NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Introduction to MultibeamIntroduction to Multibeam
mb.jpg
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Introduction to Multibeam
Topics covered in Introduction to Sonars:
Introduction to types of sonars and how they areused (MBES, SSS, Inteferometric).
How do sonars work?
Materials used to make transducers
Elements of a sonar
Sonar beam patterns and their elements.
Sonar Specifications (frequency, beam width,resolution, accuracy)
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Learning Objectives for MultibeamLearning Objectives for Multibeam
Beam forming (How can this work)
Multibeam transducer anatomy (transmit vsreceive arrays – Mill’s Cross)
Vessel Attitude & motion and its effects onMBES
Offsets and biases
Mounting option for MBES transducers
Error identification (DTM artifacts)
Coverage and accuracy (as per HSSD)
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
What is Multibeam Sonar?
 Increased:
 Bottom Coverage
 Productivty
 Resolution
 Confidence
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Vertical BeamEchosounding (VBES)
Used from 1939 to thepresent
Better coverage thanleadlines
VBES are still effectivewhen properly used
Inshore areas, fasterspeeds, generalbathymetry trending
Faster processing
Cost-effective
What is Multibeam Sonar?
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
MULTI
SWMB coverage is better
Less prone tointerpretive error thanSBES
Improved technologyprovides betterresolution
Can be combined withSide Scan Sonar(SSS) coverage
Also provides precisebackscattermeasurements insome systems
What is Multibeam Sonar?
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Single-Beam vs. Multibeam Coverage
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Figure8b-SmoothsheetDTM
Single Beam Density Selected Soundings
Sounding Density
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Sounding Density
Multibeam - Navigation Surface Depth Model
Figure8a-HighresDTM
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Multibeam transducer anatomy
Earliest and Simplest Systems used a Mill’s Cross
Transmit Ping, Receive Beams
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Patterns
Slide2
Transmit and Receive Beams From a Mills Cross Array
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Phased Array & Beam Steering
We could physically movethe array to steer the beam
Or we could adjust therelative phase of thetransducer elements
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Patterns
Beam Forming – Discrete Summation
Slide8
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Patterns
Using arrays of elements, the direction in which an array issensitive to incoming energy can be tuned
Slide6
SE 3353 Imaging andMapping II:Submarine AcousticMethods
© J.E. HughesClarke, OMG/UNB
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Forming
So now we have a steerable single beam
But, we can add multiple receiver circuits ontothe same hydrophone array.
We can simultaneously listen in different sectors
Beam 1Circuit
Beam 2Circuit
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
colortxrxpattern
What is a “Beam”?
Transmit energy (“Ping”) is released across the entire swath
Transmit shown in BLUE
Receive shown in GREY
Intersection of transmit and receive samples is what we call a “Beam”The area this covers on the seafloor is called a “footprint”
This process is called beam forming
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Forming
The Reson 8101 sends out one pulse, and thenlistens in 101 different sectors.  Depending uponthe range scale in use, it can do this up to 30times per second
Transmit beam:
Receive beams:
Resulting Multibeam Footprints
Q: What does a SWMB system meausre ?
A: Travel time, angle, and perhaps someother information such as intensity
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam Patterns
Controlling dimensions of beam patterns:
Array Dimensions (i.e. length or diameter)
Acoustic Wavelength
Element Spacing
Element Shading
Beam pattern goals:
Focused main lobe (narrower is better)
Reduced side lobes (fewer and smaller is better)
Finding the happy medium
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
The angle of the beam along which the acousticpulse traveled, relative to the receive center
Referred to as “Launch Angle” or “Beam Angle”
What data are made by SWMB systems?
Beam 1 is port-mostbeam in NOAAsystems
Beam 101 isstarboard-most beamin Reson 8101systems
Reson 8101 is 150-degree system
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
The two-way travel time of the acoustic pulse
Travel-path can be assumed tobe based on homogenousvelocity regime at 1500meters/second speed of sound
Note that most sound isreflected away in a “flat bottom”,and not received at thetransducer!  If power isincreased to make returningsignal stronger, this can createan extremely NOISY mess!
What data are made by SWMB systems?
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
SWMB Bottom-Detection
Near-nadir angles have excellent specularreflection.  Bottom detection easy
Beams with a low grazing angle have lessbackscatter and longer acoustic signature
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
SWMB Bottom Detection
 Incident Angle of 15 degrees (mostly specular or backscatter?)
 Top graph: amplitude
 Bottom graph: phase
Amplitude Detection
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
SWMB Bottom Detection
 Incident Angle of 75 degrees (mostly specular or backscatter?)
 Top graph: amplitude
 Bottom graph: phase
Phase Detection (or “Split-Aperture” Detection)
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
An intensity time series of the bottom return
Travel time is T0 to Centroid or Leading Edge of return
SWMB sonars also can output the angle independent imagery
Side Scan Imagery is the received intensity georeferenced across theentire swath - the entire time sampling period
Depth=Speed X Time
PHINSSS2
What data are made by SWMB systems?
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
SWMB imagery is generally not as good astowed side scan imagery
The high aspect of a hull mounted SWMB resultsin high grazing angles
High grazing angles result in small shadows
This means reduced target detection, because the eyesees differences better than objects
Larger ranges mean bigger footprints, thus lowerspatial resolution
RUDEmbsss
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Sound Velocity
Sound Velocity is second-largest source of error fornearshore surveys (what is thefirst?)
Time and effort required foradditional casts is ALWAYSless than re-surveying an area,OR cleaning the error-pronedata!
Payoffs in uncertainty andquality of final surface
YOU control how accurateyour data can be
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Limitations of SWMB Systems
Resolution
Objects smaller thanthe wavelength of thesystem
Objects smaller thanthe pulse lengthtransmitted
Objects smaller thanthe footprint of thebeam
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Beam width /footprint resolution
Very difficult to identifynarrow objects suchas masts and pilings!
Multiple returns addconfidence in resolvingwhether soundings areon features or arenoise
Limitations of SWMB Systems
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Operational Limitations
Down-slope signal loss
Grazing angle on shoals
Biological interference
Mechanical Interference
Instrumentation Cross-talk
Launch Liveliness
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Multibeam Offsets & Errors
Multibeams are much more sensitive thansinglebeams to measurement offsets anderrors.
And, we are much more likely to notice.
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Offsets and biases
All measurements are critical to the error budget calculation!
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Multibeam Systems
A look at some of the multibeamsystems in use with NOAA today.
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Array configuration
Flat
EM3000
Reson 8125
SeaBeam/Elac
Curved
EM1002
Flat transmit/Arc receive
Reson 8101
Arc transmit/Flat receive
Reson 7125
Cammander Jack22
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Array configuration – Flat Face
SeaBat%208125F%20-%20625p
Frequency
455 kHz
Swath Angle
120°
Coverage
3.5 x depth
Depth Range
120 m
Number of Beams
240
Along-TrackBeamwidth
Across-TrackBeamwidth
0.5° (at nadir)
Accuracy
Special Order
Maximum UpdateRate
40 Hz
OperationalSpeed
Up to 12 kts
http://www.reson.com/sw245.asp
RESON 8125
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Array configuration – Flat Face
RESON 8125
Slide23
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
IMG_0343
Simrad EM3000
Navigation Response Teams &NOAA ship Nancy Foster
300 kHz
127 beams
Flat Face Transducer!
foster
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Simrad EM3000 BeamPattern
The image “http://www.omg.unb.ca/%7Ejhc/images/coverage_images/PROP_em3000.gif” cannot be displayed, because it contains errors.
The image “http://www.omg.unb.ca/%7Ejhc/images/coverage_images/FOOT_em3000.gif” cannot be displayed, because it contains errors.
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
SeaBeam/Elac 1050D and 1180
Flat-face transducer
1180:  180 kHz (max effective range ~350m)
1050D:  180 kHz and 50 kHz (max effective range ~3000m)
System pings into 14 sectors -- focused transmit beampattern
Receive beamformer forms 3 beams for each sector
The system does this across three pings (“rotating”) to formthe complete swath: 14 x 3 x 3 = 126 beams
Why?  Focus more energy using less power
1.5 by 2.5-degree beam width (remember how beam widthaffects resolution?)
Roll-compensated through beam steering
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
ELAC Bottomchart MkII
Slide34
SE 3353 Imaging andMapping II:Submarine AcousticMethods
© J.E. HughesClarke, OMG/UNB
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Launch Elac 1180 installation
Rainier Elac 1050D installation
seabeam_1050D
LF
HF
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Elac Beam Pattern
elac_propagating
Array configuration – Flat Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Surface Sound Speed
Flat-facetransducer
Water
Incoming sound “ray”
Transducer material sound speed Water sound speed
Acoustic ray path “kinks” attransducer-water interface (similar to“pencil in a glass of water”experiment)
Must be corrected:
Real-time Surface Sound Speedprobe
Digibar or Thermo-Salinograph(best)
db_pro
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Simrad EM1002
NOAA Ships Thomas Jefferson
and Nancy Foster
Mid-water system
95 kHz
111 beams, 2° x 2°
Curved Array constant beamwidtharound the curve (broadsidesectors) , optional beam steeringbeyond
tj_flag
Array configuration – Curved  Face
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Reson 8101
101 beams, 1.5-degree beam width
150-degree swath width
240 kHz (max effective range 100-150m)
Round-Face Transducer
Advantages:
No need for real-time sound velocity
Can always be corrected in post-processing
Disadvantages:
Cannot beam steer
No motion compensation
Array configuration – Combination
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
RESON Seabat 8101 / 8111
Slide22
Array configuration – Combination
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Array configuration – Combination
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
P0001761
 100 kHz
 NOAA Ship Fairweather
 Depths to 1000m undergood conditions
Array configuration – Combination
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Multi Transducer Arrays
RESON 7125
NOAA Ship Thomas Jefferson  & NOAAShip Rainier new Launches
tj_flag
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Multi Transducer Arrays
NOAA Ship Hi’ialakai
Simrad EM3002D
High resolution in shallowwater
300 kHz
508 beams, up to 200°swath
hi_newoffpic
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Reson 8160
The image “http://www.ocean.cf.ac.uk/people/neil/jrei/shots/8160_array.jpeg” cannot be displayed, because it contains errors.
P0001764
 50 Khz
 NOAA Ship Fairweather
 Depth range to 3000 meters
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
NOAA SWMB Systems
 Reson 8101
 No roll-compensation
 Elac 1180 and 1050D
 Roll-compensated
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Seabeam 2112
NOAA Ship Ronald H. Brown
Deep water, “full oceandepth”
12 kHz, 151 beams (1.5° x1.5°)
Up to 150° swath width
madeira
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
New Systems…
Reson 7101 Series
Thomas Jefferson
NRT-7
Simrad 700 Series
“Chirp” system improves range and resolution
EM710 replaces EM1002 in product line
Interferometry
Benthos C3D
GeoSwath
NOAA_gull_shadow
Picture2
Introduction to Multibeam – NOAA Hydro Training 2009
NOAA Seal - vector (uncleaned collar text)
Sonar Arrays
Multibeam Coverage Comparison
Slide35