the areas affected by 
these earthquake-induced landslides have been subject to 
much higher losses of human life than areas affected by 
earthquakes of comparable magnitude in other geolog­
ical, geomorphological, and climatic environments 
(Bommer and Rodriguez, 2002). 

3.1. Geology 

The surface geology in El Salvador is entirely volcanic, 
dominated by the upper Tertiary to Holocene volcanic 
rocks (Schmidt-Thome, 1975; Weber et al., 1978). The 

stratigraphic sequence includes the Balsamo, Cuscatlan, 
and San Salvador formations, from oldest to youngest, 
which are largely composed of pyroclastic deposits and 
associated volcaniclastics (Evans and Bent, 2004). 

Tierra Blanca ash, which originates from eruptions in 
the Coatepeque and Ilopango calderas, is the youngest 
and most commonly encountered volcanic soil. This soil 
generally forms a competent foundation material for 
buildings, but is highly susceptible to earthquake ground 
shaking and to landslides during the intense tropical 
rainfalls that are common between June and September 
(Rolo et al., 2004). There are several pyroclastic 
sequences for Tierra Blanca (TB), which are informally 
called TB4, TB3, TB2 and TBJ (Tierra Blanca Joven), 
from oldest to youngest. The areal extent, thickness and 
landslide susceptibility of TBJ that was deposited about 
A.D. 430 (Dull et al., 2001) make it one of the most 
hazardous lithologic units. 

From the perspective of their contribution to slope 
instability and erosion in El Salvador, the pedologic and 
geotechnical characteristics of the Tierra Blanca soils 
have been investigated by several authors (Guzman 
Urbina and Melara, 1996; Bommer et al., 1998, 2002b; 
Rolo et al., 2004). Despite the difficulty in collecting 
undisturbed samples and measuring suction on the 
partially saturated soils (Guzman Urbina and Melara, 
1996), some properties of the Tierra Blanca soils seem to 
be manifested clearly: they are highly heterogeneous and 
composed of silty sand or sandy silt of very low 
plasticity (Guzman Urbina and Melara, 1996; Rolo et al., 
2004; Evans and Bent, 2004). Guzman Urbina and 
Melara (1996) observed that Tierra Blanca soils can form 
nearly vertical banks due to weak cementation and 
negative pore-water pressures that provides sufficient 
strength for stability under most conditions. However, 
heavy rainfall or earthquake shaking can increase the 
pore pressure, giving a reduction of the metric (suction). 
This results in a decrease of the shear strength, which 
may trigger instability (Bommer and Rodriguez, 2002; 
Bommer et al., 2002a; Rolo et al., 2004). Consequently, 
both earthquakes and precipitation must be considered as 
triggering factors in estimation of slope stability and 
landslide hazards in El Salvador. 

In landslide areas, there are also brown pyroclastic and 
volcanic epiclastic deposits called Tobas de Color Cafe, 
which also constitute part of the San Salvador Formation. 
These usually appear below the Tierra Blanca. The 
geotechnical characteristics of the older pyroclastics of 
the San Salvador, Cuscatlan, and Balsamo formations 
have not been studied so far, which could cause dif­
ficulty in evaluating the hazard of earthquake-triggered 
landslides. 
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Fig. 1. Geographical and geological setting of El Salvador, a) Satellite image of the El Salvador (SRTM: Shuttle Radar Topography Mission). Source: NASA's Earth Science Enterprise Scientific Data, by 
Earth Satellite Corporation, https://zulu.ssc.nasa.gov/mrsid/. b) Regional tectonics of Central America. Solid and open triangles indicate thrust faulting at subduction and collision zones, respectively. Large 
open arrows are plate motion vectors, half arrows indicate sense of movement across strike-slip faults, and ticks indicate downthrown side of normal faults. Large solid triangles are Quaternary volcanoes. 

https://zulu.ssc.nasa.gov/mrsid/
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Fig. 2. Distribution of seismicity during the 2001 El Salvador earthquakes, recorded and relocated by the Salvadoran Short-Period Network of the 
Center for Geotechnical Investigations (CIG). The main earthquakes on 13 January, 13 February and 17 February, 2001, and their aftershocks are 
shown. The 13 January 2001 earthquake was located in the subduction zone between the Cocos and Caribbean plates, with a magnitude of Mw 7.7 
and a focal depth of 40 km; the second destructive 13 February earthquake was located farther inland near San Pedro de Nonualco, 30 km from San 
Salvador, with a magnitude of Mw 6.6, and a shallower focal depth of 15 km. The third earthquake on 17 February was located south of San Salvador, 
and also associated with faulting along the volcanic axis. 

Fig. 3. Aerial view of the earthquake-triggered landslide in Las Colinas, El Salvador, on 13 January, 2001. 



3.2. Earthquakes and landslides in 2001 

The sequence of seismic events that occurred in El 
Salvador during 2001 was initiated with an earthquake 
on January 13. The epicentre was located off the western 
coast of El Salvador, at 12.80°N/88.79°W, in the 
subduction zone between the Cocos and Caribbean 
plates, with a magnitude of Mw 7.7 and a focal depth of 
40km (Benito et al., 2004). The second destructive 
earthquake occurred 1 month later on February 13, with a 
magnitude of Mw 6.6, located further inland near San 
Pedro Nonualco (30km from San Salvador), and with a 
shallower focal depth of 15km (Fig. 2). 

The first earthquake destroyed nearly 108 000 houses, 
killed at least 844 people, and caused massive damage 

due to the subsequent landslides (Jibson et al., 2004). 
Among these, the Las Colinas landslide was most tragic 
(Fig. 3). A considerable amount of soil (200 000m ) was 
fluidised on a mountain ridge to the south of the Las 
Colinas area of Nueva San Salvador (Santa Tecla, La 
Libertad). The estimated death toll is approximately 585 
persons according to the COEN (Comite de Emergencia 
Nacional de El Salvador). 

This earthquake was followed by numerous after­
shocks, and many of them occurred in the Central Valley. 
Exactly lmonth later, the second event at 13.60°N/ 
88.85°W with a magnitude of Mw 6.6 occurred near the 
San Pedro Nonualco and San Vicente's Volcano, within 
the Caribbean plate. It also produced considerable 
damage and more than 200 deaths. This second 

Table 1 
Lithological classification of Geological Map of El Salvador, scale 1:100000, and soil classification defined by the Servicio Nacional de Estudios 
Territoriales (SNET) of El Salvador: (1) hard rock, (2) soft rock, (3) consolidated soil, and (4) unconsolidated soil [Diaz, M. from SNET's Geologic 
Service, personal communication] 

Lithology SNET Classification 

(Q'f) Quaternary sedimentary deposits Acuatic deposits with inserted pyroclastites 4 
Estuary deposits with/without swamp 4 
Beach with old level of coast 4 
Coastal bar with old level of coast 4 
Colluvial deposits without representation of underlying deposits 4 
Colluvial deposits with representation of underlying deposits 4 
Dejection cone 4 
Amoor soil 4 

(S5'c): Volcanic ash and lapilli tuffs 4 
(S5'b): Accumulation cones (scorias, lapilli tuffs, cinder) 4 
(S5'a): Basaltic and andesitic lavas 1 
(S4): Volcanic ashes ("white earth"), low consolidated 4 
(S3'b): Acid effusive 1 
(S3'a): "Brown tuffs", locally with ashes and scoria 4 
(S2): Andesitic and basaltic effusive: pyroclastites 4 
(SI): Acid pyroclastites, volcanic epiclastites, locally Andesitic and basaltic effusives 4 
(C3): Andesitic and basaltic effusive 1 
(C2): Acid and intermediate acid effusive (isolated occurrence partly possibly = ch2) 1 
(CI): Acid pyroclastites, volcanic epiclastites 4 
(b3): Andesitic and basaltic effusive 1 
(b2): Andesitic and basaltic effusive, pyroclastites, subordinate volcanic epiclastites 3 
(bl): Volcanic epiclastites and pyroclastites, locally intercalated andesitic and basaltic effusive. 3 
(ch2): Acid effusive, subordinate acid pyroclastites. 3 
(chl): Acid pyroclastites, ignimbrites, volcanic epiclastites, locally intercalated acid effusive. 3 
(I): Intrusive acid until intermediate rocks 1 
(m2'b): Intermediate until acid-intermediate pyroclastites, volcanic epiclastites, subordinated effusive 3 
(m2'a): Andesitic effusive until subordinated acid-intermediate pyroclastites (regional alteration for influence 3 

hydro thermal) 
(ml'b): Acid effusive and ignimbrites locally pyroclastites 3 
(ml'a): Acid until intermediate pyroclastites, Piroclastitas acidas hasta intermedias; in the basal part locally 3 

intermediate until intermediate — acid effusives 
(Vs): Red layers (quartz conglomerate and calcareous, sandy, siltites, shales), locally intermediate vulcanites 2 
(ya): Calcareous and loam calcareous with intercalation of red layers (ts) 1 
(ts): Quartz conglomerate red, mainly sandy, siltites, shales; locally inserted intermediate vulcanites: red layer of the 2 

Yojoa group 
(ts'm): Metasedimentary, Metavulcanites, mainly ts. 2 



earthquake-triggered additional landslides in the area east 
of Lake Ilopango, a 2500km area particularly abundant 
in thick deposits of the Tierra Blanca tephras (Jibson 
et al., 2004). Later, the third earthquake on February 17 
took place to the south of San Salvador, and was also 
associated with faulting along the volcanic axis. Thus, the 
two earthquakes of January and February 2001, and their 
aftershock sequences, together with other earthquakes of 
smaller magnitude, may be regarded as an unusual, 
intense seismic activity in a very short interval of time. 

In addition to the huge Las Colinas landslide, there 
were more than 500 landslides triggered across El 
Salvador by the January event, mainly in the south of the 
country, below the volcanic chain, and 70 landslides 
occurred after the February 13 earthquake. Landslide 
concentrations were greatest where two types of 
Pleistocene and Holocene volcanic rocks appeared at 
the surface: relatively soft, weak pyroclastic deposits, 
and solid, indurated rocks that originated as lava flows, 
although the largest number of landslides occurred in 
pyroclastic deposits (Jibson et al., 2004). The Las 
Colinas landslide, as well as other observed events in 
the Cordillera Balsamo, originated in the uppermost part 
of steep slopes along a ridge or escarpment crest (Evans 

and Bent, 2004). This fact suggests the topographic 
amplification of seismic shaking (Ashford et al., 1997), 
together with the geologic amplification, probably due to 
the low density of the pyroclastic materials (Evans and 
Bent, 2004; Crosta et al., 2005). Sitar and Clough (1983) 
studied the formation of tension cracks in the develop­
ment of instability and they identified amplification of 
ground motion by soils. Other studies of local site effects 
in the region are Rymer (1987), Atakan and Torres 
(1994), and Atakan et al. (2004). 

4. Data sources 

A Geographical Information System (GIS) database 
with different layers or coverages was compiled. The 
seven landslide-influencing parameters studied were: 
lithology (bedrock and soil), elevation, slope gradient, 
slope aspect, terrain roughness, mean annual precipita­
tion, and land use. 

4.1. Lithology 

The physical properties of slope-forming materials, 
such as strength and permeability, are related to lithology, 
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Fig. 4. Lithology map with four classes (hard rock, soft rock, consolidated soil and unconsolidated soil). 



which therefore should affect the likelihood of slope 
failure (Dai and Lee, 2002). The GIS information of 
lithology is structured in three types of layers: polygons 
(geologic, pedogenic and volcanic classes), lines (faults, 
escarpments, dikes, paleo-riverbeds and mineral seams), 
and points (fumaroles, fossils and volcanic classes). The 
surface geologic maps (scale 1:100 000) were digitised 
and georeferenced to obtain these data. The lithological 
units shown in the surface geologic maps were reclas­
sified according to the classification by the SNET 
(Table 1) and a generalized geologic map was produced 
(Fig. 4). Finally, the map describes the distribution of four 
types of rock and soil, following the classification 
defined by the SNET: hard rock, soft rock, consolidated 
soil, and unconsolidated soil [Diaz, M. from SNET's 
Geologic Service, personal communication], 

4.2. Elevation 

A Digital Terrain Model (DTM) can be used to 
classify the local relief and locate points of maximum 
and minimum heights (Fig. 5). The model with a 100m 
cell size was created from 20-m contour lines on the 1:25 
000 topographic maps. The cell size was chosen for its 

suitability for work at a regional scale. Some terrain 
attributes such as slope gradient and aspect were derived 
from the DTM. 

4.3. Slope gradient 

Slope gradient is an important component and a 
preparatory cause of landsliding. It was calculated using a 
3x3 moving window based on the algorithm of Horn 
(1981) (Fig. 6). For slopes of uniform isotropic material, 
increased slope gradient correlates with increased likeli­
hood of failure. However, soil thickness and strength may 
vary over a wide range among sites. 

4.4. Slope aspect 

Aspect can be defined as the slope direction, which 
identifies the downslope direction of the maximum rate 
of elevation change. It was also calculated based on the 
method of Horn (1981). The aspect of a slope can 
influence landslide initiation, because it affects moisture 
retention and vegetation cover, and in turn soil strength 
and susceptibility to landslides. The amount of rainfall on 
a slope may also vary depending on its aspect (Wieczorek 
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Fig. 5. Elevation map from the DTM (100 x 100 m resolution). 
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Fig. 6. Slope gradient map derived from the DTM. 

et al., 1997). The obtained slope aspect map is shown in 
Fig. 7. 

4.5. Terrain roughness 

Terrain roughness is a measure of the undulation of 
the topographic surface. The analysis of texture within a 
digital image is closely allied to the geomorphometric 
measurement of roughness. In fact, the variation of 
roughness embodies two primary scales: grain (or image 
resolution, 100m in our case) and texture. Grain refers to 
the longest significant wavelength of a terrain surface, 
while texture refers to the shortest one. In order to 
calculate the terrain roughness, we applied spatial 
variability function to the DTM (Mardia, 1972; Band, 
1989). The function measures the dispersion of the 
vector perpendicular to the surface; for example, for a 
nearly flat terrain, the perpendicular vectors to the 
surface points will be approximately parallel, and this 
will give a low dispersion value. The unit vector 
perpendicular to the surface at point i is given by the 
following expression (Upton and Fingleton, 1989) 

xt = sirry,- • cos<pt; yt = sirry,- • sin^ ; zt = cos-/; (1) 

where yt and <pt represent the slope and aspect at point i, 
respectively. The module R obtained as the square sum 
of vector coordinates for neighbouring points, is given 
by 

R Ex<) +(£*•) + ( ! > (2) 

The roughness w is a function of R and the sample 
size («) 

w = 1 — • 
R 

(3) 

In this paper n = 9, because we used a moving 
window of 3 x 3 points. The obtained roughness values 
were standardized and the roughness map with 256 
levels was created (Fig. 8). 

4.6. Rainfall 

From the precipitation database compiled by the 
SNET for the period 1961-1990, we created a mean 
annual precipitation map with a resolution of 100 x 100m 
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(Fig. 9), using Kriging interpolation (Isaaks and 
Srivastava, 1989). 

4. 7. Land use 

Some types of land use/cover, especially of woody 
vegetation with large and strong root systems, provide 
both hydrological and mechanical effects that generally 
stabilize slopes (Montgomery et al., 2000). In contrast, 
more landslides may be initiated in unvegetated areas. 
Therefore, we evaluated the role of vegetation in the 
slope stability using a land use/cover map with 13 classes 
(Fig. 10). 

5. Landslide density analysis 

The landslides inventory used consists of data on 
slope movement from the 2001 El Salvador earthquakes, 
compiled by the SNET. Description and classification of 
landslides was mainly based on the system of Cruden 
and Varnes (1996), which takes into consideration the 
type of movement, materials involved, and the state or 
activity of unstable slopes. This study separates debris 
flow from other types of mass movements such as rock 

falls and avalanches because of their significant dif­
ferences, and data for debris flow were not analysed. 

We calculated the landslide density for each class of a 
variable (Fig. 11). The correlation of landslide density 
with elevation shows that the highest density (27.6%) 
occurs in the elevation range of 1630-1900m (Fig. 11a). 
At very low elevations, the density of landslides is low 
because the terrain is gentle and covered with thick 
colluvium and/or residual soils, and a higher water level 
will be required to initiate slope failure. The landslides 
density particularly correlates with terrain roughness 
(Fig. lib). 

Landslide density tends to increase with slope gra­
dient until the maximum density (36.1%) is reached in 
the 73-81° category (Fig. lie); there were very few 
landslides on flat slopes (Fig. lid). The majority of 
landslides occurred on north (20.8%) and north-west-
facing slopes (19.6%) with a slightly higher density on 
south-east-facing slopes. 

Concerning rainfall, the highest concentration of 
landslides occurred in the range of 2520-2690mm 
(35.4%) and 1820-1920mm (17.8%) (Fig. lie), indi­
cating that the greatest amount of rainfall corresponds 
with the greatest landslide activity. Therefore, numerous 
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Fig. 8. Terrain roughness map derived from the DTM. 

studies indicate that an increase in rainfall with altitude 
leads to an increase in the number of slope failures. 

There are two lithological categories with relatively 
high landslide density: hard rock (43.2%) including 
pyroclastic deposits and associated volcaniclastics and 
unconsolidated soil (41.5%) including Tieira Blanca 
(TB) and Tobas de Color Cafe (TCC) (Fig. llf). 
Generally, rock falls are initiated by tension in the 
upper half of the slopes, since TB and TCC are located in 
the upper part of the mountains. 

The main land uses associated with landsliding are 
mining (60.8%) and permanent crops (23.2%, mainly 
coffee plantations) (Fig. llg). This observation may 
reflect the fact that the above land use types often 
correspond to unconsolidated soils. 

6. Landslide susceptibility modelling 

6.1. Logistic regression 

In order to choose an appropriate statistical analytical 
technique for landslides investigation, we should take 
into account the categorical characteristics of indepen­

dent variables. The logistic regression has the advantage 
of being less affected when the basic assumption of 
normality of the variables is not met (Hair et al., 1998). 
Other techniques used to solve this problem include 
neural networks (Lee et al., 2004; Gomez and Kavzoglu, 
2005; Ermini et al., 2005). 

Logistic regression is included in a category of 
statistical models called generalized linear models, 
which employs the use of independent variables to 
create a mathematical model that predicts the probability 
of an event occurrence in a certain area. The key to 
logistic regression is that the dependent variable is 
generally dichotomous, i.e. it can take only the value 1 or 
0, representing the presence/absence of landslides. The 
independent variables in this model are predictors of the 
dependent variable, and can be measured in a nominal, 
ordinal, interval, or ratio manner. 

In logistic regression, the independent variables are 
included only when they have significance in determin­
ing the dependent variable. Selecting those independent 
variables based on their significance is a difficult task. 
The general consensus is that any independent variable 
must have a certain degree of affinity with the dependent 
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Fig. 9. Mean annual precipitation map created using Kriging interpolation. 

variable. In addition, they must be operational, complete, 
non-uniform, measurable, and non-redundant (Ayalew 
and Yamagishi, 2005). 

In the case of landslide susceptibility mapping, the 
goal of logistic regression is to find the best-fitting model 
to describe the relationship of the presence/absence of 
landslides Y, which is the dependent variable and nor­
mally codes as 0 or 1 for its two possible categories, with 
a set of independent variables X\, X2,..., X„, such as 
slope angle, aspect, lithology and land use. The mathe­
matical modelling approach known as logistic regression 
defines the expected value of Fin terms of the following 
expression: 

E{Y) 
1 

1 + exp - ISo + E BJXJ 

(4) 

where B0 is a constant and Bj is the coefficient of the 
predictor variables (y'= 1,.., &). 

For (0,1) random variables such as Y, it follows from 
basic statistical principles that E(Y) is equivalent to 
probability p(Y— 1). Therefore, the formula can be 
written in a form that describes the probability of 

occurrence of one of the two possible outcomes of Y, as 
follows: 

p(Y=l) = 
1 

1 + exp - U o + E BJXJ 

(5) 

The logistic model is useful in many practical 
situations where the response variable takes only one 
of two possible values, as is the case in our study of 
landslides, where the values represent presence (F= 1) or 
absence (F=0) of a landslide. The mathematical model 
describes the mean of Fas a function of Xj and By. The 
model is then fitted to the data based on maximum 
likelihood (Kleinbaum et al., 1998), which maximizes 
the probability of obtaining the observed results from the 
fitted regression coefficients. 

The mathematical expression on the right side of the 
logistic model formula of Eq. (5) is of the general form: 

m i 
(6) 

where z = BQ + J2 BjXj. The function f(z) is called thel 
7=1 

logistic function. This function is well-suited to 
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variable (Y) is 1, and B0, Bu 5 2 B„ are coefficients, 
which measure the contribution of independent factors 
(Xi, X2,..., X„) to the variations in Y, or its probability of 
having value one. For convenience, many authors 
describe the logistic model in its logit form given by 
Eq. (8), rather than in its original form defined by Eq. (4). 
The expression/) (Y— 1) / (1 —p (Y— 1)) in Eq. (7) is the 
so-called odds or likelihood ratio. The odds ratio is a 
widely used statistic to compare the frequency of 
exposure to risk factors (Kleinbaum et al., 1998). For 
example, it could tell us that rainfalls are twice or three 
times more influential for landslides than vegetation or 
other group of factors. In order to make a formal 
interpretation of the odds ratio, it is necessary to have a 
calculated confidence interval. It can be said that a 
proposed risk factor indicates a significant landslide 
hazard if the odds ratio is greater than one and the 
statistic is within the bounds of the confidence interval. 
One of the characteristics that make logistical regression 
interesting is its relationship between the odds ratio and 
risk quantification parameters defined in the literature 
(Van Den Eeckhaut et al., 2006). 

The first step ahead of the main statistical analyses is 
to normalise the data for logistic regression. If this 

modelling a probability, since the values of f(z) range 
from 0 to 1 as z varies from - co to +co. 

Another way to write the logistic regression model is 
called the logit form. The logit is a transformation of the 
probability p(Y=l), which means that the dependent 
variable is 1 (probability of occurrence of a landslide 
event). It does not define susceptibility directly, but an 
inference can be made using the probability. Generally, 
logistic regression involves fitting the dependent variable 
using an equation of the form: 

Y = LogitQ?) = In 
p{Y=\) 

\-p{Y=l) 
(7) 

If we substitute the logistic model formula foxp(Y= 1) 
into Eq. (4), it follows that: 

k 

Logit(p(Y = 1)) = B0 + J2 BJXJ 
7=1 

= B0+ B1X1 +B2X2 + ...+ B„X„ (8) 

Then, the logit form of Eq. (8) is given by a linear 
function, where p is the probability that the dependent 
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procedure is not carried out, there will be problems 
with interpretation of the final results. Our approach 
follows a regression model with the independent 
parameters normalized in the range 0-255. Another 
contentious issue in the literature is the sample size 
used to create the dependent variable. It is generally 

recommended in logistic regression to use similar 
proportions of 1 ("landslide") and 0 ("non-landslide") 
pixels (cells), but this is often not the case (Ayalew and 
Yamagishi, 2005). In our study, there are 235 samples, 
of which 112 are landslides and 123 are non-landslide 
samples. 



Table 2 
Estimated regression model (maximum likelihood) and odds ratio for the coefficients in the first model using the 'introduce' process 

Constant 
Elevation (E) 
Slope (S) 
Precipitation (P) 
Soil 
Soil (Si) 
Soil 0S2) 
Soil 0S3) 
Soil 0S4) 
Landuse 
Landuse (£1) 
Landuse (L2) 
Landuse (L3) 
Landuse (£4) 
Landuse (L5) 
Landuse (L6) 
Landuse (L7) 
Landuse (£8) 
Landuse (L9) 
Landuse (£10) 
Landuse (Ln) 
Aspect 
Aspect (Ay) 
Aspect (A2) 
Aspect (A3) 
Aspect (A4) 
Aspect (A5) 
Aspect (A6) 
Aspect (A-,) 
Aspect (As) 

B df /rvalue 

-16.176 
0.064 
0.153 
0.035 

2.791 
5.402 

10.768 
5.523 

1 
-9.833 
-3.853 
-8.206 
-5.511 
-7.816 

-15.644 
-0.100 
-3.719 
-9.854 

0.132 
-7.111 

-5.744 
-0.267 
-4.946 
-7.107 

3.683 
-3.111 

2.259 
3.735 

0.0000 
0.0000 
0.0000 

\ 0.0048 

0.3856 

i 0.0000 

Exp(B) 
odd ratio 

1.066 
1.165 
1.036 

0.003 
0.766 
0.007 
0.000 

39.768 
0.045 
9.571 

41.877 
16.295 

221.828 
47451.200 

250.288 
0.000 
0.021 
0.000 

0.004 
0.000 
0.000 
0.905 
0.024 
0.000 
1.141 
0.000 

Limits odds ratio 

Lower 

1.030 
1.096 
0.980 

2.07E-06 
0.026 
1.38E-06 
2.49E-06 

0.269 
9.82E-06 
0.023 
0.133 
3.28E-19 
4.77E-26 
8.68E-16 
6.48E-18 
1.0 IE-24 
8.54E-22 
9.67E-24 

1.65E-22 
1.60E-23 
4.87E-29 
8.72E-22 
1.76E-29 
1.73E-24 
1.56E-20 
2.87E-25 

Upper 

1.103 
1.238 
1.094 

4.955 
22.536 
36.702 
0.270 

5887.6200 
201.8520 
3992.1300 
13150.7000 
8.09E+20 
1.03E+30 
2.59E+24 
9.67E+21 
2.85E+15 
5.27E+17 
7.71E+15 

9.90E+16 
1.02E+16 
5.30E+14 
9.40E+20 
3.34E+25 
1.60E+15 
8.36E+19 
2.32E+18 

We have applied two methods to select the variables 
and solve the logistic regression model. The first method 
introduces all six variables at the same time. In the 
second one, we used the stepwise method, considering 
the previous six variables and the new variable, terrain 
roughness. 

6.2. 'Introduce' modelling 

Of the six independent variables or factors, quantita­
tive factors are elevation, slope gradient, and mean 
annual precipitation, while qualitative factors are slope 
aspect, land use, and lithology. The methodology used 
for the logistical model is based on the use of quantitative 
variables; however, it is also possible to use qualitative 
variables in the model. In landslide susceptibility map­
ping, a solution is to create layers of binary values 
(dummy variables) for each class of an independent 
qualitative parameter (Guzzetti et al., 1999; Lee and Min, 
2001; Dai et al., 2001; Dai and Lee, 2002; Ohlmacher 
and Davis, 2003; Ayalew and Yamagishi, 2005). 

Our model was fitted using the maximum likelihood 
method (McCullagh and Nelder, 1989), which deter­
mines the value of one or more parameters for a given 
statistic to make the likelihood distribution maximum. 
The output equation shows the results of logistic re­
gression modelling to describe the relationship between 
landslides and the six independent variables: 

LogitCp(F = 1) = B0 +B& +B2X2 B^X(, 

(9) 

Let us consider a hypothesis test for each coefficient 
(B). The null hypothesis is Ho: -3;=0, i.e., S,=0 if the 

Table 3 
Likelihood ratio test for the first model 

Source 

Initial 
Model 
Residual 

Deviance (—2LL) 

325.264 
319.443 

5.821 

df 

234 
208 
26 

p-value 

0.0000 
1.0000 



Table 4 
Estimated regression model (maximum likelihood) and odds ratio for the coefficients in the stepwise model 

B df 

Step 1(a) Roughness (R) 3.755 1 
Constant —7.726 1 

Step 2(b) Roughness (R) 5.110 1 
Soil 4 
Soil (Si) -2.853 1 
Soil (S2) 0.000 1 
Soil (S3) 3.073 1 
Soil (S4) 2.242 1 
Constant -11.309 1 

a. Introduced variable in the step 1: Roughness. 
b. Introduced variable in the step 2: Soil. 

independent variable Xt does not affect the probability/; 
(Y— 1). The p-value is calculated for each variable, 
which is the probability of observing a value more 
extreme than the actually observed value if the null 
hypothesis is true. The smaller the p-value is, the more 
unlikely the null hypothesis is true. The statistical 
significance of each coefficient in the model (p-value 
and odds ratio) is listed in Table 2. 

With the introduced method, most of the factors 
(elevation, slope gradient, slope aspect, lithology and 
mean annual precipitation) have a/>-value less than 0.01, 
which indicates that there is a statistically significant 
relationship among the variables at the 99% confidence 
level. However, land use classes have ^-values greater 
than 0.01, which means that these factors are less sig­
nificant in the model. 

We then performed further tests to evaluate goodness 
of fit of the model. A key concept for understanding the 
tests used in logistic multiple regression is log likelihood. 
Usually, overall significance is tested using Chi-square, 
which is derived from the likelihood of observing the 
actual data under the assumption that the fitted model is 
accurate. Furthermore, it is also convenient to use - 2 
times the log (base e) of this likelihood (-2LL) 
(Kleinbaum et al., 1998); smaller values of the -2LL 
measure indicate a better model fit. The adjusted 
percentage is similar to the usual 7?-squared statistic; 
this statistic is suitable for comparing models with dif­
ferent numbers of independent variables, which was 
81.6% in our case (Table 3). 

6.3. Stepwise modelling 

There are two basic forms of stepwise logistic 
regression: forward inclusion and backward elimination. 
In forward logistic regression all independent variables 

p-value Exp(B) Limits odds ratio 

ratio 

42.723 

165.601 

0.058 
1.000 

21.598 
9.413 

Lower 

2.562 

52.974 

0.000 
0.000 
0.021 
0.012 

Upper 

4.947 

517.678 

69.217 
8.09E+11 
22416.300 
7885.870 

are initially excluded from the model. Just the opposite 
occurs in backward logistic regression, in which all 
independent variables are initially included in the model. 
At subsequent steps in the procedure, those variables 
determined insignificant are eliminated from the model 
until the remaining variables are all regarded as 
"important". Stepwise logistic regression is most often 
used in situations where the "important" independent 
variables are not known, and their associations with the 
outcome are not well understood. The likelihood ratio 
Chi-square test is used to assess significance in logistic 
regression since the errors are assumed to follow a 
binomial distribution. This test assigns a/>-value to each 
variable to assess significance. Therefore, the most 
important variable is the one with the smallest p-value. 
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Fig. 12. Receiver Operating Characteristic (ROC) curve. The area 
under the curve (an estimate of the model accuracy) is 0.980. 



Table 5 
Likelihood ratio test for the stepwise model 

Source 

Initial 
Model 
Residual 

Deviance (—2LL) 

325.264 
302.629 
22.636 

df 

234 
5 

229 

p-value 

0.0000 
1.0000 

Considering the independent variables including ter­
rain roughness, we selected a stepwise method, Forward 
Reason Verisimilitude (RV) (SPSS software). We then 
performed entry testing based on the significance of the 
score statistic, and removal testing based on the prob­
ability of a likelihood ratio statistic based on the maximum 
partial likelihood estimates. The model is adjusted in step 
2, with terrain roughness (R) and soil (including the 
lithology class Si, S2, S3 and S4) as variables; therefore 
we obtain the following equation (Eq. (10)) 

t] = -11.309 + 5.11LR - 2.8535] 
+ 2.242S4 

3.0735*3 
(10) 

In Table 4, the coefficients and odds ratios for the 
stepwise model are listed. 

The Receiver Operating Characteristic (ROC) analy­
sis summarises the performance of a logistic regression 
model. ROC curves can be used to provide predictions of 
landslide probability (Zweig and Campbell, 1993). The 
curves are obtained by plotting all combinations of false-
positives (on the j-axis) and proportions of false-
negatives (on the x-axis); where the proportion of 
false-positives is the proportion of cases classified as 
landslides by the method but they are not actual 
landslides; and the proportion of false-negatives is the 
proportion of cases identified as non-landslides but 
actually being landslides. The area under the ROC curve 
(AUROC) is an estimator of the model accuracy 
(Hosmer and Lemeshow, 2000). The area measures 
discrimination, that is, the ability of the test to correctly 
classify those pixels with and without landslide risk. This 
threshold-independent measure of discrimination be­
tween both classes takes values between 0.5 (no 
discrimination) and 1 (perfect discrimination). There­
fore, if the ROC plot is closer to the upper left coiner, the 
overall accuracy of the test is higher. The area cor­
responding to our logistic model is 0.980, which implies 
a very good predictive capacity (Fig. 12). 
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Table 6 
Chi-square goodness of fit test for the stepwise model evaluates the agreement between the model and the observed data 

Class 

1 
2 
3 
4 
5 
Total 

Logit interval 

Less than -3.9575 
-3.9575 to 1.1667 
1.1667 to 11.3712 
11.3712 to 17.3112 
17.3112 or greater 

n 

110 
30 
41 
26 
28 

235 

True 

Observed 

0.0 
17.0 
41.0 
26.0 
28.0 

112.0 

Expected 

1.5919 
15.558 
40.597 
26.0000 
28.0000 

False 

Observed 

110.0 
13.0 
0.0 
0.0 
0.0 

123.0 

Expected 

108.4080 
14.4423 
0.4026 
0.0000 
6.34E-9 

The logistic scale is divided into five intervals, each of which has a particular number of observations (n). The observed versus expected true and false 
observations in each interval of the observed data are compared with the predicted by the model. The null hypothesis assumes that there is not a 
significant difference. Since the/rvalue is greater than 0.10, the null hypothesis cannot be rejected; therefore the test concludes that there is a good fit 
for the model. 
Chi-squared=2.2998 with 3 rff(degrees of freedom) and />-value = 0.5125. 

Eq. (7) was transferred into ArcGIS 9.0 and applied to 
the independent variables representing the conditions of 
each cell within the study area. Eq. (7) gave a sig­
nificance level of 89.4%, and both 7?-squared tests also 
indicate the good fit of the model (Table 5). 

The resultant landslide susceptibility map, together 
with the landslide inventory, is shown in Fig. 13. The 
created landslide susceptibility map was classified into 
five classes, very low (0.00-0.05), low (0.05-0.12), 
medium (0.12-0.19), high (0.19-0.26) and very high 
(0.26-1.00). The majority of landslides occur within 
areas designated as very high susceptibility. However, we 
also observed some landslides in medium to low sus­
ceptibility areas. 

Concordance between the model and the inventory data 
is shown in Table 6 according to the Chi-square goodness 
of fit test. The test determines whether the logistic function 
adequately fits the observed data. Because the />-value is 
greater than 0.10, there is a good fit of the model with a 
confidence level higher than the 90%. 

7. Concluding remarks 

In many other landslide studies using logistic re­
gression, elevation and slope angle were the best predictor 
variables or factors for estimating the probability of land­
slide occurrences (Ohlmacher and Davis, 2003; Ayalew 
and Yamagishi, 2005). However, we found that terrain 
roughness and lithology are the best factors to estimate 
landslide susceptibility, while land use is the least sig­
nificant factor. Maximum frequency of landslides occurs 
in the slope gradient range 73°-81°, with elevations 
between 1630 and 1900m. Because we worked with a 
pixel resolution of 100m, these ranges of slope and 
elevation together reflect a rough texture or high terrain 
roughness; as a consequence our logistic regression model 
strongly associates the last characteristic (roughness) with 

landslides. Roughness is also related to terrain aspect and 
concavity, which may explain the observation that the 
majority of landslides occurred on north and north-west 
facing slopes. The strong influence of bedrock and soil 
may reflect a unique characteristic of the study area in 
relation to past volcanic activities. 

The triggering factor for landslides can be both heavy 
rain and earthquakes, fn our work, only the latter is 
considered, since we used the inventory of landslides due 
to the 2001 earthquake. This also explains the difference 
between our results and those of the previous studies. 
Although rainfall as a trigger of landslide is excluded here, 
it is considered as a dispositional factor in El Salvador 
(Bommer and Rodriguez, 2002). In future studies it is 
necessary to develop a model of landslide susceptibility 
which takes the effects of rainfall into account. 

The predicted susceptibilities generated from the 
model within the GIS were used to produce a map of 
relative landslide susceptibility, for a broad area with a cell 
size of 100m. Therefore, the susceptibility map produced 
is limited to a regional assessment and unsuitable for local 
evaluations. More detailed research based on higher-
resolution data is necessary to solve this problem. 
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