
On the Fly Encoded Application Flows Recognition by

Relying on Statistical Features of IP Traffic

Gianluca Maiolini1, Andrea Baiocchi2, Antonello Rizzi2,

Sara Ferri1 and Letizia Gabbrielli1

1 AMTEC SpA, Loc. San Martino,

Piancastagnaio, SI, Italy,
{gianluca.maiolini, sara.ferri, letizia.gabbrielli}@elsagdatamat.com

2 INFOCOM Dept., University of Roma “Sapienza”

Rome, Italy,

{andrea.baiocchi, antonello.rizzi}@uniroma1.it

Abstract. The secure collaborative judicial workspace (SCJW) has to allow the

actors to use a number of communication and scheduling instruments for

managing and storing any kind of documentation, video and audio recordings,

evidence, among different Judicial offices of different countries. In this scenario

is very important to identify encoded application delivering those application

services to guarantee secure communication, but at the same time it is important
to not compromise privacy of information exchanged. In this paper we aim at

identifying application flows encoded within SSH tunnels by relying on

statistical feature of IP packets. This will enable SCJW network administrator

to identify un-trusted applications without analyze traffic contents.

Keywords: Traffic analysis, statistical traffic classification, SSH, cluster

analysis, k-means.

1 Introduction

One of the most critical aspects every government should consider in the context of

such a modernization is the field of justice. The most prominent issues is guaranteeing

that any information flowing within judicial information systems is treated in a secure

manner. In a cross border judicial cooperation during investigations, the information

flows between different actors, different systems and at different levels. These

information are very sensitive, they should be protected from unauthorized access and

should be accessed only by specific people according to their role in the judicial

process. Moreover document transfer from one country to another country must

comply with the requirements of non repudiation. In a generic request of cross-border

judicial cooperation one independent platform will support the country requesting

judicial cooperation and other platform will support the country providing judicial

cooperation. The secure collaborative judicial workspace (SCJW) has to allow the

actors to use a number of communication and scheduling instruments for managing

Post-proceedings of the 2nd International Conference
on ICT Solutions for Justice (ICT4Justice 2009) 89

and storing any kind of documentation, video recordings, audio recordings, evidences

etc, among different Judicial offices of different countries. So, the SCJW has to deal

with:

• the request and exchange of critical evidence documentation,

• the request for remote interrogations via videoconference,

• the request for specific actions, such as phone interception in another

country,

• the request for warrant of arrest.

In this context is basic a fast traffic classification means according to the services

data is generated by. Secure Shell or SSH is a network protocol that allows data to be

exchanged using a secure channel between two networked devices. It is often used to

login to a remote computer but it is also applied for tunneling, file transfer and

forwarding arbitrary TCP ports over a secure channel between a local and a remote

computer. What makes the detection of this protocol interesting is that its traffic is

encrypted. Thus any payload analysis based classification method is irrelevant since

the payload is encrypted. Actually DPI technology cannot recognize application

delivered within SSH flows.

The objective of our work is to develop a real time system to recognize and

classify SSH flows by analyzing statistical features of first IP packets belonging to a

SSH connection, such as directions and lengths. This enables us to identify service

applications without compromise privacy of contents exchanged by users during

network communications. By recognition we mean identifying which flows belong to

SSH protocol as opposed to other application level protocols. By classification we

mean to identify the kind of service carried within each SSH connection, such as SCP,

SFTP and HTTP over SSH. Experiments show that our approach permits us to

achieve great recognition accuracy up to 99.2% for SSH identification and, once SSH

has been identified, applications in those SSH tunnels are classified with accuracy up

to 99.8%.

2 Related Work

Different approaches to traffic classification have been developed, using information

available at IP layer such as inter-arrival times, bytes transferred, packet size. Some

proposals [4][5] need also semantically complete TCP flows as input.

In [1], Karagiannis et al. developed a heuristic that uses social, functional and

application level behaviours of a host to identify all traffic flows originating from it.

This approach, although really innovative, is tailored onto a specific source host.

Salgarelli et al. [2] used only size and inter-arrival time of first n packets to create a

statistical descriptor (a Fingerprint) of an application layer protocol: this fingerprint is

then used to measure the similarity of a certain flow to the corresponding protocol.

The Hidden Markov Models (HMM) theory is used in [3]: packets size and inter-

arrival time are used to build a model describing a certain protocol. The results of the

training phase is a HMM model describing the behaviour of each protocol. Even

though this approach can classify distinct encrypted applications, its performance on

90

SSH is (76% detection rate and 8% false negative) is not as good as well known

application traffic such as WWW and instant messaging.

Moore et al. [4] used a supervised machine learning algorithm called Naive Bayes

(and its generalization, Kernel Estimation) on a wide set of characteristics (tens or

hundreds), as flow duration, packets inter-arrival time and payload size and their

statistics (mean, variance...). Moreover, they use a filtering technique to identify the

best characteristics to be used with the mentioned methods.

A number of works [5][6][7] rely on unsupervised learning techniques. McGregor

et al. [5] explore the possibility to use cluster analysis to group flows using transport

layer attributes, but they do not evaluate the accuracy of the classification. Zander et

al. [6] extend this work using another Expectation Maximization (EM) algorithm

named Autoclass. They also analyze the best set of attributes to use. Both these works

only test Bayesian clustering technique trained by an EM algorithm, which has a slow

learning time.

Bernaille et al. [7] use faster clustering algorithms representing data in different

spaces: K-means and Gaussian Mixture Models (GMM) for euclidean space and

Spectral clustering in HMM based space. The only features they use are packet size

and packet direction: they demonstrate the effectiveness of these algorithms even

using a small number of packets (e.g. the first four of a TCP connection).

Alshammari et Al [8], work attempted to classify/identify applications services

running over SSH. They have shown the utility of two supervised learning algorithms

AdaBoost and RIPPER for classifying SSH traffic without using features such as

payload, IP addresses and source/destination ports. Results indicate that a detection

rate of 99% and a false positive rate of 0.7% can be achieved using RIPPER.

Moreover, promising preliminary results were obtained when RIPPER was employed

to identify which service was running over SSH. They can recognize applications

inside SSH flows such SCP and SFTP with accuracy up to 99.8% but they have

performed off-line analysis on complete traces. We aim at classifying applications

inside SSH flows in real time mode just analyzing the firsts 4 packets after SSH

negotiation. We rely on K-means cluster analysis machines algorithm.

3 Problem Statement

In this paper, we focus on the classification of IP flows generated from network

applications communicating through TCP protocols. Our objective is to recognize

SSH flows out of other applications such as HTTP, FTP, POP3, etc. and, once that is

accomplished, to identify which service is actually carried within the encrypted SSH

tunnel. Then, we first need to define exactly what we mean for TCP flow.

Definition: A flow F is the bi-directional, ordered sequence of IP packets

exchanged during a TCP connection.

Within a TCP connection, application level data are delivered as well as control

packets, such as those related to three way-handshake (RFC-793) and TCP ACK

packets. So, TCP flow will be composed by packets from SYN (PK0) to FIN (PKN–1).

Each flow could be seen as a sequence of (PK0, …., PKN–1), where PKj represents the

j-th IP packet exchanged during TCP connection. Since we aim at classifying

91

application flows relying on statistical features of IP packets, such as length,

direction, we will characterize each TCP flow F as an ordered sequence of N-tuples

(dj, lj. tj), with 0 ≤ j ≤ N–1, where:

• dj ∈ [0,1] where 1 encodes the direction detected for SYN packet and 0

the opposite direction;

• lj length of IP PKj, in bytes;

The packet length ranges between a minimum and a maximum. The latter is the

MTU (Maximum Transmission Unit) of the interfaces crossed by TCP connections

packets. In all experiments we found out MTU=1500 bytes has never been exceeded,

which is just the largest allowed MTU of most Ethernet LANs and hence most of the

Internet [11]. As for the minimum length, it corresponds to those carrying a TCP

ACK and is denoted as lACK in the following. It is the smallest length detectable for a

TCP packet as we tested during our experiments and as RFC 793 refers, typical values

ranging between 40 and 56 bytes, depending on options in the TCP and IP headers.

4 Dataset Creation

Given our aim as stated in the introduction, we assume a trained machine learning

approach, exploiting cluster analysis. To that end, we need both a test and a train data

set. A data set for our purposes is composed of a collection of flows in the sense

defined in Section III along with metadata per flow, reporting the known application

layer protocol the flow belongs to.

Knowing the application protocol each flow belongs to is needed to reliably train

our algorithm. Since publicly available traces have payloads stripped off (for obvious

privacy reason, e.g. CAIDA traces) and classification results cannot be checked

reliably, we resorted to artificial traffic carefully generated by exploiting network

premises at the University campus, the Elsag Datamat site and a private home. This

way we encompass three major kinds of Internet access points: institutional, business

and domestic. The controlled traffic generation is a must specifically for collecting

SSH traces whose service content is known, i.e. to further label each SSH flow with a

metadata reading which service it is carrying among SCP, SFTP and HTTP.

4.1 Data Collection

Our data collection approach is to simulate possible network scenarios using one or

more computers to capture the resulting traffic. In order to have realistic traces and

technology independent implementations of SSH (version 2) protocol, we used

computers with heterogeneous operative systems, namely Linux and Windows. We

simulate SSH connections by connecting three client computers deployed in three

different LAN to one server. As shown in figure 1, client LANs and SSH server have

been connected to the Internet by using different geographic links. We run the

following SSH services: SCP, SFTP and HTTP over SSH. SCP and SFTP are transfer

file services natively available on OpenSSH [10]. In particular we

downloaded/uploaded files from clients to server using both SCP and SFTP protocols

92

collecting eight thousands flows. HTTP over SSH traces have been collected

downloading web pages through SSH tunnels (one SSH tunnel for each HTTP

session). We get four thousands of flows.

SSH connections can tunnel several TCP flows at the same time: we are working in

the case where each flow is assigned by SSH a separated channel, each with specific

SSH identifier. Finally we will consider flows without SSH compression feature.

Fig. 1: Platform used to generate SSH traffic: SSH server is inside the University campus

network; clients are at University, Elsag Datamat and a private home premise, respectively.

4.2 Data Set Creation: Pre-processing of Traces

In order to create data sets we pre-processed collected traffic traces. In particular we

think that removing packets related to TCP control messages from each flow F can

help us highlighting the differences among various applications. Therefore we remove

from each flow F packets related to:

• Three-way handshake of TCP: PK0=SYN, PK1=SYN-ACK, PK2=ACK;

• TCP ACK packets, i.e. those packets carrying only a TCP level ACK and no

payload data;

• Retransmitted packets.

According to TCP protocol (RFC 793) the third packet (PK2=ACK) of each TCP

connection flow F carries an ACK. In order to remove ACK packets and TCP header

length at the same time, we detect PKACK = <dACK, lACK > of each session, where:

• dACK is 1, because ACK direction in three way handshake is always

consistent with that of SYN packet;

• lACK, is the length of packet containing TCP ACK;

We aim at identifying application within SSH tunnels. Then, we further process

SSH flows by removing packets related to the SSH initial handshake (see Figure 2),

these packets are easily recognizable thanks to a specific pattern in terms of length

and direction of packets exchanged when a new SSH channel is open. We consider

the following services inside encrypted SSH tunnels: SCP, SFTP and HTTP over

SSH.

93

Fig. 2: Pre-processing of SSH flows

5 Classification Method

In this section some details about the adopted classification system are exploited.

Basically a classification problem can be defined as follows. Let P : X → L be an

unknown oriented process to be modeled, where X is the domain set and the codomain

L is a label set, i.e. a set in which it is not possible (or misleading) to define an

ordering function and hence any dissimilarity measure between its elements.

If P is a single value function, we will call it classification function. Let Str and Sts

be two sets of input-output pairs, namely the training set and the test set. We will call

instance of a classification problem a given pair (Str , Sts) with the constrain Str ∩ Sts

=Ø . A classification system is a pair (M , TAi), where TA is the training algorithm,

i.e. the set of instructions responsible for generating, exclusively on the basis of Str, a

particular instance M of the classification model family M, such that the

classification error of M computed on Sts will be minimized. The generalization

capability, i.e. the capability to correctly classify any pattern belonging to the input

space of the oriented process domain to be modeled, is for sure the most important

desired feature of a classification system. From this point of view, the mean

classification error on Sts can be considered as an estimate of the expected behavior of

the classifier over all the possible inputs. In the following, we describe a classification

system trained by an unsupervised (clustering) procedure.

When dealing with patterns belonging to the R
n
 vectorial space we can adopt a

distance measure, such as the Euclidean distance; moreover, in this case we can

define the prototype of the cluster as the centroid (the mean vector) of all the patterns

in the cluster, thanks to the algebraic structure defined in Rn. Consequently, the

distance between a given pattern xi and a cluster Ck can be easily defined as the

Euclidean distance d(xi ; µk) where µk is the centroid of the pattern belonging to Ck:

∑
∈

=
ki Cx

i

k

k x
m

1
µ . (1)

94

A direct way to synthesize a classification model on the basis of a training set Str

consists in partitioning the patterns in the input space (discarding the class label

information) by a clustering algorithm (in our case, by the K-means).

Successively, each cluster is labeled by the most frequent class among its patterns.

Thus, a classification model is a set of labeled clusters (centroids); note that more than

one cluster can be associated with the same label, i.e. a class can be represented by

more than one cluster. Assuming to represent a floating point number with four bytes,

the amount of memory needed to store a classification model is K · (4 · n + 1) bytes,

where n is the input space dimension and assuming to code class labels with one byte.

An unlabeled pattern x is classified by determining the closest centroid µi (and thus

the closest cluster Ci) and by labeling x with the same class label associated with Ci. It

is important to underline that, since the initialization step of the K-Means is not

deterministic, in order to compute a precise estimation of the performance of the

classification model on the test set Sts, the whole algorithm must be run several times,

averaging the classification errors on Sts yielded by the different classification models

obtained in each run.

6 Experimental Results

By classifying plain SSH flows with our approach, we obtained results shown in table

1. We tried out processing all possible combination of packets up to ten packets after

end of SSH negotiation (i.e. the initial common handshake phase, same in all SSH

flows).

Table 1. Encoded SSH applications flows

1° 2° 3° 4° 5°

HTTP

over SSH scp sftp

0 0 1 1 1 99.80% 98.93% 99.75%

0 0 1 1 0 99.88% 99.30% 99.05%

As shown in Table 1, we tested different patterns representations, increasing the

considered number of packets for each flow in order to identify which one contains

more information to emphasize difference among applications. As shown in table 1,

the K-means based algorithm yields very interesting results in terms of identification

of encoded applications. We can detect different applications with accuracy up to 99.8

for HTTP over SSH protocol, just analyzing third and fourth packets after SSH

negotiation. We can notice that analyzing also the fifth packet does not improve

significantly accuracy. Moreover, increasing the considered number of packets means

introducing delay for real time recognition.

95

7 Conclusion

In this paper we present a model that could be useful to address the problem of traffic

classification. To this end, we use only (poor) information available at network layer,

namely packets size, directions and inter-arrival times. Our classification system

based on cluster analysis can classify in real time encoded SSH traffic flows,

overcoming actual limits of deep packet inspection. Our system does not compromise

privacy of network users because to identify encoded SSH tunnel payload information

are not inspected.

We are able to identify the nature of each SSH tunnel obtaining accuracy up to

99.88% in classifying HTTP over SSH just analyzing the third and fourth packet after

the end of the SSH negotiation phase. The same encouraging results have been

obtained by classifying SCP (up to 99.3) and SFTP (up to 99.05) applications. Further

works should be performed in order to improve results for classification of download

and upload flows for SCP and SFTP. Moreover, it will be necessary to investigate the

applicability of the approach on wider application dataset.

Currently on-going work includes extension of the classification tool to more

powerful classification algorithms, well beyond k-means; in this respect, k-means

shall be regarded as a first use attempt, to verify the soundness of our approach,

before proceeding to more complex yet reliable classification algorithms.

References

1. Karagiannis, K. Papagiannaki, M. Faloutsos, ”BLINC: Multilevel traffic classification in the

dark”, Proc. of ACM SIGCOMM 2005, Philadelphia, PA, USA, August 2005.

2. M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli, ”Traffic Classification through Simple

Statistical Fingerprinting”, ACM SIGCOMM Computer Communication Review, Vol. 37,
No. 1, pp. 5-16, Jan. 2007.

3. C. Wright, F. Monrose, G. Masson, ”On Inferring Application Protocol Behaviors in

Encrypted Network Traffic”, Journal of Machine Learning Research (JMLR): Special issue

on Machine Learning for Computer Security, volume 7, pp. 2745-2769, 2006.

4. A.W. Moore, D. Zuev, ”Internet traffic classification using Bayesian analysis techniques”,

ACM SIGMETRICS 2005, Banff, Alberta, Canada, June 2005.
5. A. McGregor, M. Hall, P. Lorier, J. Brunskill, ”Flow clustering using machine learning

techniques”, PAM 2004, Antibes Juan-les-Pins, France, April 2004.

6. S. Zander, T. Nguyen, G. Armitage, ”Automated traffic classification and application

identification using machine learning”, LCN 2005, Sydney, Australia, November 2005.

7. L. Bernaille, R. Teixeira, and K. Salamatian, ”Early Application Identification”, in

proceedings of CoNEXT, December 2006.
8. R. Alshammari and A. Nur Zincir-Heywood. “A Flow Based Approach For Ssh Traffic

Detection”, Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on.

9. Callado, A.; Kamienski, C.; Szabo, G.; Gero, B.; Kelner, J.; Fernandes, S.; Sadok, D.; A

Survey on Internet Traffic Identification; Communications Surveys & Tutorials, IEEE

Volume 11, Issue 3, 3rd Quarter 2009.
10. http://www.openssh.com/

11. MTU: RFC 879.

12. http://www.caida.org.

96

