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Abstract
In many real-world applications, the simplified
assumption of independent and identically dis-
tributed noise breaks down, and labels can have
structured, systematic noise. For example, in
brain-computer interface applications, training
data is often the result of lengthy experimental
sessions, where the attention levels of partici-
pants can change over the course of the exper-
iment. In such application cases, structured la-
bel noise will cause problems because most ma-
chine learning methods assume independent and
identically distributed label noise. In this paper,
we present a novel methodology for learning and
evaluation in presence of systematic label noise.
The core of which is a novel extension of sup-
port vector data description / one-class SVM that
can incorporate latent variables. Controlled sim-
ulations on synthetic data and a real-world EEG
experiment with 20 subjects from the domain of
brain-computer-interfacing show that our method
achieves accuracies that go beyond the state of
the art.

1 Introduction
Most supervised learning algorithms assume that the noise
in the labels or output variables (yi) is independent and
identically distributed:

yi = f(xi) + �i , �1, . . . , �n
i.i.d.∼ P

1Authors contributed equally.
2Corresponding Authors.
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This assumption is convenient from the viewpoint of the-
ory, as it directly links to the law of large numbers, which
explains why learning methods such as support vector ma-
chines [1] consistently improve when training set sizes
grow, despite label noise. However, in many real-world
applications, the assumption of i.i.d. noise is questionable
at best because training data can be the result of complex
experiments with a time-dependent noise structure and a
human in the loop.

For instance, a typical challenge in the context of
electroencephalography-based brain-computer interfacing
(EEG-BCI; e.g., [2]) is the decoding of mental states [3].
Machine learning has become indispensable in this regard
[4], in particular for analyzing the threshold of percep-
tion ([5], e.g.). For such applications, EEG signals are
recorded in experimental sessions that span several hours,
during which the participants are asked to perform complex
mental tasks. However, if participants become distracted,
bored, or sleepy, this may result in a significant increase
of mislabeled training examples in consecutive trials [6].
Thus—from a statistical point of view—the noise level in-
creases, the distribution of the noise changes, and subse-
quent trials exhibit dependency structures.

What are the implications of such a systematic label noise
in machine-learning applications? Both the training and
the testing phase in machine learning can suffer from non-
independent and non-identically distributed noise:

1. common training algorithms fit a noise term to the
data, the parameters of which are shared by all train-
ing examples, while, in reality, the parameters of the
noise may change

2. common procedures for estimating the test error (such
as cross validation) rely on accurate test labels—an
assertion that renders a fair evaluation challenging.

In this paper, we propose a novel methodology for both
learning in presence of systematic label noise and for reli-
able evaluation of the results. Since we may neither com-
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pletely trust the training nor the test labels, the core of the
methodology consists of a new unsupervised learning algo-
rithm capable of encoding the state of the noise by a latent
variable.

The contributions of this paper can be summarized as fol-
lows: we propose a new methodology for learning and
evaluation in presence of non-i.i.d. label noise, at the
core of which lies a novel unsupervised learning method—
LATENTSVDD—that is formulated in terms of a DC opti-
mization problem. We give a dual representation of the op-
timization based on DC Fenchel duality theory and present
a DC-programming algorithm for the problem, for which
we prove that it locally converges. We show an upper
bound on the generalization error of the latter method that
converges to zero at the usual convergence rate O(

�
1/n).

An empirical analysis of the methodology on synthetic data
is presented. Finally, we provide an extensive case study
of a real application scenario from the domain of brain-
computer interfacing, where LATENTSVDD allows us to
re-assess a common test of visual attention. Our analysis
shows that even in the difficult scenario of learning in pres-
ence of non-i.i.d. label noise, learning and reasonable eval-
uation can indeed be made possible.

2 Learning Methodology
We are given a data set D consisting of N data points
x1, . . . ,xN , lying in some input space X , and labels
y1, . . . , yN ∈ Y . As mentioned in the introduction, we
consider a learning scenario where we have varying con-
fidence in the labels (some yi are more trustworthy than
others). To this end, we propose a methodology for learn-
ing with non-i.i.d. label noise that consists of the following
steps.

Step 1: COMPUTATION OF THE LATENT STATE AND
ANOMALY SCORE FOR EACH DATA POINT

Step 2: SANITIZATION: REMOVAL OF THE MOST NOISY
DATA POINTS

Step 3: LABEL-DENOISING

Step 4: EVALUATION

As a result of the above steps we obtain a learning method-
ology that outputs, for a training set D, an inductive rule

gD : X × Y → Y ,
that lets us assign to any pair (x, y) a denoised label �y :=
gD(y), which is our guess for the true underlying label.

The various steps of the above methodology are detailed
below.

2.1 Step 1: Latent Support Vector Data Description
(LATENTSVDD)

Our approach is based on the paradigms of support vector
learning [7] and density level set estimation [8, 9]. Here
the data is mapped from the input space into a RKHS

feature space φ : X → F that gives rise to a kernel k
[10, 11]. The goal is to find a model f : X → R and a
density level-set L := {x : f(x) ≤ ρ} containing most
of the regular data points, while for anomalies and outliers
x /∈ L holds. In case of the support vector data descrip-
tion (SVDD) method, fSVDD(x) = �c − φ(x)�2 and pa-
rameter estimation corresponds to solving a quadratically
constrained quadratic program (QCQP):

min
R,c,ξ≥0

R2 + C
n�

i=1

ξi (SVDD)

s.t. �c− φ(xi)�2 ≤ R2 + ξi ∀ i

That allows for the following simple geometric interpreta-
tion: a ball of radius R is computed that comprises most
the regular data points, while all points lying outside of the
normality radius are declared being anomalous.

In this paper, we extend the classical mapping fSVDD by the
inclusion of a latent variable z ∈ Z in a joint feature map
Ψ : X × Z → F . As a consequence, the resulting model

f : X → R, x �→ min
z∈Z

�c−Ψ(x, z)�2 (1)

becomes more expressive (a similar idea appeared also re-
cently in the context of supervised learning [12, 13]). The
latent state variable �z of a given data pointx can be inferred
by �z = argminz∈Z �Ψ(x, z)�2 − 2�c,Ψ(x, z)�. The idea
in the context of non-i.i.d. label noise is: if the structure
of the latent space Z resembles the true underlying label
structure, then we are able to infer the true labels by taking
a purely data driven approach. The extended model, which
we call LATENTSVDD, leads to a modified optimization
problem:

min
R,c,ξ≥0

R2 + C
n�

i=1

ξi (LATENTSVDD)

s.t. min
z∈Z

�c−Ψ(xi, z)�2 ≤ R2 + ξi ∀ i .

Because of the min operator in the constraints, the result-
ing optimization problem is no longer convex, but we can
derive an optimization strategy by decomposing the prob-
lem into convex and concave parts and iteratively lineariz-
ing the concave part (DC Programming [14, 15]). In order
to do so, we re-write the above problem in an equivalent,
unconstrained fashion as follows:

min
c,R

R2 + C
n�

i=1

max(0,min
z∈Z

�c−Ψ(xi, z)�2 −R2).

Substituting Ω := R2 − �c�2, this is equivalent to

min
c,Ω

�c�2 +Ω+ C
n�

i=1

max
�
0,−Ω+min

z∈Z
�Ψ(xi, z)�2

− 2�c,Ψ(xi, z)�
�
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subject to the constraint �c�2 + Ω ≥ 0, which can be
dropped as it is not active in the optimal point. Note that,
for any i, the function

gi(c,Ω) := −Ω+min
z∈Z

�Ψ(xi, z)�2 − 2�c,Ψ(xi, z)� (2)

is concave, so −gi is convex. Furthermore, note that for
any t ∈ R : max(0, t) = max(0,−t) + t. Thus we have
the decomposition

max(0, gi(c,Ω)) = max(0,−gi(c,Ω))� �� �
convex

+ gi(c,Ω)� �� �
concave

,

because the maximum of two convex functions is convex.
Thus we can equivalently re-write the LATENTSVDD op-
timization problem as a sum of a convex and a concave
function as follows: given the definition of gi in Eq. (2),
solve

(LATENTSVDD-DC)

min
c,Ω

�c�2 +Ω+ C
n�

i=1

max(0,−gi(c,Ω))

� �� �
convex

+C
n�

i=1

gi(c,Ω)

� �� �
concave

The above problem is an instance of the class of DC opti-
mization problems. We propose to solve the above prob-
lem with the simplified DC algorithm [14]. That is, al-
ternatingly, the concave part is linearized and the resulting
approximate problem solved. The resulting algorithm is
shown in Algorithm Table 1

Algorithm 1 Optimization Algorithm for LATENTSVDD
input data x1, . . . ,xN

initialize ct=0 & ∀i : �zt=0
i (e.g., randomly)

repeat
t:=t+1
for i = 1, . . . , N do

�zt
i := argminz∈Z ||ct−1 −Ψ(xi, z)||2

overwriting the notation of gi in (2), we define
gi(c,Ω) := −Ω+||Ψ(xi, �zt

i)||2−2�c,Ψ(xi, �zt)�
end for
let ct and Ωt the optimal arguments when solving
Problem (LATENTSVDD-DC) with the gi set as
above

until ∀ i : �zt
i := �zt−1

i

return optimal model parameters c := ct, R :=�
||ct||2 +Ωt, and zi := �zt

i ∀ i = 1, . . . , N

The proposed algorithm converges against a local optimum
(typically in about 10 iterations, as we found in our exper-
iments). This follows from the following theorem that is
taken from [16], which is an extension of the convergence
theorem in [14] to non-differentiable objective functions.
Theorem 1 ([16], Theorem 3.3). Let f, g be convex func-
tions. Let x0 be any feasible point, and put

∀t > 0 : xt := argmin
x

f(x)− x�∇g(xt−1) .

If the non-smooth parts of f and g are piecewise-linear and
the smooth part of f is strictly convex quadratic, then any
limit point of the sequence (xt) is a stationary point.

The proposed algorithm also admits a dual representation
via the convex conjugate function f∗(x) := supy�x, y� −
f(x). The dual of the LATENTSVDD-DC problem is
given by

min
c,Ω

�
−C

n�

i=1

gi(c,Ω)

�∗

−
�
�c�2 +Ω+ C

n�

i=1

max(0,−gi(c,Ω))

�∗

.

This completes the presentation of the first step in our pro-
posed methodology. We now turn to step 2.

2.2 Step 2: Outlier Removal
To remove outliers [17], we divide the data set D into two
disjoint sets L− := {x : f(x) ≤ ρ}, containing most of
the regular data, and L+ := {x : f(x) > ρ}, consisting of
the anomalies. Here f is defined as in (1). LATENTSVDD
provides us with a natural choice of a threshold ρ = R2,
but usually we employ a small and thus conservative radius
R << �ψ(x, z)�∞, so that choosing ρ = R2 would be
too aggressive (too many anomalies removed). As a rem-
edy, we apply the following procedure to determine a good
threshold ρ. Set fi := f(xi) and arrange the fi in non-
decreasing order, f(1) ≤ . . . ≤ f(n). Put

ρ := max
�
R2, max

i=1,...,N−1
f(i+1) − f(i)

�
.

Thus intuitively we determine the threshold where the
anomaly score f(x) has the steepest slope. The motivation
of which is that regular data is quite densely sampled and
thus has a rather smooth increase of anomaly scores, so that
choosing an area with steep slope of anomaly scores corre-
sponds to an anomalous region in input space. Indeed we
have observed that this heuristic often leads to good results
in practice. Finally we output W := L− as our (sanitized)
working training set.

2.3 Step 3: Label Assignment
In this step, we aim at assigning a label �y for each data
point x using the information from the latent variable
z ∈ Z , as computed by LATENTSVDD. We start by par-
titioning the working data set W is into m smaller sets
W1, . . . ,Wm, where m := |Z| denotes the cardinality of
the latent state space, by grouping all data points that have
the same latent state in the LATENTSVDD model.

Then, we wish to flip the labels of data points such that
the data within each group Wi has identical labels. To this
end, we could simply perform a majority vote within each
group. We follow a different, more sophisticated approach
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here: we determine each group’s joint label by choosing the
labels such that the working set’s kernel-target-alignment
(KTA) score is maximized after label assignment.

Kernel target alignment (KTA) [18] is a method that
measures the fit between the Gram matrix K =
(�φ(xi), φ(xj)�)1≤,i,j≤n and the label vector y =
(y1, . . . , yn) as follows:

KTA(K,y) =
�K,yyT�F

�K�F �yyT�F
Here, �A,B�F :=

�n
i,j=1 aijbij denotes the Frobenius in-

ner product and �A�F := �A,A�1/2F denotes its induced
norm. This measure has been utilized for optimizing ker-
nels or feature representations [18, 19]. In this paper, we
reverse the perspective: instead of optimizing a kernel to
match the labels, we optimize the labels to match the ker-
nel.

Let W = W1 ∪ . . . ∪ Wm be the partition of the work-
ing training set W into disjoint sets Wi such that examples
having the same latent state are grouped within the same
Wi. Then we compute the denoised label vector �y as

�y := argmax
y∈{+1,−1}N

KTA(K,y)

s.t. ∀i, j, k : xi,xj ∈ Wk ⇒ yi = yj .

Here, the constraints require that all data points within a
group Wi are assigned with the same label. This ensures
that we only have to optimize over a few possible label
combinations, e.g., over 25 = 32 instead of 2N , if we have
m = 5 groups. This renders the optimization problem fea-
sible.

2.4 Step 4: Evaluation
Fair evaluation of learning algorithms for label denoising
is a major challenge: while we cannot trust the observed
labels, we usually cannot access the underlying ground
truth of an experiment. One approach to circumvent this
problem is perform the evaluation solely on controlled syn-
thetic data, where we can access the truly underlying per-
formance of the algorithms. In this paper, we perform a
mixed approach of evaluation in controlled synthetic and
in real-world setups.

When evaluating our experiments on real-world data, we
employ three indicators for the prediction accuracy of an
algorithm. First, note that it is our intrinsic interest that the
accuracy of a classifier increases after denoising the labels.
For this purpose we measure the classification performance
in terms of the area under the ROC curve (AUC) [20] be-
fore and after denoising, and take the difference as an indi-
cator for a algorithm’s performance: a good denoising al-
gorithm should yield a substantial higher classification ac-
curacy after denoising, while not overfitting to the training
sample. In the synthetic experiment, we observe a kind of

bias-variance tradeoff, which helps us also to guess on real
data when an algorithm over- and underfits. Second, we
use kernel-target-alignment scores as an indicator for the fit
between labels and data before and after denoising. KTA
scores are complementary to AUCs in the sense that capture
how well the separability of the data correlates with the la-
bels. They are less prone to overfitting than AUCs. Third,
we invoke expert opinions to ensure the quality of the de-
livered solution. This has the advantage that we do not rely
on labels in this case, but the disadvantage that the expert
opinion is subjective and might be biased. In summary, the
combined application of the above described measures lets
us obtain a guess for the true performance of a denoising
algorithm.

3 Theoretical Analysis
In this section, we wish to present a theoretical analysis
of our learning methodology. However, the whole 4-step
procedure is hard to access theoretically, which is why—as
a first step towards this goal—we focus on the new learning
method that forms the core of step 1 of our methodology,
that is, the novel LATENTSVDD method. In this section
we present a generalization analysis of this unsupervised
learning algorithm.

We start by defining, for any λ > 0, the following hypoth-
esis class

FLATENTSVDD :=
�
fc,Ω,Z =

�
x �→ Ω+max

z∈Z
2�c,Ψ(x, z)�

− �Ψ(x, z)�2
�
: 0 ≤ �c�2 +Ω ≤ λ

�
,

and its corresponding loss class GLATENTSVDD := l ◦
FLATENTSVDD, employing the loss function l(t) :=
max(0,−t). It is not difficult to verify that (e.g., [21],
Proposition 12), by employing the variable substitution
Ω := R2−�c�2, for any C > 0 there is an λ > 0 such that
problem (LATENTSVDD) is equivalent to

min
f∈FLATENTSVDD

1

n

n�

i=1

l(f(xi)) = min
g∈GLATENTSVDD

1

n

n�

i=1

g(xi).

Hence, we may analyze the proposed LATENTSVDD
within the proven framework of empirical risk minimiza-
tion.

Let us first briefly review the classical setup of empirical
risk minimization [1]. Let x1, . . . , xn be an i.i.d. sam-
ple drawn from a probability distribution P over X . Let
F be a class of functions mapping from X to some set
Y , and let l : Y → [0, b] be a bounded loss function,
for some b > 0. The goal is to find a function f ∈ F
that has a low risk E[l(f(x))]. Denoting the loss class by
G := l ◦ F , this is equivalent finding a function g with
small E[g]. The best function in G we can hope to learn
is g∗ ∈ argming∈G E[g]. Since g∗ is unknown, we in-
stead compute a minimizer �gn ∈ argming∈G �E[g], where
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�E[g] := 1
n

�n
i=1 g(xi). To compare the prediction accura-

cies of g∗ and �gn, it is known [22] that, with probability at
least 1− δ over the draw of the sample,

E[�gn]− E[g∗] ≤ 4Rn(G) + b

�
2 log(2/δ)

n
. (3)

Here, Rn(G) := E supg∈G
1
n

�n
i=1 σig(xi) is the

Rademacher complexity, where σ1, . . . , σn are i.i.d.
Rademacher variables (random signs). Usually Rn(G) is
of the order O(1/

√
n), when we employ appropriate regu-

larization, and thus so is (3). We will show that also LA-
TENTSVDD enjoys this favorable rate:
Theorem 2 (Generalization bound for LA-
TENTSVDD). Let g∗ ∈ argming∈GLATENTSVDD

E[g] and
�gn ∈ argming∈GLATENTSVDD

1
n

�n
i=1 g(xi). Assume there is

a real number B > 0 such that P(�Ψ(xi, z)� ≤ B) = 1.
Denote the cardinality of Z by |Z|. Then, the following
generalization bound holds:

E[�gn]− E[g∗] ≤ 4|Z|λ+B
√

λ√
n

+B

�
2 log(2/δ)

n
.

Sketch of Proof. For the proof, we proceed in three steps:
first, we prove a Rademacher bound for the classic SVDD
(cf. the lemma below). Next, we use Lemma 8.1 in [23]
to conclude a Rademacher bound for LATENTSVDD. Fi-
nally, we conclude the claimed result by (3).

The complete proof of Theorem 2 is shown in the supple-
mental material. It builds on the following generalization
bound for the classic SVDD, which is also proved in the
supplement.
Lemma 3 (Rademacher bound for SVDD). Put
FSVDD(z) :=

�
fc,Ω =

�
x �→ Ω + 2�c,Ψ(xi, z)� −

�Ψ(xi, z)�2
�

: 0 ≤ �c�2 + Ω ≤ λ
�

and

GSVDD(z) := l ◦ FSVDD(z) with l(t) := max(0,−t).
Assume there is a real number B > 0 such that
P(�Ψ(xi, z)� ≤ B) = 1. Then the Rademacher
complexity of GSVDD is bounded as follows:

R(GSVDD(z)) ≤ λ+B
√

λ√
n

.

Now, while for simplicity the above analysis is based on the
assumption of i.i.d. observations, it should be clear, that the
very same analysis can also be performed asserting rather
“slight violations” of the independence assumption. This
is closer to the scenario considered in this paper, where we
might face dependent noise in the labels. In particular, we
can use the result of Theorem 1 in [24] to prove an ana-
logue of our main result under the assumption of φ-mixing
data (a formal mathematical relaxation of the i.i.d. assump-
tion). As a result the convergence rate can be slightly or
even considerably slower than O(

�
1/n)), depending on

the “degree of violation” of the independence assumption.

4 Experiments
We examine the effectiveness of the proposed 4-step
methodology for learning and evalution in presence of non-
i.i.d. label noise on both controlled synthetic and real-
world data from the domain of EEG-based brain-computer
interfacing (BCI), an popular application domain in the
neurosciences. While in the synthetic scenario we have
complete control over the truly underlying labels, we rely
on indirect evidence for quantifying the results for the EEG
data. To this end, we use both quantitative (KTA and AUC
scores) and qualitative measures (visual inspection), as de-
scribed earlier in Section 2.4. However, we compare these
quantitative measures with the underlying ground truth in
the controlled synthetic setup, so that we can analyze and
“align” these measures on the controlled data. In all ex-
periments, we measure the classification performance (be-
fore and after denoising) using Linear Discriminant Anal-
ysis (LDA) with shrinkage of the covariance matrix, which
is the state of the art in single-trial classification of EEG
data for event-related potentials [25].

4.1 Latent Space Structure and Model Parameters of
Proposed LatentSVDD for Experiments

In Section 2 we have generally described LATENTSVDD
in terms of a joint feature map Ψ(x, z) [12]. For all ex-
periments, we specifically employ a variant of the joint
feature map with latent space Z := {1, . . . ,K} that is
similar to the multi-class joint feature map [12]: let be
Λ(z) = {δ(z1, z), δ(z2, z), . . . , δ(zK , z)} ∈ {0, 1}K
and a ⊗ b be the direct tensor product of vectors a and b.
Given a data point x, we define our joint feature map as
Ψ(x, z) = φ(x)⊗ Λ(z). In our experiments we restricted
the number of possible latent states to 12. We observed in
the experiments, that increasing the number of states be-
yond 12 usually hardly changes the results (it just leads to
additional “unused” latent states). This indicates that 12 is
a reasonable choice for the data we employed in the exper-
iments.

4.2 Baseline Methods
We compare our approach against baseline methods which
excel in varying areas, such as:

1. dealing with i.i.d. label noise

2. semi-supervised and manifold learning

3. unsupervised learning

Furthermore, it is worth mentioning that most supervised
learning algorithms are able to handle, or explicitly as-
suming, i.i.d. label noise. For instance, Relevant Dimen-
sionality Estimation (RDE, [26, 27]), is a state-of-the-art
kernel-based learning method for denoising labels. RDE
estimates the number of leading kernel principal compo-
nents required to reconstruct the signal (non-noise) part
of the data. By projecting the observed label y to the
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first d kPCA [28] components u1, . . . ,ud one obtains
the denoised label �y :=

�d
i=1 uiu

�
i y RDE works well

if the underlying label noise is independent. However,
we expect non-i.i.d. label noise which should be indi-
cated by a drop of performance of RDE when compare
against LATENTSVDD. Another standard approach for la-
bel denoising is label propagation, a technique that arose
in the general context of semi-supervised Learning (e.g.,
[29, 30, 31, 32]). Another baseline approach is given by the
vanilla support vector data description [9] method (without
a latent variable). This method infers a model of normality
for each class. This way we can obtain a denoised set of la-
bels depending on whether or not a data point is contained
within the normality ball output by SVDD.

4.3 Controlled Synthetic Experiment

Figure 1: Anomaly
scores and latent vari-
able tessellation for
LATENTSVDD.

We designed a synthetic exper-
iment that resembles the EEG
setting that we have in mind,
which is characterized by un-
balanced classes and small
sample sizes. To this end,
we independently sampled 300
positive and 80 negative in-
stances from two-dimensional
Gaussian distributions. To
further increase the complex-
ity of the problem, we we
added 250 Gaussian noise di-
mensions. This results in data having a similar dimension-
ality as usually encountered in EEG experiments. Then, we
introduce systematic label noise by randomly flipping the
label of positive instances that have x2 < −0.5 and that of
negative instances with x2 > +0.5. This results in roughly
35% of the labels being flipped. Note that this leads to
rather systematic label noise, which is to be contrasted to
uniform label noise, which could, e.g., result from ran-
domly flipping all labels.

Performance is measured by sampling 25 times from the
data pool and dividing into 75% training data and 25% test
data. Since (shrinkage) LDA estimates its optimal parame-
ter analytically, no model selection and hence no validation
data set was necessary. The experiment was repeated 50
times for several levels of systematic label noise (ranging
from 0% up to 100%). The average results over the 50
repetitions of the experiment are shown in Figure 2. For
the four compared denoising approaches, we report the re-
sults in terms of the AUC achieved by LDA when testing
on the original truly underlying labels (left-hand figure),
while the black-dashed line shows the accuracy on the orig-
inally observed (i.e., undenoised) labels. The kernel-target-
alignment scores associated with the denoised labels are
shown in the center figure. The right-hand figure shows the
0-1 error of the denoised labels with respect to the truly
underlying labels.

Figure 2: Accuracy in terms of AUC for all methods tested
on the underlying true labels (left). Kernel target align-
ment scores for the denoised labels (center). And fraction
of correctly inferred labels given the underlying true labels
(right).

We observe that the vanilla SVDD’s performance drops for
settings with increasing label noise. This might result from
the fact that the SVDD infers a model of normality for each
class separately, thus ignoring the coupling induced by the
latent noise structure. Label propagation leads to intrin-
sically unstable solutions, which can be concluded from
its large error bars. Generally, it seems to be much more
sensitive to random perturbations in the label noise than
its competitors. In low-noise settings, the RDE baseline
has the highest KTA scores and correspondingly also high
AUC values, but—of all methods compared—the lowest
truly underlying performance (lowest agreement between
true and the denoised labels), which can be observed from
the right-hand side of Figure 3. This indicates that RDE
overfits to the training labels. Finally, the proposed multi-
step methodology based on LATENTSVDD is less affected
by variations in the label noise level, and overall achieves
the highest accuracies, while having small error bars, that
is, it is more stable than the compared methods. Further-
more, we observed that in average only 6 iterations are
needed for convergence of the optimization algorithm. Fig-
ure 1 shows exemplary contour plots of anomaly scores and
tessellation induced by the latent variable as output by LA-
TENTSVDD.

Figure 3: Exemplary denoising results for all methods by
40% systematic label noise. The dot size codes for the
anomaly scores as returned by SVDD and LATENTSVDD.

4.4 EEG Experiment
We evaluated our proposed learning methodology on the
data of an EEG-BCI experiment, for which we recorded 20
participants. The results are presented in this section.

4.4.1 Setting
Motivation & Neuroscientific Background In our EEG
experiment, we address the question of whether or not the
brain of a participant processed a response error. Conven-
tionally, the EEG data would be analyzed based on the be-
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havioral response of the participant, grouping all trials to-
gether where the behavioral response is de facto correct or
wrong (= behavioral labels). However, having committed
a mistake behaviorally does not equate having processed
it neurally [5]. While the neural processing is what we
are really interested in, these neural labels are unknown, as
no ground truth is available. We used LATENTSVDD for
finding these neural labels in a data-driven way, with the
goal of dividing the EEG trials: those where an error was
processed neurally, and those where none was processed.

When participants recognize having committed a response
error, two specific components are evoked in the event-
related potential (ERP) of the EEG signal: an error neg-
ativity (Ne) and an error positivity (Pe). Out of these, only
the Pe has been attributed to error or post-error processing
itself [33]. Therefore, we focus on the Pe in the follow-
ing, which is characterized by a centro-parietal maximum
200–500ms after feedback [34, 35, 36, 37].

Paradigm&Methods In our experiment, 20 participants
were asked to perform a fast-paced d2 test [38], a common
test of visual selective attention. In this test, participants
are presented two types of visual stimuli and are asked to
distinguish between these two stimuli by pressing the cor-
responding button: the right hand should be used for the
target stimulus (20% of trials), the left hand for the non-
target stimulus (80% of trials). In total, each participant
assessed 300 stimuli under time pressure. Feedback was
given 500 ms after each response, both on reaction time
and correctness. Brain activity was recorded with multi-
channel EEG amplifiers (BrainAmp DC by Brain Products,
Munich, Germany) with 119 Ag/AgCl electrodes placed
according to an extended international 10-10 system, sam-
pled at 1000 Hz and band-pass filtered between 0.05 Hz
and 200 Hz.

We examined the neural response that was elicited by re-
ceiving feedback. For this, the EEG data was divided into
epochs of 500 ms, starting from the onset of feedback.
These epochs were baseline corrected (based on the 200 ms
interval prior to feedback) and artifact rejection was per-
formed. As features for LATENTSVDD and classification,
we calculated 9 features per epoch. For this purpose, the
interval [0 500 ms] was divided in 10 non-overlapping in-
tervals of 50 ms length. We then calculated the mean sig-
nal in each of these intervals and subsequently, the gradient
between these means. In order to test class separability, we
classified the EEG data using shrinkage LDA, sampling 30
times from the data set and dividing the data set into 75%
training data and 25% test data. Classification was run us-
ing (a) behavioral labels, (b) the ’neural’ labels suggested
by LATENTSVDD, and, for comparison, those derived by
SVDD, LP and RDE. We expect the ’neural’ classes to
be better separable than before (higher AUC values) and
to have a better matching of labels and data (higher KTA

scores), compared to using behavioral labels (correct vs.
incorrect responses).

4.4.2 Results
Class Re-Assignment and Anomalous Trials On aver-
age, LATENTSVDD flipped the labels for 35.94% of all
trials. This resulted in a neural error rate of 31.18%, com-
pared the lower behavioral error rate (18.05%). Based on
the anomaly score that LATENTSVDD returns for each
trial, we rejected a small percentage of trials for each par-
ticipant (cf section 2.2.). For the majority of participants,
there are only few trials with high anomaly scores, with a
steep drop-off compared to the other trials (cf Figure 4).
Visual inspection revealed that the results also make sense
neuroscientifically: the rejected trials show typical artifacts
(eye blinks, voltage drifts with respect to all electrodes or
a single electrode) that have escaped the conventional arti-
fact rejection run prior to applying LATENTSVDD, as well
as trials with unusually high amplitudes.
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Figure 4: Sorted anomaly scores for each data point of
each participant.

Quantitative Assessment We quantified the benefits of
LATENTSVDD using KTA scores and linear classifica-
tion (LDA). Both measures confirm that the labels as-
signed by LATENTSVDD allow a much better separation
of the data than behavioral labels for all 20 participants.
As can be seen in Figure 5.B, LATENTSVDD renders
the classes clearly more distinct from each other, reflected
in higher AUC values (0.95 ± 0.02 versus 0.60 ± 0.08).
This is accompanied by substantially higher KTA score
for all participants. As can be seen in Figure 5.A, LA-
TENTSVDD is also superior compared to other denois-
ing methods (SVDD, LP, RDE). SVDD and LP lag far be-
hind, both in AUC and KTA scores. In fact, applying these
methods even makes separability of classes worse than be-
fore (no method: 0.60 ± 0.08, SVDD: 0.59 ± 0.07, LP:
0.54 ± 0.17). In contrast, RDE proves to be a close com-
petitor to LATENTSVDD. However, our approach shows
better results for this EEG experiment, with a mean AUC
score of 0.95± 0.02 (RDE: 0.90± 0.04) and a mean KTA
score of 0.3911 (RDE: 0.2842).

Neuroscientific Assessment While AUC and KTA
scores help quantify the positive effect of LATENTSVDD,
the results are also neurophysiologically sound. In the fol-
lowing, we discuss this for our methodology at the example
of participant 5. The different steps of our methodology
are visualized in Figure 6. Each plot shows the same data
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Figure 5: AUC and KTA results for all participants of the
experiment.

(time course at electrode Cz), yet grouped in different
classes. The conventional approach is shown on the far left
(a), the superior results retained by LATENTSVDD on the
far right (d), with classes that are clearly better separable.
Initially (Figure 6(a), classes show great similarity (correct
responses in green, erroneous responses in red). Our
methodology reveals four latent brain states (Figure 6(b)).
The state with the highest amplitude (purple) corresponds
to typical error processing, with a clear positive component
Pe. A clear positivity also occurs in the blue and pink
state, yet less pronounced and with different latencies. In
contrast, no error has been processed in the black state.
Based on the latent variable, a subset of trials is then
re-assigned (Figure 6(c)). Red and green indicate labels
that are retained, orange and light green signify trials
where the labels were switched (orange to red, light green
to green). As can be seen, the re-assignment makes sense
intuitively. Finally, Figure 6(d) shows the denoised data,
which reveals a more pronounced error positivity Pe (red)
than before. While the latent states themselves are highly
subject-specific, we find similar results, i.e. the recovery
of a stronger Pe component than before, for all other
participants.

5 Conclusion
Finding the true label for data with systematic, non-i.d.d.
label noise is a common challenge in experimental disci-
plines such as the neurosciences. We proposed a 4-step
methodology for learning and evaluation in presence of
non-i.i.d. label noise, in the heart of which lies a novel
learning algorithm—LATENTSVDD—that allows to cap-

(a) Before denoising

10  V

100ms 

+

(b) Latent States

(c) Re-Labelling

(d) After denoising

Figure 6: Time course at electrode Cz: (a) before denois-
ing (behavioral labels), (b) latent brain states revealed by
LATENTSVDD, (c) resulting re-assignment of labels, (d)
after denoising.

ture the hidden state of the label noise. We optimized the
associated objective function by a DC-type algorithm, of
which we prove convergence, and we derived an equiv-
alent Fenchel dual criterion. Our approach enjoys deep
learning-theoretical guarantees with the usual O(1/

√
n)

convergence rate.

Our method achieves the most competitive performance
when labels, which we demonstrate in a series of controlled
synthetic and real-world experiments. The core of which
is an extensive case study of EEG-BCI data recorded dur-
ing an attention test, where we observed that the labels
denoised by the proposed methodology lead to substantial
better separability of the data (assessed with linear classi-
fication; rise in the mean AUC from 0.60 to 0.95 for EEG
data). Visual inspection of the data by a domain expert
shows that the class assignments output by our method-
ology are neurophysiologically plausible, leading to more
easily interpretable brain states that subsequently allow for
a better and more meaningful experimental evaluation.

The joint feature map construction in principle could also
allow for a more complex encoding of structure such as e.g.
trees or hidden markov models. It will be interesting to ex-
tend our novel methodology for multi-modal neuroimaging
data [39, 40], and furthermore explore applications beyond
the neurosciences.
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Supplemental Material
A Proofs

When bounding the Rademacher complexity for Lipschitz
continuous loss classes (such as the hinge loss or the
squared loss), the following lemma is often very helpful.

Lemma A.1 (Talagrand’s lemma [41]). Let l : R → R be a
loss function that is L-Lipschitz continuous and l(0) = 0.
Let F be a hypothesis class of real-valued functions and
denote its loss class by G := l ◦ F . Then the following
inequality holds:

Rn(G) ≤ 2LRn(F).

We can use the above result to prove Lemma 3.

Proof of Lemma 3. Since the LATENTSVDD loss function
is 1-Lipschitz with l(0) = 0, by Lemma A.1, it is sufficient
to bound R(FSVDD(z)). To this end, it holds

R(FSVDD(z))
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Note that the term to the right is zero because the
Rademacher variables are random signs, independent of
x1, . . . ,xn. The term to the left can be bounded as fol-
lows:
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where for (∗) we employ Jensen’s inequality. Moreover,
applying the Cauchy-Schwarz inequality and Jensen’s in-

equality, respectively, we obtain
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because P(�Ψ(xi, z)� ≤ B) = 1. Hence, inserting the
results (A.3.2) and (A.3.3) into (A.3.1), yields the claimed
result, that is,

R(GSVDD(z))
Lemma A.1

≤ R(FSVDD(z))

≤ λ√
n
+B
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λ

n
=
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√
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n
.

(A.3.4)

Next, we invoke the following result, taken from [23]
(Lemma 8.1).

Lemma A.2. LetF1, . . . ,Fl be hypothesis sets inRX , and
let F := {max(f1, . . . , fl} : fi ∈ Fi, i ∈ {1, . . . , l}}.
Then,

Rn(F) ≤
l�

j=1

Rn(Fj).

Sketch of proof [23]. The idea of the proof is to
write max(h1, h2) = 1

2 (h1 + h2 + |h1 − h2|), and
then to show that

E

�
sup

h1∈F1,h2∈F2

1

n

n�

i=1

|h1(xi)− h2(xi)|
�

≤ Rn(F1)+Rn(F2).

This proof technique also generalizes to l > 2.

We can use Lemma A.2 and Lemma 3, to conclude the
main theorem of this paper, that is, Theorem 2, which
establishes generalization guarantees of the usual order
O(1/

√
n) for the proposed LATENTSVDD method.

Proof of Theorem 2. First observe that, because l is 1-
Lipschitz,

Rn(GLATENTSVDD) ≤ Rn(FLATENTSVDD).
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Next, note that we can write

Rn(FLATENTSVDD) =

�
max
z∈Z

(fz) : fz ∈ FSVDD(z)

�
.

Thus, by Lemma 2 and Lemma 4,

Rn(FLATENTSVDD) ≤ |Z|max
z∈Z

Rn(FSVDD(z))

≤ |Z|λ+B
√
λ√

n
.

Moreover, observe that the loss function in the definition
of GLATENTSVDD can only range in the interval [0, B]. Thus,
Theorem 2 in the main paper gives the claimed result, that
is,

E[�gn]− E[g∗] ≤ 4Rn(GLATENTSVDD) +B
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