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Data assimilation for heterogeneous networks: The consensus set
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Data assimilation in dynamical networks is intrinsically challenging. A method is introduced for the tracking
of heterogeneous networks of oscillators or excitable cells in a nonstationary environment, using a homoge-
neous model network to expedite the accurate reconstruction of parameters and unobserved variables. An
implementation using ensemble Kalman filtering to track the states of the heterogeneous network is demon-
strated on simulated data and applied to a mammalian brain network experiment. The approach has broad
applicability for the prediction and control of biological and physical networks.
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Data assimilation has grown in importance for the analy-
sis of experiments in physics, in part due to its great success
in data-rich, high-dimensional problems. In modern numeri-
cal weather prediction, for example, it is common to use
advanced filtering and prediction techniques for state estima-
tion and tracking in cases where the experimental data are
complicated and high dimensional [1].

Dynamical networks have become increasingly visible in
physical and biological applications. Coupled grids of vary-
ing connectivity, often with simple dynamics at each grid
node, can lead to interesting nonlinear phenomena, as seen in
Josephson-junction arrays [2], neuronal networks [3], and a
widening array of examples in systems biology [4]. The net-
work structure has been found to be a decisive factor in the
resulting dynamics, and is an area of intensive contemporary
research [5].

The decentralized nature of networks presents increased
difficulty for data assimilation. We propose a technique,
called the consensus set method, that makes tracking and
prediction of dynamics possible in a network where the
equations of motion are unknown or only partly known, and
when the system is only partially observed. After demon-
strating the method computationally in heterogeneous model
networks of excitable cells, we show the ability of the
method to track experimental data from a mammalian brain
network preparation for which no first-principles model ex-
ists.

In fact, the main targets of the technique are networks
whose nodal dynamics is poorly described. In such cases,
data assimilation may be attempted using models that only
qualitatively approximate observed dynamics. Although
model parameters and state information determined in this
process may have little or no physical significance, the goal
of the consensus set method is to capture and track global
dynamics despite the lack of system knowledge. In particu-
lar, in the following we focus on tracking spiral wave and
aperiodic behaviors in networks of excitable cells for predic-
tion and control purposes.

The success of data assimilation is closely linked to the
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mathematical model for the underlying dynamics of the ex-
periment. State-of-the-art methods such as ensemble Kalman
filtering (EnKF) normally rely on good models to track the
system and update the current system state (called the back-
ground in numerical weather prediction) [6]. The EnKF
[7-11] is routinely used to complete partial state information.
More recently, it has been extended to an algorithm for fit-
ting a limited number of parameters as well as reconstructing
the system state, in the presence of significant noise levels,
sometimes called the dual-estimation problem [12,13]. The
difficulty of fitting increases with the number of parameters
needed, due to the rapid increase in data requirements.
Dynamical network models provide a demanding example
of data requirements. It is typical for the number of model
parameters to proliferate to an unmanageable number, since
each element of the network may follow a slightly different
local nonlinear dynamical model. Such a situation may over-
whelm even the most robust parameter-fitting algorithms. We
differentiate between two different types of network hetero-
geneities, calling a network weakly heterogeneous if the in-
dividual nodes of the network can be modeled by similar
systems with differing parameter settings, and strongly het-
erogeneous if no such simplification exists. We will show the
consensus set method, implemented below in the context of
the unscented EnKF [13], to be useful for tracking and pa-
rameter identification in weakly heterogeneous networks un-
dergoing complicated and nonstationary nonlinear dynamics,
and in some cases for strongly heterogeneous networks.
First consider the weakly heterogeneous case. Begin with
a general dynamical model with k parameters. Assume that
several such versions of the model, with different parameter
settings, are part of a network, and assume that the resulting
dynamics is partially observable. In a moderately large net-
work undergoing nonlinear dynamics, fitting all parameter
settings in the network, along with reconstructing the full
dynamical state from partial observations, will be infeasible.
The idea of the consensus method is to track the weakly
heterogeneous network with a homogeneous network of
identical systems with a single set of k parameters that are
fitted by the EnKF. The tracking will be inexact, because a
heterogeneous network is being tracked by a homogeneous
network. However, under the assumption that the heteroge-
neity is sufficiently weak, we show the ability of the EnKF to
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FIG. 1. The six parameters estimated by the EnKF converge
over time to consensus values. The network’s mean parameter val-
ues are denoted by closed circles. Here both the voltage and recov-
ery variables u and a are observed.

determine a consensus set of parameters that enables the ho-
mogeneous network to follow the heterogeneous network
closely enough for many prediction and control purposes.
The goal is not mathematical exactness, but an approxima-
tion that is close enough to be useful in an experimental
scenario.

We begin by demonstrating the consensus set method in
networks of excitable cells. The Wilson-Cowan equations
[14] are designed to model the time evolution of cortical
neurons with excitation u# and recovery variable a. This sys-
tem of two differential equations, with a single nonlinearity,
supports sustained oscillations. A network of Wilson-Cowan
oscillators on an N X N rectangular grid can generate a wide
variety of interesting behaviors, including plane and ring
waves, spiral waves, and chaotic aperiodic dynamics [15].
The equations at the (i,;) grid point are

. -d
uij—Cijluij+cij2aij+cij32 e “H(u
i’j’

- cij4)»

;i = Cjslhij + Cijeijs (1)
where the sum is taken over all other nodes i’j’ in the net-
work, d denotes the distance between grid points ij and i'j’,
and H denotes the Heaviside function or a smoothed version
if a continuous equation is desired [16]. The u variable rep-
resents instantaneous excitation, and the a variable repre-
sents recovery or adaptation. Biologically meaningful param-
eters ordinarily require c;j;,c;j,¢;56<<0 and ¢;j3,¢;55>0.

Each model neuron in the grid follows Wilson-Cowan dy-
namics with input determined by superthreshold activity of
its neighbors. The input is zero unless the variable u;:;/ is
greater than the threshold c;j, in which case the neighbor
contributes to the input according to its distance in the grid.
Initial conditions are used that lead to a sustained nonequi-
librium dynamical attractor on the grid. Observing only the u
variable with applied noise at the grid points, we attempt to
carry out approximate tracking of all # and a variables. To
accomplish this, the EnKF will fit unknown parameters in
the homogeneous Wilson-Cowan network model.
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FIG. 2. (Color online) The noisy u;; input data and the output
ajj, shown as the black dashed line, from the consensus method at a
typical grid point. The black solid line is the actual value of a;;, for
comparison. The red (light gray) dashed line is the filtered u;; re-
turned by EnKF.

The Kalman filter uses known linear dynamical equations
and observation functions along with observed data to con-
tinuously update a Gaussian approximation for the state and
its uncertainty. The unscented EnKF [13] accomplishes these
goals in the case of nonlinear dynamical equations. At each
integration step, system states that are consistent with the
current state uncertainty, called sigma points, are chosen.
The EnKF consists of integrating the system from the sigma
points, estimating mean state values, and then updating the
covariance matrix that approximates the state uncertainty.
The Kalman gain matrix updates the new most likely state of
the system. As pointed out in recent literature [10,13] the
ensemble Kalman filter can also be used to fit system param-
eters from data, introducing the unknown parameters as extra
state variables with trivial dynamics. The EnKF with random
initial conditions for the parameters will converge to the cor-
rect parameters, or in the case of slowly varying parameters,
can track them along with the state variables. In recent work
[17], we have shown the ability to track a parameter and
spatiotemporal variables in homogeneous networks using
EnKF in the presence of significant noise.

In the application of the unscented EnKF to an NXN
network, the state is the dimension 2N2+m vector composed
of the N states u;;, the N* states a;j, and the m consensus
parameters. The ensemble size is twice the dimension of the
state vector, and we used an initial ensemble spread of 0.001
times the standard deviation of the variables a;; (results were
not sensitive to this choice). The one-step dynamics is the
time-7 map of the Wilson-Cowan system for some fixed time
step 7, together with the identity function in the m param-
eters.

As a first example, we consider a weakly heterogeneous
16 X 16 network of Wilson-Cowan neurons, where the pa-
rameters c;; are set randomly around the means ¢, where
c1=-0.12, ¢,=-0.64, ¢3=0.22, ¢4,=04, cs=1, and c¢=
—0.056. A 10% heterogeneity is used, meaning that for each
k=1,...,6, the 256 coefficients c;; across the network have
standard deviation equal to 10% of the mean c;. Most ran-
dom choices of the parameters near these values support cha-
otic dynamics.
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FIG. 3. (Color online) (a) The noisy u;; data and the output a;; from the consensus method (black dashed line) at one of the grid points.
The black solid line is the actual value of a;;. The reconstructed a;; is magnified by 1/y=2. (b) Consensus parameters from the EnKF.
Compared with Fig. 1, ¢, has been replaced by yc,=—-0.32 (lowest trace).

Figure 1 shows the result of solving for consensus param-
eters by the EnKF for this network, when the noisy versions
of both u;; and a;; are observed. The observation noise added
is 0.4 standard deviations of the clean signal, or 40% noise.
Starting from random values, the parameters evolve over 15
s to stable values that roughly approximate the mean values
of the ¢;;. From the experimental point of view, this is an
uninteresting case, since we would like to observe only one
voltage u;; at each grid point ij, and consider a;; as a hidden
variable to be reconstructed, along with the parameters c;j.
To carry out assimilation using only the observed voltages u;;
as input, we must address a hidden symmetry of model (1).

Dual-estimation calculations often call for special treat-
ment, because of the interaction of unknown variables and
unknown parameters in the model. We next illustrate this
problem in the case of the Wilson-Cowan system, and show
a general approach that can be applied to directly handle
experimental data. Consider the task of determining a(¢) and
Ciy...,Cq in Eq. (1) from the knowledge of u(z) alone (we
drop the ij subscripts for simplicity). Any experimental data
u that are consistent with a(t),c,,c,,c3,¢4,Cs,Cq are consis-
tent with a(t)/ y,c;,yca,c3,¢4,¢5/ v, cq for arbitrary nonzero
v, meaning that the dual-estimation problem is underdeter-
mined. Application of the EnKF directly to this problem re-
sults in parameter drift along the manifold of consistent so-
lutions.

To achieve data assimilation in this context, we must

force 7y to assume a unique value. For example, if c5 is fixed
in the EnKF to the same value as used in generating the input
data, then y=1 is forced, and the EnKF will succeed in fit-
ting the remaining five parameters. Figure 2 shows the result
of fixing cs=1 within the EnKF in the consensus set context.
The input data are the same as in Fig. 1 except that only u;;
(with added noise) is observed by the EnKF. The five re-
maining consensus parameters are approximated well, simi-
larly as in Fig. 1, in addition to the recovery variables a;;.
The variables at a typical ij grid point are shown in Fig. 2,
verifying the ability of the method to successfully recon-
struct a;.

In an experimental situation with poor prior knowledge of
model dynamics, a correct value for cs is too much to as-
sume. We repeat the exercise with a 10% heterogeneous net-
work after changing the mean of parameter c;j5 to 0.5, leav-
ing the other parameters as above. Since the EnKF has cs
fixed at 1, when presented with the u data it will reconstruct
the symmetry with y=0.5. As Fig. 3 shows, the result is the
same output as in Fig. 2 except for a;; replaced by a;;/y
=2a;;, and c, replaced by yc,=-0.32, as expected from the
above reasoning. This demonstrates the ability of the consen-
sus set method to reconstruct viable hidden variables to-
gether with unknown parameters even in cases of significant
model mismatch.

Finally, we are prepared to apply the consensus set
method to an experiment first described in [18]. Each ele-
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FIG. 4. (Color online) (a) Snapshot of the transmembrane voltage optical intensities u;; from the neural tissue. (b) The experimental u;;
plotted as blue (dark gray) points, the filtered u;; plotted as red (light gray) points, and the output a;; from the consensus method (black
dashed line) at one of the grid points. The reconstructed a;; has no physical significance; it is created by the EnKF to reconstruct a compatible
dynamical state in the homogeneous network model. (c) Decrease in the EnKF innovations show stability of the method’s convergence.
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ment in the model will correspond to the volume of neural
tissue imaged with a photodetector after the tissue was satu-
rated with voltage-sensitive dye and illuminated. The signal
from each photodetector thus represents the local mean field
of transmembrane voltage from the ensemble of cells im-
aged, and is analogous to « in Eq. (1). Inhibition was blocked
(with bicuculline), and our modeling reflects the lack of syn-
aptic inhibition (a is a recovery variable, reflecting phenom-
ena such as inactivation of sodium channels and potassium
membrane repolarization) [16].

A 10X 10 grid of voltage-sensitive dye readings were ob-
served as a multidimensional time series. With c5=3 held
fixed to avoid the symmetry, the consensus parameters con-
verge (in a manner similar to that in Figs. 1 and 3) to ¢,=
-1.08, ¢,=-2.82, ¢3=2.01, ¢4=-0.51, and cs=-0.20. Note
that parameters ¢y and c5 are positive, as anticipated in bio-
logically reasonable models. Figure 4 shows the recovery
variable a;; created by the EnKF that is sufficiently compat-
ible with the observed signal u;; to allow tracking.

In a larger sense, reconstructing equivalent dynamics may
be more relevant and feasible goal than validating explicit
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model variables in situations where model inadequacy is se-
vere [19]. Along similar lines, there has been recent work
[20] emphasizing the role of dynamical synchronization over
model fitting in data assimilation. The method outlined here
can be used in conjunction with localized versions of EnKF
[21] designed to address system spatial complexity as well as
exploit parallel computation.

We view the consensus set method as a crucial step on the
path to the eventual goal of prediction and control of com-
plex dynamical networks, in particular when the individual
network nodes are heterogeneous, and in the presence of
model uncertainty. Some replacement for parameter fitting is
essential for robust data assimilation in the face of model
error, and this method, while not completely eliminating the
problem of model error, may be a near-optimal choice in
such a scenario.
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