
Proc. of the Alife XII Conference, Odense, Denmark, 2010 626

Bee Nest Site Selection as an Optimization Process

Konrad Diwold1, Madeleine Beekman2 and Martin Middendorf1

1Department of Computer Science, Universität Leipzig, D-04103 Leipzig, Germany
2School of Biological Sciences and Centre for Mathematical Biology, The University of Sydney, NSW 2006, Australia

kdiwold@informatik.uni-leipzig.de

Abstract

In recent years several bee inspired optimization techniques
have been proposed. These methods are either based on the
bees’ foraging or mating behavior. Both foraging and mating
regulate distributions outside (foraging) or within a colony
(mating). Foraging determines the ratio of individuals that
explore the surroundings for new food sources and those that
exploit known food sources, while mating determines the dis-
tribution of genotypes within a colony. In contrast, nest-site
selection is a processes that constitutes a decision-making
process and enables a colony to identify and converge towards
one best solution. We therefore propose to use the bees’ nest-
site selection behavior as the basis for developing new bee
inspired optimization techniques. Using a model of the nest-
site selection process of real bees, we empirically investigate
its optimization potential. In particular, we determined if this
model works in dynamic and noisy environments. Our re-
sults are promising and suggest that nest-site selection can be
indeed useful in the context of optimization.

Introduction
Identifying and mimicking concepts underlying natural phe-
nomena and applying them to solve problems in fields
such as computer science, material science and engineer-
ing, has grown into a research field in itself. So-called
nature inspired computation has given rise to computa-
tional concepts which are almost ubiquitous in computer sci-
ence such as neural networks (Haykin (1999)), evolutionary
computation (Eiben and Smith (2003)), and swarm intelli-
gence (Bonabeau et al. (1999)).

Swarm intelligence tackles problems of various compu-
tational domains (e.g., robotics and optimization (Blum and
Merkle (2008))) using the collective behavior of simple de-
centralized, self-organized systems. The result has been
the emergence of several prominent meta-heuristics e.g., ant
colony optimization (for an overview see Dorigo and Stützle
(2004)) and particle swarm optimization (for an overview
see Poli et al. (2007)).

Due to their decentralized collective behavior, honey bees
have become an important model system in the field of
swarm intelligence. Honey bee colonies tackle several com-
plex tasks such as maintaining a constant hive tempera-

ture (Jones et al. (2004)), adapting to changing foraging con-
ditions (Beekman et al. (2007)) or deciding on the best pos-
sible nest site available (Seeley and Buhrman (2001)). Sev-
eral algorithms based on the honey bees’ collective behavior
have been developed and applied to various domains such
as network routing, robotics, multi-agent systems, and opti-
mization (see (Karaboga and Akay (2009)) for a recent re-
view on bee inspired algorithms). Existing optimization al-
gorithms based on principles of honey bee behavior usually
mimic either foraging or mating behavior.

Mating-inspired optimization algorithms are closely re-
lated to methods found in evolutionary computation. They
are based on the fact that genetic heterogeneity among work-
ers typically increases a colony’s fitness (Fuchs and Schade
(1994)). In honey bees genetic heterogeneity is achieved
via the queen mating with several males (polyandry). While
some mating inspired methods constitute new operators for
existing methods in evolutionary computation (e.g., Sato and
Hagiwara (1997); Jung (2003); Karci (2004)), others try to
mimic the mating flight both on a behavioral and genetic
level (see, Abbass (2001)).

Foraging-inspired optimization algorithms make use of
the bees’ decentralized foraging behavior. During foraging
honey bees balance the trade-off between exploiting known
food sources and scouting for new food sources in a dynamic
environment (Beekman et al. (2007)). Bees use a communi-
cation mechanism called the “waggle dance” which enables
them to transfer information about found food sources to
other colony members. The dance encodes the distance and
direction to a food source as well as its quality. On the basis
of available dances, bees entering the foraging process de-
cide to become dedicated to a specific source (exploit) or to
start searching for new sources (explore). Optimization al-
gorithms based on the foraging concept consist of a number
of agents, so-called artificial bees. As in nature, the purpose
of the agents is twofold. On the one hand they search for
new solutions (i.e., food sources) in problem space, on the
other hand they try to improve (i.e., exploit) existing solu-
tions using local search. The ratio between exploration and
exploitation behavior depends on the number and quality of
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available solutions. Several foraging based algorithms have
been proposed such as the artificial bee colony optimization
(ABC) (Karaboga (2005)), the bees algorithm (BA) (Pham
et al. (2006)), the bee colony optimization (BCO) (Teodor-
ovic and Dell’Orco (2005)) or the bee colony optimization
algorithm (BCOA) (Chong et al. (2006)).

Here we introduce a third possible class of optimization
algorithms which is based on the bees’ nest-site selection be-
havior. After a colony produces new queens, the old queen
will leave the nest with approximately a third of the colony
members while a young queen perpetuates the old colony.
The homeless swarm now has to find a new nest-site (de-
tailed information on the underlying biological mechanisms
are provided in the next Section). This is not an easy task
as a swarm needs to select the best site out of many possi-
ble sites. While during foraging typically several resources
are exploited simultaneously, nest-site selection constitutes
a decision process, as a swarm has to decide on one nest
site by solving the best-of-n-problem (Seeley and Buhrman
(2001)).

Bees face a speed-accuracy trade-off when trying to find
a new nest site. A decision needs to be made quickly as a
swarm is vulnerable to predation and inclement weather, but
not too fast which could lead to the swarm settling for a sub-
optimal nest site. Hence, the decision-making process has
to account for temporal delays in nest site discoveries and
needs to exhibit sufficient flexibility in order to incorporate
late discovered nest sites into the decision-making process.

In terms of optimization, the principles underlying nest-
site selection seem of particular interest for dynamic opti-
mization problems, where the problem space changes during
the optimization process. We use a biological model of nest-
site selection to test the applicability of nest-site selection in
the context of optimization. We do this by testing nest-site
selection in situations innate to dynamic optimization prob-
lems. Additionally we will demonstrate how iterative nest-
site selection can lead to function optimization.

This article is structured as follows. Section 2 briefly out-
lines the biological principles underlying nest-site selection
in honeybees. In Section 3 we introduce a biological model
of nest-site selection. Based on this model we present var-
ious experiments on the applicability of the nest-site selec-
tion process to optimization in Section 4. We finish with a
summary and conclusions in Section 5.

Nest Site Selection in Honey Bees
One of the most impressive examples of decentralized
decision-making in animals is how bees decide on a new
home. When a bee colony reaches a certain size it will start
to reproduce and rear new queens. Once the young queen is
nearly mature, the old queen leaves the old nest in order to
give way for her daughter queen (Winston (1987)).

After leaving the nest the homeless swarm temporarily
settles on a branch of a tree or on an overhang forming a

tight cluster around the queen. Scouts now leave the swarm
to search for potential nest sites such as tree hollows or
crevices in buildings. Only about 5% of the bees engage in
the nest-site selection process while the rest will stay clus-
tered around the queen (Seeley et al. (1979)). If a scout has
found a suitable cavity, it will assess its quality (i.e., volume,
height, aspect of the entrance, and entrance size) (Seeley and
Morse (1978)).

If the site is of sufficient quality, the scout returns to the
swarm cluster and performs a waggle dance to advertise the
site. The dance encodes the direction and distance to the site.
The number of dance circuits in the first dance performed by
a returning scout is positively correlated with the scout’s per-
ception of the site’s quality. By following a dance, bees can
learn about the nest-site’s location, visit it and then indepen-
dently evaluate its quality.

After finishing its dance, the scout revisits the site for
re-evaluation, which is again followed by returning to the
cluster and advertising the site. The number of dances a
scout performs for the same nest-site over consecutive vis-
its decreases by around 16 dance circuits (Seeley and Viss-
cher (2008)) per visit regardless of the site’s quality (Seeley
(2003)). This implies that sites of high quality will be adver-
tised for longer than sites of poor quality due to the higher
number of initial circuits. Thus over time more individuals
are recruited to high quality sites compared to sites of lower
quality.

While inspecting a potential nest site, a scout also assess
how many other scouts are present at that site. A specific
site is chosen if the number of scouts present exceeds a cer-
tain threshold (“quorum”). Scouts then return to the swarm
and start “piping” on the swarm cluster. Piping constitutes
an auditory signal produced by wing vibration (Seeley and
Visscher (2003)), it informs the swarm members that a deci-
sion has been made and prepares them for lift off (Visscher
and Seeley (2007)).

Once a swarm is airborne it will fly towards the chosen
site. The exact mechanism underlying the guidance pro-
cess is still debated. A well established hypothesis is that
informed scouts guide the swarm towards a new location by
flying rapidly through the swarm in the direction of the nest
site (Schultz et al. (2008); Latty et al. (2009)). Finally after
reaching the new nest-site the bees move in and establish a
new colony.

Bee Nest Site Selection as an Optimization
Process

This section introduces a model of the honeybees’ nest-site
selection process. It extends a previous model developed
by Janson et al. (2007) by including spatial features of nest
sites in the model. This extension allows studying the im-
pact of different spatial nest-site distributions. We also intro-
duced noise in the system that affects the scout’s perception
of the site’s quality. We use our model to test the applica-
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bility of nest-site selection to optimization problems. The
reader should be aware that any observed optimization will
be coarse and slow. This is because the presented model
is intended for biological simulations and has not been ad-
justed for optimization. Nevertheless it will allow us to as-
sess the optimization potential of the nest-site selection pro-
cess.

The model only simulates a fraction of the swarm i.e., the
bees involved in the decision-making process during nest-
site selection. The model operates in discrete time-steps
with each time step corresponding to 1 second of real time.
As bees need to find potential nest sites in a spatial environ-
ment such a fine temporal resolution is crucial. Real bees
are able to travel with a maximum speed of 5 meters per
second (Beekman et al. (2006)), thus any coarser time res-
olution would lead to scouts missing potential nest sites by
simply flying over it.

At every simulation-step each bee is in a behavioral state
associated with nest-site selection and will act accordingly.
Some states E have an associated specific mean duration
time TE . The exact duration is determined by T (E) = λ ·
TE , where λ = µ/10 is a scalar factor, with µ being drawn
from a chi-square distribution with mean value 10 ( χ2(10)).
Note that this leads to an expected value of 1 for λ. There
are 8 possible behavioral states:

• REST: The bee is on the swarm but currently not involved
in nest-site selection

• SEARCH: The bee is on the swarm and tries to find a
dance to follow

• SCOUT: The bee searches the surroundings for potential
nest sites

• ASSESS: The bee is at a potential nest site and assesses
its quality

• DANCE: The bee is on the swarm and dances for its pre-
ferred site

• FOLLOW: The bee is on the swarm and has found a dance
and follows it

• RECRUITED: The bee flies to the nest site advertised in
the dance it followed

• MISS: The bee misread the dance and searches the sur-
rounding of the swarm unsuccessfully before returning to
the swarm

Figure 1 depicts a state diagram that outlines a bee’s state
transitions in the model. In the following the behavior that
corresponds to the different states will be explained in more
detail.

Figure 1: State diagram of individual behavior underlying
nest-site selection. Reprint from Janson et al. (2007)

Resting A resting bee will engage in the nest-site selection
process by starting to search for a dance to follow with a
probability of Prest = 0.002 per second (Beekman et al.
(2007)). A searching bee will switch to the resting state with
the same probability.

Searching The number of dances that are performed on
the swarm for potential nest-sites affects the likelihood of
a searching bee finding and joining a dance. Let D be the
number of dances currently performed on the swarm. The
probability that a searching bee will locate a dance is given
by Pfind = 0.005 · D. If it is able to find a dance it is
randomly assigned to one of the available dances. Exper-
imental studies have shown that dances comprised a max-
imum of 7 followers. The probability that a bee will start
to follow the dance it was assigned to is thus given by
Pfollow = 0.2min{2,f}, with f denoting the number of bees
already following the dance.

The longer a searching bee is unable to find and join a
dance, the more likely it becomes that it will switch to proac-
tive scouting behavior and try to find a suitable nest-site it-
self. The probability that a bee switches from searching to
scouting behavior is given by Pscout(t) = t2/t2 + θ2 where
t denotes the number of time steps of unsuccessful searching
and θ = 4000. Note that this switching mechanism modu-
lates the exploration/exploitation rate of the swarm. Scout-
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ing is very likely when only few or low quality nest-sites
have been found and thus only a few dances are available.
When many sites have been found and dances are abundant,
a searching bee is likely to find a dance to follow and will
become a recruit instead of a scout.

Scouting Lindauer observed that bees usually scout the
surroundings for about 20 minutes before returning to the
swarm (Lindauer (1955)). We thus used a mean scout du-
ration time of Tscout = 1200. While scouting the virtual
bees move through a 2-dimensional environment in search
of potential nest sites. This is a major difference to the pre-
vious model where scouting was modeled probabilistic. The
scouting process can be divided into two phases:

1. scouting: a bee will scout as long as it is able to be back
at the swarm after Tscout time steps.

2. returning: if the remaining scouting time is smaller or
equal to the time needed to return to the swarm a scout
returns to the swarm.

In nature a bee can spot a target if the target subtends
the bee’s visual angle αmin which can range between five
and fifteen degrees (Giurfa et al. (1996)). The diameter
of nest boxes normally used in nest-site selection experi-
ments is around 40cm. Given an assumed minimal angle
of αmin = 8 degrees, a scout can spot a nest site up to a
distance of approximately 280cm. After a successful dis-
covery a scout will immediately start to assess the site and
thus change its state.

Scouting Strategy Please note that the exact way scouts
search the environment is still unknown. Some studies sug-
gest that bees search in a scale-free fashion (Reynolds et al.
(2007)) but this is still debated (Benhamou (2008)). In this
model the scouts’ search strategy is realized as an intermit-
tent search strategy (Benichou et al. (2005)). When starting
to scout a bee will choose a random location within a search
area that is defined by the range of locations that are reach-
able within one third of its available scouting time Tscout.
After reaching the chosen location a scout will start to search
the surrounding for potential nest-sites using a correlated
random walk (CRW) (Bartumeus et al. (2005)) with a fixed
movement length of 1m per step and a correlation parameter
value of ρ = 0.5 resulting in slightly correlated movement
steps.

Flying towards a destination Scouts fly towards a desti-
nation with a travel-speed of 5m/sec. A scout is placed on its
destination (i.e., reaches it) when its distance to the destina-
tion is less than 5m. Angular noise from a uniform random
distribution ηfly (−22.5 ≤ ηfly ≤ 22.5) was added to pre-
vent bees from flying in straight lines.

Site assessment After locating a potential nest site a scout
will immediately start to assess it. In nature nest-site as-
sessment usually lasts for about 10 minutes Lindauer (1955)
which corresponds to mean assessment duration time of
Tassess = 600. In the model each nest site S is associated
with a certain quality QS (0 ≤ QS ≤ 100). When assessing
a nest site a bee will perceive the quality. Quality is always
perceived with some noise, thus Q(S) = QS + δ, with δ
drawn from a normal distribution N(0, σ2) with a standard
deviation of σ = 10. A bee will only dance for a given nest-
site S if the perceived quality Q(S) exceeds a bee’s quality
threshold Φ. Otherwise the bee will switch to search behav-
ior after returning to the swarm. Here a uniform threshold
value Φ = 50 is used for all individuals.

Dancing If a bee discovered a suitable nest site S while
scouting it will advertise it after returning to the swarm by
means of a waggle dance. The number of waggle runs per-
formed during a dance depends on the perceived quality of
the site Q(S) and the number of consecutive visits to the
site. Based on empirical data (Seeley (2003)), the virtual
bees perform Q(S) waggle runs after their first visit to the
site and Q(S)−16(k−1) after the kth return. Bees will stop
promoting a site (i.e., stop dancing) and switch to searching
and if Q(S)− 16(k − 1) ≤ 0 .

A waggle run encodes the distance and the direction to the
potential nest site. This has also been incorporated into the
model’s dance behavior. Based on empirical data (Gardner
et al. (2008)) we assume that a waggle phase lasts 2.4sec per
kilometer of distance to the potential nest site plus 1.5 sec
for the return phase.

Following A bee following a dance will follow the dance
until the dancer ceases dancing. If the follower had previ-
ously visited the advertised site, it will find that site again.
Otherwise the probability of correctly locating the adver-
tised site depends on the number of waggle runs w the
bee followed. Based on experimental data (Mautz (1971))
the probability of finding a nest site is PfindSite(w) =
s(w)/1.5 · u(w) + s(w) where w denotes the number of fol-
lowed waggle runs, u(w) = 1−1/

√
(w + 1) represents the

distribution of unsuccessful bees and s(w) = w2/(w2 + θ)
with θ = 60 represents the distribution of successful bees.

Successfully recruited to nest site A successfully re-
cruited bee flies towards the proposed nest site and assesses
its quality. If it finds its quality sufficient (i.e., Q(S) > Φ),
the bee will advertise the site after returning to the swarm.
Otherwise it will search for new dances after its return to the
swarm.

Missing the advertised nest site If a bee is not able to
read a dance correctly it will not be able to find the adver-
tised site. In such cases, the bee flies the same distance as
the advertised site, but in a slightly wrong direction. In the
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model this is achieved by adding a maximum of 5 degree
noise drawn from a uniform random distribution to the ac-
tual direction towards the advertised nest site. After reach-
ing the wrong location a bee searches the surroundings for
400sec.

Experiments
To investigate the optimization potential of the honeybee’s
nest-site selection process, we performed three experiments
using the model described above. Unless stated otherwise
we used the parameter values mentioned in the last section.
We present the results as average values obtained from 10
independent runs. The number of individuals used in the
experiments was set to n = 500, which corresponds to the
number of bees involved in nest-site selection in real honey
bees.

Experiment 1: Nest-site selection in a dynamic environ-
ment This experiment was performed to test how the nest-
site selection process performs in a dynamic environment.
While a change in a site’s quality during the selection pro-
cess is unlikely to occur in nature, changing or moving op-
tima are ubiquitous in dynamic optimization problems.

The environment contains two potential nest sites n1, n2
that are located in opposite directions 150m away from the
swarm’s position. Initially site n1 is of good quality qgood =
75 while n2 is of bad quality qbad = 45. The sites qualities
however switch during the course of the simulation i.e., at
every interval of 28800 simulation steps (i.e., every 8 hours)
the qualities of the nest sites are swapped. A simulation runs
for 32 hours corresponding to 115200 simulation steps and
thus a total number of 3 quality switches occur during one
run.

As the search process is performed in a spatial environ-
ment it is likely that a swarm only discovers one nest site or
even none. Additionally a swarm might forget a low quality
nest-site as dances might not sustain during the low quality
period. In order to ensure that the swarm is aware of both
sites each time a quality change occurs, a randomly chosen
bee will start dancing for the nest site that was of low quality
but switched to high quality.

Figure 2 depicts the time evolution of the number of bees
at each nest site. As can be seen the swarm is able to quickly
adapt to changes in nest-site quality. The number of bees at
a given nest-site will not exceed ≈ 400 because a fraction
of the swarm is resting, very few will still scout for differ-
ent nest-sites and bees at a given nest-site will return to the
swarm to promote it. In terms of optimization this process is
still rather slow as it takes the swarm approximately 2 hours
to adapt to the change in quality. Slow adaption is not nec-
essarily a disadvantage as it makes a swarm resilient against
noise. As pointed out before quality changes are unlikely
to happen in nature, however discovering new sites in the
course of the selection process constitutes a similar change
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Figure 2: Time evolution of the number of bees assessing a
nest site where the site qualities change occur every 28800
simulation steps. Error bars represent the standard deviation.

in the swarm’s environment. Without the ability to react to
changes in the environment, a swarm can get stuck in a sub-
optimal solution if it finds a nest site of mediocre quality
early in the decision-making process. In terms of optimiza-
tion, adapting to a dynamic environment is an interesting
aspect, as it can be applied to the detection of changing lo-
cations of the optima in problems with dynamic fitness func-
tions.

Experiment 2: Nest-site selection in a noisy environment
Here we tested whether the swarm is capable of selecting
a stable mediocre quality nest site and disregard a site of
sometimes high but very unstable quality.

The number of bees and the number and position of the
potential nest sites is the same as in Experiment 1, however
here the quality of nest site n2 is kept constant at mediocre
level qmediocre = 55 whereas the quality of site n1 changes
at an interval of 1800 simulation steps (i.e., every 30 min-
utes) alternately between good qgood = 75 and very bad
qvbad = 35. A simulation again lasted for 115200 simu-
lation steps corresponding to 32 hours. To ensure that the
swarm is aware of both sites, a random bee starts dancing
for each site in the first simulation step.

Figure 3 depicts the time evolution of number of bees at
the two nest sites. Clearly the majority of the swarm selects
the stable mediocre nest site. At the start of a simulation the
number of bees builds up quickly at both nest sites, due to
the fact that one bee starts to dance for each site at the first
simulation step. However, over the course of revisiting the
sites, more bees get recruited towards the mediocre stable
site. The revisit behavior of honeybees plays a key role in
that respect. Initially site n1 will be promoted stronger than
site n2 due to the quality difference. The ongoing revisita-
tion will cause recruited and dedicated bees to abandon the
unstable site and choose the stable site as it makes it pos-
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Figure 3: Time evolution of the average number of bees as-
sessing a nest site when the nest site of high quality is very
unstable. The quality of nest site n1 changes each 1800 sim-
ulation steps between qgood = 75 and qvbad = 35, whereas
the quality of nest site n2 is kept constant at qmediocre = 55.
Error bars represent the standard deviation.

sible for the individuals to gain awareness of the changing
quality. Site n1 will never be completely abandoned sim-
ply because some visiting bees will always experience it as
a very good nest site and thus promote and revisit it. In gen-
eral this experiment demonstrates that the nest-site selection
mechanism is to some extent resilient towards noise.

Experiment 3: Function optimization via iterative nest-
site selection The European honey bee Apis mellifera has
very specific requirements regarding its nest site. This is
because once a decision is made it is final (i.e., a swarm is
very unlikely to relocate after moving into a new nest site).
In contrast open nesting bee species such as the Asian Dwarf
honey bee Apis florea are quite flexible and a swarm might
relocate if its initial decision was suboptimal (Oldroyd et al.
(2008)).

R

Sphere fsp(~x) =

n∑
i=1

x2
i [−25; 25]n

Booth fbt(~x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 [−10; 10]n

Table 1: Test functions and domain space range (R). The
dimension of each function is 2.

Such an iterative selection process as found in Apis florea
can lead to an optimization in an environment with many
potential nest sites. In this experiment it is assumed that the
swarm’s environment corresponds to the search space of a
continuous function that needs to be minimized. Each posi-
tion in the search space corresponds to a potential site, and
its quality corresponds to a value of the function at that posi-
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Figure 4: Boxplots of the quality of the occupied nest site
over several relocations for the two test functions.

tion. The test functions used in the experiment and their as-
sociated parameter values are given in Table 1. Initially the
swarm is placed at position [-20,-20] for the Sphere function
and [-10,-10] for the Booth function.

For this experiment we changed the bees’ scouting behav-
ior because the first version of the extended model is mod-
eled on the behavior of the European honey bee Apis mel-
lifera where a scout assesses a nest site for a certain period
of time before returning to the swarm. As each location cor-
responds to a potential nest site, scouts would immediately
start to assess sites after a single scouting step. To overcome
this, a scout will advertise the best position it found during
its scouting period, if the quality of that position is better
than quality of the swarms current location.

The quality of a newly discovered site depends on the
quality difference regarding the current location of the
swarm. If a scout discovers a nest site that is X% better than
the swarm’s current location this site is assigned quality X.

While recruits fly towards a site that was advertised by
a dancing bee, they will actively monitor the quality of the
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locations they fly over. If they encounter a better site on their
way, they abandon their initial choice and become scouts.
Recruits that fail to locate an advertised site also become
scouts.

Nest sites are assessed by recruits and returning bees for a
certain amount of time. During that time each assessing bee
counts the number of other bees present at the site. If the
number of bees at the site reaches a given quorum q = 10
the swarm is placed on this new site and the nest-site se-
lection process is restarted. The parameter values used in
this experiment are: step size step = 0.1, scouting time
Tscout = 100, and assessment time Tassess = 20. A simu-
lation run is stopped when a swarm does not relocate within
3600 simulation steps.

The changes in the quality of the found sites for both
test functions over several nest-site relocations is depicted
in Figure 4. The bees are able to iteratively optimize the
position of the swarm within the search space (i.e., mini-
mize the function value). However the optimization process
is limited by several factors: as scout time Tscout and step
size step are fixed, scouts are only able to explore a cer-
tain range around the swarm’s current location whereas a
fixed step size prevents scouts from finding better solutions
as they are likely to fly over them. This is critical when the
swarm is close to the global optimum and scouts would need
to search on a finer scale in order to find better positions.
Another limiting factor is the quality assignment. As the
quality difference between solutions decreases around the
global optimum the model will always reach a point were
better solutions are not selected any more as the quality dif-
ference between them is too low. The performance of the
nest-site selection process in function optimization is yet by
no means comparable to the performance of other optimiza-
tion algorithms (e.g., Aderhold et al. (2010)). In order to
use the nest-site selection paradigm in an algorithm for real
optimization problems, the swarm needs to become more
sensitive to small quality differences to identify better po-
tential sites when the swarm comes closer to the location of
an optimum.

The speed of the decision-making process depends on the
quorum q used. The higher q the more bees are needed at a
potential nest before the swarm changes its location and the
slower the optimization process. The quorum mechanism
can however also prove to be useful in terms of optimiza-
tion, as the existence of a quorum prevents a premature con-
vergence onto local minima, as it gives the bees time to find
better sites. Another potential benefit of the quorum is that
it requires bees to revisit and reassess a given site several
times which is important for dynamic or noisy optimization
functions.

Conclusion
Recently bee inspired optimization techniques have become
popular within the optimization community but have been

restricted to using the bees’ foraging behavior and mating
behavior. Here we proposed to use the bees’ nest-site selec-
tion behavior for developing bee inspired optimization tech-
niques. Nest-site selection involves the active discovery of
potential sites by scout bees and a decision on the best site.
In nature it enables bees to solve the best-of-n-problem (i.e.,
deciding on the best nest-site). Nest-site selection is thus a
decision-making process that has a clear optimum which is
in contrast to foraging which mainly regulates the distribu-
tion of foragers over available food sources.

We used a model of the nest-site selection process of real
bees to investigate its optimization potential. Using this
model, we performed three optimization experiments. Our
results suggest that the nest-site selection process is able to
make the best decision even in dynamic and noisy environ-
ments and that the process can detect and decide on the best
stable solution even when better but noisier solutions are
present. The final experiment demonstrated how an itera-
tive application of the nest-site selection process could be
used for function optimization.

Our results corroborate that the honey bee’s nest-site se-
lection process is indeed useful in the context of optimiza-
tion. Future work will involve developing an bee inspired
optimization scheme that is based on nest-site selection.

Acknowledgments
This work was supported by the Human Frontier Science
Program Research Grant ”Optimization in natural systems:
ants, bees and slime moulds”.

References
Abbass, H. A. (2001). Marriage in honeybees optimization

(mbo): A haplometrosis polygynous swarming approach. In
Proceedings of the Congress on Evolutionary Computation,
pages 207–214.

Aderhold, A., Diwold, K., Scheidler, A., and Middendorf, M.
(2010). Nature Inspired Cooperative Strategies for Optimiza-
tion (NICSO 2010), chapter Artificial Bee Colony Optimiza-
tion: A New Selection Scheme and Its Performance, pages
283–294. Springer Berlin / Heidelberg.

Bartumeus, F., Luz, M. G. E. D., Viswanathan, G. M., and Catalan,
J. (2005). Animal search strategies: a quantitative random–
walk analysis. Ecology, 86(11):3078–3087.

Beekman, M., Fathke, R., and Seeley, T. (2006). How does an
informed minority of scouts guide a honey bee swarm as it
flies to its new home? Animal Behavior, 71(1):161–171.

Beekman, M., Gilchrist, A. L., Duncan, M., and Sumpter, D. J. T.
(2007). What makes a honeybee scout? Behavioral Ecology
and Sociobiology, 61:985–995.

Benhamou, S. (2008). How many animals really do the levy walk?
Ecology, 89:2351–2352.

Benichou, O., Coppey, M., Moreau, M., Suet, P.-H., and Voituriez,
R. (2005). Optimal search strategies for hidden targets. Phys-
ical Review Letters, 94:198101.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 633

Blum, C. and Merkle, D., editors (2008). Swarm Intelligence: In-
troduction and Applications. Springer Berlin / Heidelberg.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intel-
ligence: from natural to artificial systems. Oxford University
Press.

Chong, C. S., Low, M. Y. H., Sivakumar, A. I., and Gay, K. L.
(2006). A bee colony optimization algorithm to job shop
scheduling. In Proceedings of the 2006 Winter Simulation
Conference.
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