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The goal of event detection is to parse gaze coordinates 
recorded from an eyetracker into periods of fixation, sac-
cade, smooth pursuit, and blink. What does not fit into 
these categories can be considered noise. Since the du-
ration, prevalence, and direction of such events reflect 
ongoing cognitive processes in humans, the conversion 
to events is an essential part in the vast majority of eye 
movement studies (see, e.g., Irwin, 2004, and the review 
by Rayner, 1998, pp. 374–375).

Event detection may sound easy, but several works have 
shown that the most common dependent variables, such as 
fixation duration, saccadic amplitude, and number of fix-
ations, depend critically on the recording software with its 
internal filters and on the choice of algorithm, as well as 
on the settings of the selected algorithm (Blignaut, 2009; 
Inchingolo & Spanio, 1985; Karsh & Breitenbach, 1983; 
Salvucci & Goldberg, 2000; Shic, Scassellati, & Chawar-
ska, 2008). This situation makes the output of most algo-
rithms less reliable and many studies less comparable than 
would be desired.

Another largely unexplored reason that can explain 
some of the variation in event detection results is the be-
havior of the eye at the end of many saccades, where the 
eye sometimes does not stop directly but wobbles a while 
before coming to a stop. This type of wobbling movement 
is called a dynamic or glissadic overshoot (or undershoot) 
and, although frequently reported in the literature, is not 

explicitly taken into account by event detection algo-
rithms. Glissades are therefore treated unsystematically 
and differently across algorithms, and even within the 
same algorithm; one glissade may be assigned to the sac-
cade, whereas the next one, instead, is merged with the 
fixation.

The aim of this article is to design a velocity-based 
saccade detection algorithm that addresses many of the 
limitations of current algorithms. The goal is to develop 
a data-driven algorithm that leaves as few subjective set-
tings to the end user as possible. The improvements in-
clude data-driven thresholds for peak and saccade onset/
offset detection, adaptive threshold adjustment based 
on local noise levels, physical constraints on eye move-
ments to exclude noise and jitter, and new recommenda-
tions for minimum allowed fixation and saccade dura-
tion. Since it is unclear how attention and visual intake 
are correlated with eye movement in the general case, 
the proposed algorithm is designed to identify oculomo-
tor events in eye movement data and leave the important 
question of related cognitive processes to the individual 
researcher.

The main novelty of this algorithm, however, is the 
option to define the glissadic movement as a separate 
event; we demonstrate this by investigating the preva-
lence and nature of glissades as they occur during read-
ing and during scene perception. Moreover, we will in-
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the saccade (Deubel & Bridgeman, 1995). When recorded 
data are then filtered, filter properties influence saccade 
and glissade dynamics (see Inchingolo & Spanio, 1985), 
and low-pass filtering may heavily reduce the detection of 
recorded glissades. Stampe (1993) even designs the filters 
with the explicit intention to remove glissades from data.

Kapoula et al. (1986) found glissades to be largely 
idiosyncratic and overrepresented in the abducting eye 
and in small saccades. They also observed that glissades 
rarely occur simultaneously in both eyes. It also has been 
reported that saccades accompanied by blinks increase 
the tendency to make a glissade (Rottach, Das, Wohlge-
muth, Zivotofsky, & Leigh, 1998). The general belief has 
been that glissades are due to “mistakes” in saccadic pro-
gramming and that they therefore serve no useful purpose 
(Kapoula et al., 1986).

Whatever their cause or function, it is a fact that glis-
sades affect the result of a fixation and saccade detection 
algorithm. The best way to deal with this influence is to 
acknowledge them and prepare the algorithm for their ex-
istence in the data.

EVENT DETECTION ALGORITHMS

Given gaze coordinates produced by the eyetracker, an 
event detector should robustly classify these raw data into 
events such as fixations, saccades, and smooth pursuit pe-
riods, as well as blinks and noise. This may sound fairly 
straightforward, but the task presents users with several 
difficulties, among which the selection of threshold is the 
best known. It has been shown that event detection algo-
rithms are very sensitive to the choice of thresholds that 
they need to distinguish—for example, a saccade sample 
from a fixation sample (see Blignaut, 2009; Shic, Chawar-
ska, & Scassellati, 2008).

vestigate how glissades influence computed saccade and 
fixation measures. To demonstrate the performance of 
the new algorithm, it is compared against two of the most 
commonly used event detection algorithms: the identifi-
cation by dispersion threshold (I-DT, as defined in Sal-
vucci & Goldberg, 2000) and a velocity-based algorithm 
(commercial implementation of the algorithm in Smeets 
& Hooge, 2003).1

GLISSADES

Since glissade detection is one of the main novelties 
in the new algorithm, let us start by taking a look at what 
they are and how they might influence event detection. 
Figure 1 plots the x-, y-coordinates and angular velocity 
of a portion of reading data. At the end of the two leftmost 
saccades, one can clearly see how the eye overshoots its 
intended target and immediately corrects this by a smaller, 
saccade-like movement. This movement is known as a dy-
namic overshoot (rapid postsaccadic movement; Kapoula, 
Robinson, & Hain, 1986) or a glissadic overshoot (slower 
postsaccadic movement; Weber & Daroff, 1972). For sim-
plicity, in the remainder of this article, we use the term 
glissade for all types of movements that happen due to 
over-undershoots.

Whether data exhibit glissades or not depends on a va-
riety of factors, of which one is the recording method. For 
instance, with video-based pupil and corneal reflex sys-
tems, glissades are common, but not in data from scleral 
search coils. Frens and Van der Geest (2002) found that 
coils alter the saccade dynamics and smooth out glissadic 
eye movements, possibly because the coils affect oculomo-
tor command signals. With dual Purkinje image eyetrack-
ers, glissades appear to be amplified as an effect of slip-
page of the lens, relative to the rest of the eye, at the end of 
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Figure 1. Example of reading saccades ending with glissadic overshoot (first 
two saccades).
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fixed, this factor alone can yield significant differences in 
the number and durations of fixations (Blignaut, 2009).

The simplest type of velocity-based algorithm uses one 
threshold, which is typically set by the experimenter after 
an initial check on the noise levels and velocities of sac-
cades in data. The velocity threshold decides whether a 
velocity sample belongs to a fixation (everything below 
the threshold) or a saccade (everything above the thresh-
old) (Bahill, Brockenbrough, & Troost, 1981; Salvucci & 
Goldberg, 2000). Although it is very simple, it is rarely, 
if at all, used in any real implementations, since it is very 
sensitive to noise around the value of the threshold. Practi-
cal implementations of velocity-based algorithms instead 
use a more sophisticated, multipass strategy in which sac-
cade peaks are detected in the first pass and the second 
pass is used to find the onset and offset of the saccades. 
For example, Smeets and Hooge (2003) presented such an 
approach to saccade detection, where they complemented 
the detection threshold with a simple shape estimator that 
checks whether the saccade peak is located in the central 
portion of the detected saccade; otherwise, it is discarded. 
Smeets and Hooge used a peak saccade detection threshold 
of 75º/sec. Although velocity-based algorithms are more 
transparent than dispersion-based algorithms, since they 
use the instantaneous velocity to find onsets and offsets of 
saccades, algorithms such as those in Smeets and Hooge 
can output unphysiologically short fixations ( 20 msec), 
due to noise and glissades present in the data. Another 
potential source of error is the setting of a peak velocity 
threshold, which critically decides whether small saccades 
will be detected or not.

Velocity-based algorithms are sometimes combined 
with acceleration criteria to find saccade onsets and 
 offsets—in particular, if online saccade detection is re-
quired. For example, the EyeLink software in its cogni-
tive configuration uses velocity, acceleration, and motion 
thresholds of 30º/sec, 8,000º/sec2, and 0.15º, respectively 
(SR Research, 2007). The last threshold is used to ensure 
that the eye has moved sufficiently before a saccade is 

Current Algorithms and Their Shortcomings
Event detection algorithms classify gaze data on the 

basis of dispersion, velocity, and acceleration criteria (or 
combinations thereof; see Duchowski, 2003; Salvucci & 
Goldberg, 2000).

Dispersion-based algorithms typically identify gaze 
samples as belonging to a fixation if the samples are lo-
cated within a spatially limited region (about 0.5º) for a 
minimum period of time: the minimum allowed fixation 
duration (usually, in the range 80–150 msec). Saccades 
are then detected implicitly as “everything else” (often 
excluding blinks and jitter).

The most common dispersion-based algorithm, the 
I-DT, first initiates a duration window over the gaze data 
with a length equal to the minimum fixation duration 
threshold (see Figure 2). This temporal window is then 
expanded sample by sample until the dispersion of the in-
cluded (x, y) points exceeds the dispersion threshold. Dis-
persion is calculated as the average of the largest horizon-
tal and vertical distances ( x-max and y-max) between 
any two samples within the window. Finally, the fixation 
location is found as the centroid of all window samples, 
and at the end of the just-finished fixation, a new window 
is started where the search for new fixations continues. 
Dispersion-based algorithms exist in a number of varie-
ties, which differ in how dispersion is calculated and the 
condition for ending a search.

Algorithms belonging to the I-DT family can be found 
in commercial software provided by, for example, Applied 
Science Laboratories (ASL), SensoMotoric Instruments 
(SMI), and Tobii Technology, and in the analysis software 
Gazetracker. Although the I-DT algorithm is well estab-
lished and an integrated part of many commercial soft-
wares, it is very sensitive to noise and drifts in the data and 
is poor at providing accurate temporal estimates of event 
onsets and offsets. Recent work has also shown that the 
output from I-DT is affected not only by the choice of min-
imum fixation duration and dispersion thresholds, but also 
on how dispersion is calculated; keeping other parameters 
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Figure 2. Principle for duration and dispersion calculation in the identifica-
tion by dispersion algorithm. The initial duration window is expanded over time 
sample by sample (left-hand graph) until the average of x-max and y-max 
exceeds the dispersion threshold.
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Filtering and denoising. The output of an eyetracker 
contains a list of triplets (xi, yi, ti), where (xi, yi) is the gaze 
position acquired at time ti. These coordinates contain not 
only information about how the eye moved, but also vari-
ous types of noise deriving from both the eyetracker and 
the participant. The role of filtering and denoising is to re-
move this unwanted variation in the eye movement data.

The first step is to calculate velocity and acceleration 
profiles from the gaze coordinates. There is a range of 
methods available for such calculation (see, e.g., Bahill 
et al., 1981; Inchingolo & Spanio, 1985). Duchowski 
(2003) described a protocol that first identifies the instan-
taneous sample-to-sample movement, i, between two 
consecutive gaze coordinates in degrees of visual angle. 
If the sampling frequency fs Hz is known, the angular ve-
locity can be calculated as i

raw  fs i for the ith sample. 
However, if a simple sample-to-sample subtraction is used 
to calculate instantaneous velocity, the output will be very 
noisy. To reduce the velocity and acceleration noise, two 
finite impulse response (FIR) filters hk and gk can be used 
as follows:
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where k is the filter length and n is the size of the sample 
vector. In his book, Duchowski describes a five-tap ve-
locity filter and a seven-tap acceleration filter, both with 
their shapes adapted after the typical appearance of veloc-
ity (one large velocity peak) and acceleration (two peaks 
pointing in opposite directions) during a saccade. The 
length of the filters should be designed to cover a typi-
cal saccade length. Such pattern-matching filters amplify 
parts of the signals with a similar appearance to the filters 
while attenuating other portions of the signal.

Saccades with glissades do not have the idealized dy-
namic behavior assumed by the filters Duchowski (2003) 
presented. In fact, glissades could be significantly attenu-
ated during filtering. In this article, we use the Savitzky–

detected. Such thresholds are typically based on “rules 
of thumb” coming from research labs using EyeLink 
eyetrackers, and it is unclear how well such an algorithm 
would perform on gaze data collected from other labs using 
another type of eyetracker. Moreover, using acceleration 
thresholds carries with it the need for additional filtering, 
since the level of noise is magnified twice through each 
numerical differentiation.

In sum, the results of event detection depend heavily on 
how raw gaze coordinates are filtered to produce velocity 
and acceleration profiles, on the detection algorithm, and 
on the thresholds the algorithm uses to classify the data. 
Moreover, the same thresholds are used without regard to 
individual differences in data quality across participants 
and trials, which are known to vary. Clearly, future event 
detection algorithms should take these factors carefully 
into account.

A New Algorithm for Fixation, Saccade, and 
Glissade Detection

On the basis of the previously described shortcomings of 
current algorithms for event detection—in particular, their 
unsystematic treatment of glissadic eye  movements— we 
propose in this section a new velocity-based algorithm 
that is developed to robustly detect fixations, saccades, 
and glissades; blinks are included in the noise category. 
The algorithm is based on the saccade detection velocity 
algorithm by Smeets and Hooge (2003) and does not use 
positional data directly. Using velocity, instead of posi-
tion, data to identify saccades was, in fact, recommended 
already by Bahill et al. (1981), since it provides more ac-
curate and intuitive information about the precise onset 
and offset of a saccade.

The proposed algorithm contains five main steps: filter-
ing and denoising, peak saccade detection, saccade onset/
offset detection, glissade detection, and, finally, fixation 
detection. These steps are summarized as pseudocode in 
Table 1. The novelties of the algorithm are, besides explicit 
glissade detection, an adaptive, data-driven peak saccade 
detection threshold, a new method to define saccade on-
sets and offsets, and the use of thresholds motivated by 
physiological limitations of eye movements.

Table 1 
Pseudocode of the Proposed Algorithm for Fixation,  

Saccade, and Glissade Detection

For each trial
1. Calculate angular velocities and accelerations. Remove noise.
2. Iteratively find velocity peaks (samples larger than a threshold)
3. Saccade detection: For each velocity peak
 (a) Go back until velocity  saccade onset threshold
 (b) Go forward until velocity  saccade offset threshold (adaptive)
 (c) Make sure the saccade duration  minimum saccade duration
4. Glissade detection: Glissades are detected if
 (a) Low-velocity detection: velocity  saccade offset threshold
   within a fixed time window after saccade offset.
 (b) High-velocity detection: velocity  peak saccade threshold
   within a fixed time window after saccade offset.
5. Fixation detection: Fixations are defined by samples that are
 (a) neither saccades, glissades or noise AND
 (b) longer than the minimum fixation duration
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where  denotes a factor for converting from pixels to 
visual degrees. Velocity and acceleration data were ap-
propriately adjusted to compensate for the time shift in-
troduced by the filters. Figure 3 shows the dramatic effect 
such a second-order polynomial filter with a length of 24 
samples (20 msec) has, as compared with simple sample-
by-sample differences.

Another type of filtering and denoising targets samples 
with a position outside of the display or with unphysi-
ological eye movements. For example, when the eye is 
closed, the eyetracker reports (0, 0) coordinates  and/ or 

Golay (SG) FIR smoothing filter, which makes no strong 
assumption on the overall shape of the velocity curve and 
is reported to have a good performance in terms of pre-
serving high-frequency detail in the signal while main-
taining both temporal and spatial information about local 
maxima and minima (Savitzky & Golay, 1964). In prin-
ciple, this filter finds the polynomial function that best 
describes the raw data and differentiates the polynomial 
analytically to avoid adding noise. It then resamples the 
differentiated polynomial to the original sampling fre-
quency. Applying the sgolay function in MATLAB, we 
can find a set of SG differentiation filters, which, given 
the raw gaze coordinates (xi, yi), output smoothed ve-
locity (xi, yi) and acceleration (xi, yi) data for the x- and 
 y- dimensions separately. Then the total angular velocity 
and acceleration are calculated as the Euclidean distance 
of the x- and y-components:
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is very important for the outcome. If it is too large, short 
saccades will be overlooked and if it is too small, samples 
belonging to a fixation may erroneously be detected as 
saccade samples. Today, this threshold is set according 
to an experimenter’s individual judgment or, maybe even 
worse, by the default settings in the analysis software 
coming with the eyetracker.

We instead propose an iterative, data-driven approach to 
finding a suitable threshold, illustrated in Figure 4. The it-
erative algorithm is given an initial peak velocity detection 
threshold PT1, which could be in the range  100º– 300º / sec, 
but the choice is not critical as long as there are sac cades 
with peak velocities reaching this threshold. For all sam-
ples with velocities lower than PT1, the average ( z) and 
standard deviation ( z) are calculated. The threshold is 
updated as PTn  n 1  6 n 1 for each iteration. This 
sequence of thresholds will converge at a level that is low 
enough to detect as many saccades as the noise level in 
data allows and, at the same time, high enough to avoid 

that the pupil diameter equals zero. All such data are re-
moved. Furthermore, when velocity   1,000º/sec or ac-
celeration   100,000º/sec2, data are taken to represent a 
movement of the eye that is not physiologically possible, 
and such samples are also omitted from further analysis 
(see Duchowski, 2003, for an overview on velocity and 
acceleration thresholds). To make sure that samples be-
fore the start and after the end of a noisy period are not 
left to contaminate the data, the algorithm then searches 
for onset and offset of noise. Noise on-offset is detected 
when the velocity reaches the median value of the veloci-
ties over the whole trial (which is close to the average 
noise inside fixations).

Velocity threshold estimation. After filtering and 
denoising, the algorithm searches for velocity peaks by 
identifying samples where the velocity is larger than a ve-
locity threshold,   PT. In current implementations of 
saccade detection algorithms (that explicitly detect sac-
cades and implicitly detect fixations), the choice of PT 

(º/sec)

PT1

PT2 = 1+6 1

1

time

Figure 4. Principle for iterative estimation of saccadic velocity threshold. An 
initial threshold PT1 is selected. For all samples with velocities below PT1, the 
average velocity 1 and standard deviation 1 are calculated. The next thresh-
old, PT2, is then set as 1  6 1. The iterative process is continued until | PTn  
PTn 1| is smaller than 1º/sec, and PTn is selected as the final velocity threshold 

PT. This iteration can be done separately for each participant or even for each 
trial.

A B
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Figure 5. Onset and offset. (A) Saccade onset is found by searching backward 
from the saccade onset threshold ST 

onset  z  3 z (not to be confused with 
the velocity threshold PT) until the first local minimum is found. This sample 
is defined as the onset of the saccade. (B) Saccade offset is detected using a 
weighted combination of the global noise of the trial and the local noise just 
before the saccade.
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cade onset, which typically is simple to detect, due to its 
well-behaved velocity profile, is defined as the first sam-
ple that goes below the saccade onset threshold ST 

onset  
z  3 z and where ( i  i 1)  0. Figure 5A illustrates 

the principle.
Saccade offset is less obvious, because this is where 

we find the glissades. In order to make the algorithm bet-
ter at detecting glissades, we defined ST 

offset as a weighted 
combination of the velocity noise during the whole trial, 

ST 
onset, and a locally adaptive noise factor, t  t  3 t. To 

avoid contamination from glissadic movements, the local 
noise factor is calculated over the velocity samples within 
a window with size min msec (40 msec, the minimum 
allowed fixation duration) and preceding the saccade cur-
rently being processed. The local noise factor t is used to 
adapt to local variation in noise, for each saccade, which 
is important since noise levels may vary, for instance, be-
tween data at the center of the stimulus and peripheral 
saccades or due to participant-dependent factors, such as 
downward lashes, lenses, or glasses (Duchowski, 2003). 
The idea of adaptive, noise-contingent thresholding is not 
new but has been described, for example, by Duchowski 
(pp. 117–119; on the basis of acceleration thresholds). To 

false detection of saccades when intrafixational noise is 
high. The safety margin of 6  is considered a good robust 
level and is also used in microsaccade detection algo-
rithms (Engbert & Kliegl, 2003). Our algorithm continues 
to iterate until | PTn  PTn 1 | is smaller than 1º/sec be-
tween two iterations, and then the final velocity threshold, 

PT, is set as PTn. For the reading data used to evaluate 
the algorithm, average values for fixation velocity were 
5.44  4.55º/sec ( n  n), giving peak velocity thresh-
olds around 33º/sec (but the individual variation was large 
across participants). In scene perception data, fixation ve-
locity values were 5.40  3.97º/sec.

Two large advantages exist in this method. First, the 
choice of a peak detection threshold is data driven and not 
influenced by the user. Second, the velocity threshold can 
be calculated separately for each user, or even each trial 
of data, to adapt to varying noise levels over a number of 
recordings.

Saccade detection. For each detected saccade peak 
(those detected after the last iteration), the algorithm 
searches backward (from the leftmost peak saccade 
sample) and forward (from the rightmost peak saccade 
sample) in time for the saccade onset and offset.2 Sac-

Table 2 
Summary of Parameter Settings  

Used in the Event Detection Algorithm

Setting  Value

Filter Savitzky–Golay (sgolay in MATLAB)
Filter order 2
Filter length 2  min saccade duration
Peak velocity detection threshold PT  z  6 z

Saccade onset threshold ST 
onset  z  3 z

Saccade offset threshold ST 
offset  ST

onset  t, t  t  3 t

Max saccade velocity 1,000º/sec
Max saccade acceleration 100,000º/sec2

Min saccade duration 10 msec
Min fixation duration 40 msec

, 0.7, 0.3
Window length for glissade search  saccade end  min fixation duration

Figure 6. Example of a text stimulus.
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velocity detection targets slower glissadic movements 
with small amplitudes, whereas high-velocity finds only 
long high-velocity glissades. In this article, we define the 
two groups of glissades as mutually exclusive; that is, 
low-velocity glissades are not a subset of high-velocity 
glissades.

The high-velocity criterion requires that the velocity 
curve within a min (40) msec window after the saccadic 
offset raises above the peak saccade threshold, PT, and 
down below it, at least once. In other words, a high- velocity 
glissade has a velocity peak that would qualify it for sac-
cadic status. The low-velocity criterion is identical, except 
that it requires only that the velocity curve raises above the 
saccade offset threshold ST 

offset, as in Figure 5B.
The onset of the glissade is defined as the offset of the 

preceding saccade. As with saccade detection, the glissade 

the authors’ knowledge, no systematic testing of this type 
of algorithm has been undertaken so far. Saccadic offset 
is then defined as the first sample that goes below the 
saccade offset threshold ST 

offset  ST 
onset  t and where 

( i  i 1)  0. Furthermore, we propose a minimum sac-
cade duration threshold of 10 msec (12 samples), which 
is large enough to avoid noise being falsely categorized 
as saccades but small enough to include short saccades 
(~1º). Finally, we exclude saccades that are preceded by 
a period where t  PT, since this indicates that there 
was no period of stillness prior to the saccade onset (most 
often, indicating recording imperfections).

Glissade detection. Since there is no widespread or ac-
cepted definition of the oculomotor movement we call the 
glissade, we provide two alternative definitions, dubbed 
low-velocity and high-velocity glissade detection. Low-

Table 3 
Summary (Means  Standard Deviations When Applicable)  

of Average Results for Reading and Scene Perception

Measure  Reading  Scene Perception

Proposed Algorithm

Fixation duration (msec) 193.7  100.0 (N  24,936) 263.6  185.4 (N  7,963)
Saccade duration (msec) 42.5  18.0 (N  26,203) 47.2  16.8 (N  8,597)
Glissade duration (msec) 22.2  9.8 (N  12,525) 25.0  9.8 (N  5,081)
Fixation velocity (º/sec) 5.44  4.55 5.40  3.97
Saccade peak velocity (º/sec) 167.5  112.7 230.6  139.2298
Saccade peak acceleration (º/sec2) 9,916.5  6,114.2 12,779.1  6,390.9
Max peak velocity (º/sec) 933.9 845.5
Max peak acceleration (º/sec2) 99,343 65,752
% glissadic saccades 47.8 59.1

I-DT (40 msec, 0.5º)

Fixation duration (msec) 128.1  80.3 (N  47,467) 150.6  112.4 (N  24,845)
Saccade duration (msec) 11.4  19.4 (N  26,866) 14.8  20.8 (N  12,996)
Glissade duration (msec) n.a. n.a.
Fixation velocity (º/sec) n.a. n.a.
Saccade peak velocity (º/sec) 119.5  146.1 133.6  166.5
Saccade peak acceleration (º/sec2) 85,985.6  135,472.3 112,678.9  169,443.1
Max peak velocity (º/sec) 999.86 998.86
Max peak acceleration (º/sec2) 993,401 995,058
% glissadic saccades n.a. n.a.

I-DT (100 msec, 1º)

Fixation duration (msec) 213.5  97.6 (N  28,703) 244.9  133.2 (N  15,079)
Saccade duration (msec) 15.8  27.3 (N  18,552) 20.8  27.4 (N  10,823)
Glissade duration (msec) n.a. n.a.
Fixation velocity (º/sec) n.a. n.a.
Saccade peak velocity (º/sec) 178.7  156.2 211.5  173.7
Saccade peak acceleration (º/sec2) 116,237.2  155,978.8 169,331.7  186,858.7
Max peak velocity (º/sec) 1,000 1,000
Max peak acceleration (º/sec2) 1,000,000 1,000,000
% glissadic saccades n.a. n.a.

Velocity Algorithm

Fixation duration (msec) 171.6  108.2 (N  32,438) 210.4  159.9 (N  16,116)
Saccade duration (msec) 32.4  17.2 (N  31,061) 36.7  18.4 (N  14,786)
Glissade duration (msec) n.a. n.a.
Fixation velocity (º/sec) n.a. n.a.
Saccade peak velocity (º/sec) 162.1  117.4 205.0  145.3
Saccade peak acceleration (º/sec2) 160,557.2  130,699.4 205,099.0  174,269.6
Max peak velocity (º/sec) 994.5 993.9
Max peak acceleration (º/sec2) 993,697 977,468
% glissadic saccades n.a. n.a.

Note—The identification by dispersion (I-DT) and velocity algorithms were run in the SMI BeGaze 
2.2 implementation. No postprocessing, such as removal of absurdly short fixations, was applied to 
the output from these two algorithms.
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or glissades. However, in order to exclude extremely 
short fixations, we use an additional minimum duration 
criterion, min. In the literature, there is no consensus on 
how to choose the minimum duration, but there are re-
ports of durations as short as 50 msec (Rayner, 1998, 

offset is defined when ( i  i 1)  0 after the last velocity 
peak sample in the glissade. Glissades with an amplitude 
larger than their preceeding saccades were omitted.

Fixation detection. Since our evaluation stimuli are 
static, fixations are everything that is not noise, sac cades, 

Fixation duration
[0 1,000] msec

Saccade duration
[0 160] msec

Saccade peak velocity
[0 1,000] º/sec

Saccade peak acceleration

I-DT (40 msec, 0.5º)

[ 2 · 105  106] º/sec2

Velocity

[ 2 · 105  106] º/sec2

Proposed

[0  105] º/sec2

Figure 7. (Relative) histogram comparisons across algorithms for reading data. Bin size is 
4 msec for duration data. Values for x-axes are given to the left in the figure, except for accel-
eration, where values are given at the bottom. I-DT, identification by dispersion threshold.

Fixation duration
[0 1,000] msec

Saccade duration
[0 160] msec

Saccade peak velocity
[0 1,000] º/sec

Saccade peak acceleration

I-DT (40 msec, 0.5º)

[ 2 · 105  106] º/sec2

Velocity

[ 2 · 105  106] º/sec2

Proposed

[0  105] º/sec2

Figure 8. Histogram comparisons across algorithms for scene perception data. I-DT, iden-
tification by dispersion threshold.
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DATA USED FOR EVALUATION  
AND COMPARISONS

Reading
The reading data originate from a study in which over 

300 students from the Lund University School of Econom-
ics and Management read an En glish text on a computer 
screen for 10–20 min, followed by a comprehension test. 
The texts described a case scenario, and the participants 
were instructed to read the text well enough to be able to 
answer some questions about it afterward. The text was 
divided into 16 images with a resolution of 1,024  768 
pixels, containing black letters on a midgray background. 
Each letter spanned approximately 15  15 pixels (0.5º 
of visual angle). An example of one text image is shown 
in Figure 6.

The experimental setup consisted of one control computer 
running SMI’s recording software iViewX with default set-
tings and communicating with another computer running 
MATLAB to display the texts in full screen. Text images 
were shown on a Samsung 19-in. flat screen with a size of 
377  300 mm and viewed from a distance of 670 mm.

After a 13-point calibration, the participants were left to 
read the text at their own pace. They could only move for-
ward through the text (by clicking the mouse). Gaze posi-
tions were recorded monocularly (although viewing was 
binocular) with the SMI HiSpeed eyetracker at 1250 Hz 
throughout the experiment.

p. 376). In most studies, however, the minimum fixation 
duration thresholds are around 100–200 msec (Salvucci 
& Goldberg, 2000). There are probably three reasons 
why the duration span is large. First, a fixation could be 
defined as an oculomotor event—that is, the time that the 
eye is still—but also as the period of visual intake during 
this period. Due to saccadic suppression, these two defi-
nitions are not equal, but the visual system begins to shut 
off before the oculomotor fixation has ended and does 
not fully recover until a bit into the next fixation (Matin, 
1974). Thus, some oculomotor fixations may have very 
little visual intake, and some researchers therefore select 
a duration threshold based on an estimation of the short-
est period for visual intake (Rötting, 2001). The second 
reason is due to current fixation detection algorithms 
and their settings; several studies have shown that typical 
dependent variables, such as fixation duration and sac-
cade length, critically depend on the settings (see, e.g., 
Shic, Chawarska, & Scassellati, 2008). Finally, as will 
be shown in this article, short fixations can vary signifi-
cantly in duration depending on whether you assign glis-
sades to saccades or fixations. We have manually identi-
fied several oculomotor fixations in the data, especially 
during reading, with durations below 50 msec, and we 
therefore use min  40 msec as the minimum allowed 
duration.

An overview of all the algorithmic settings is shown in 
Table 2.
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Figure 9. Results for fixation, saccade, and glissade detection of 1 person during 
reading. Solid, dashed, and dashed-dotted lines mark the saccade onset, saccade offset, 
and the glissade offset, respectively. Fixations are indicated by the thick lines at the 
bottom. The black horizontal lines within the saccades represent the saccade onset 
threshold after it has been adjusted by an estimation of the local noise level. As can 
been seen, the fixation velocity shown in the figure is lower than the global fixation 
velocity, since the adaptive threshold is lower than the global, trial-based one.
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& Goldberg, 2000), the algorithm by Smeets and Hooge 
(2003; i.e., the velocity algorithm), and the algorithm 
proposed in this article. For the first two algorithms, we 
report data calculated from the commercial implementa-
tions found in the BeGaze 2.2 software developed by SMI. 
To allow for a fair comparison against the proposed algo-
rithm, I-DT thresholds were set to 0.5º for dispersion and 
40 msec as minimum fixation duration, whereas the ve-
locity algorithm used a peak velocity threshold of  35º/ sec 
and a minimum saccade duration of 10 msec—that is, 
as closely matched as possible to the thresholds used in 
the proposed algorithm. Since values of 1º for disper-
sion (optimal threshold according to Blignaut, 2009) and 
100 msec for minimum duration (default setting in ASL 
Eyenal) seem to be a common setting in many studies, re-
sults for this configuration of the I-DT are also included.

There are some striking differences in Table 3. First, 
fixation duration, saccade duration, and peak saccade 
velocity differ significantly across different algorithms, 
although they were tested on exactly the same data. Sec-
ond, peak saccade acceleration values differ by a factor 
of 10 between the commercial implementations and the 

For each recording, the experimenter rated the quality 
of the collected data on a scale of 1–5. Among the data 
that got the highest quality rating (5), data from 10 par-
ticipants were chosen at random.

Scene Perception
Eye movement data collected during scene percep-

tion originate from the study by Nyström and Holmqvist 
(2008), where details about the experiment can be found. 
In short, gaze positions were recorded at 1250 Hz with 
the SMI HiSpeed eyetracker while 10 subjects watched 
digitized photographs of “real-world” images on a com-
puter screen. The task was either to “inspect the images 
carefully” or to identify the semantically most informative 
part of the image. The setup was otherwise very similar to 
that of the reading experiment.

RESULTS AND DISCUSSION

Algorithmic Comparisons
Table 3 summarizes detection results for the three tested 

algorithms: The I-DT algorithm (as defined in Salvucci 
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Figure 10. Proportions and durations of glissades during reading and scene perception (as detected by the proposed 
algorithm). (A) Reading. (B) Reading. (C) Scene perception. (D) Scene perception.
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So, where do the I-DT and velocity algorithms fail? As 
was explained in the Current Algorithms and Their Short-
comings section, the I-DT algorithm initiates a window of 
a length equal to the minimum fixation duration (40 msec) 
over the gaze data. Then the window is expanded until the 
intrafixational dispersion exceeds a predefined threshold 
(e.g., 1º). Due to noise inherent in the eyetracker, in ad-
dition to intrafixational eye movements, the dispersion is 
typically reached very soon after the onset and, therefore, 
terminates and outputs a fixation near the minimum al-
lowed duration. This way, a long fixation of the eye may 
be divided into many shorter fixations in the output of 
the algorithm. This undesired behavior of the I-DT al-
gorithm is even more prominent when data are analyzed 
at high sampling rates ( 200 Hz) (especially with small 
sac cades), rather than at lower rates, since gaze points 
are compared against the dispersion threshold more fre-
quently (and thus have more chances to exceed it). Some 
versions of the I-DT have introduced noise resilience by 
requiring that more than one sample needs to exceed the 
threshold before the fixation is terminated (Applied Sci-
ence Laboratories, 2001).

The velocity algorithm produces somewhat more reli-
able histograms, but also there are portions of very short 
fixations (1–10 msec) identified by the algorithm. Many 
of these fixations are detected, since the algorithm is not 
endowed with a systematic method to handle glissades. 

proposed one. An acceleration above 100,000º/sec2 is un-
likely to originate from real eye movements, according 
to Bahill et al. (1981). It is interesting to note, however, 
that saccade peak acceleration has previously been shown 
to vary significantly across studies (Duchowski, 2003, 
p. 126), possibly due to variation in the recording appa-
ratus and filters used when acquiring the eye movements 
and calculating the acceleration profiles (see also Inchin-
golo & Spanio, 1985).

Clearly, such large differences are troublesome, since 
the choice of algorithm may verify or falsify your hypoth-
esis. Moreover, comparisons of these important dependent 
variables across studies, labs, and algorithms seem futile. 
Looking just at Table 3, it may be difficult to understand 
why the results are so different. The histograms of the 
variables offer further insights. Figures 7 and 8 depict his-
tograms for a number of eye movement parameters col-
lected during both reading and scene perception.

Beginning with Figure 7, we can see that something is 
deeply wrong with the histograms produced both by the 
velocity algorithm and, in particular, by the I-DT algo-
rithm. Maybe the most disturbing feature is that there are 
dominant peaks for duration values close to zero (bins are 
4 msec for duration data), which means that a large por-
tion of the fixations and saccades lie on the 0–10 msec 
interval. The same trend is discernible also in scene per-
ception data (Figure 8).
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ration histogram generated from the velocity algorithm 
more similar to that of the proposed algorithm.

Glissade Detection
Figure 9 shows the results of event detection on eyetrack-

ing data from 1 person making five saccades while reading. 
The first saccade originates from a large movement when 
the reader changes to a new line, whereas the other four sac-
cades reflect forward reading on the new line. Note how two 
out of the five saccades (1 and 2) end with glissades.

In our evaluation data, the average duration of a glis-
sade was about 24 msec and occurred in over half of all 
the registered saccades. There were, however, large indi-
vidual differences, as Figure 10 illustrates. Some partici-
pants had relatively few glissades (see, e.g., Participant 1, 
who had about 25% glissadic saccades during reading), 
whereas other participants made a glissade for the major-
ity of the saccades. Glissade duration also differed across 
participants, but to a smaller degree, and seemed to be 
fairly stable around the overall average value.

Instead, the algorithm terminates the saccade before the 
glissade, identifies the glissade as another, short saccade, 
and inserts an absurdly short fixation in between. More-
over, unproportionally many short saccades are detected 
by the velocity algorithm, most likely due to recording 
imperfections. This can happen, for example, when the 
algorithm processing the eye video finds a false corneal 
reflex that is confused with the real one and then rapidly 
switches between the two.

The proposed implementation overcomes all of the 
problems above, as can be seen from the histograms.

In all fairness, many researchers choose to exclude a 
very short fixation after it has been run through the event 
detector (such as the velocity algorithm). Some manu-
facturers even recommend their users to do so: “Post-
 processing or data cleanup may be needed to prepare data 
during analysis. For example, short fixations may need to 
be discarded or merged with adjacent fixations, or artifacts 
around blinks may have to be eliminated” (SR Research, 
2007, p. 85). Obviously, this would make the fixation du-
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Figure 12. Main sequence for saccades and glissades (data from 4 people during reading or scene perception). Ampli-
tude is calculated as the Euclidean distance between the start and end locations of a saccade. Dots and crosses represent 
saccades and glissades, respectively. (A) Participant 3 (reading). (B) Participant 5 (reading). (C) Participant 3 (scene 
perception). (D) Participant 10 (scene perception).
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brief flashes during glissades and could show that they 
were perceived by participants. Flashes were intention-
ally strong enough, however, to produce afterimages on 
the retina, so possibly the reported perception came from 
the afterimage, rather than from the flash itself. Using the 
dual Purkinje eyetracker, McConkie and Loschky (2002) 
suggested that perceptual onset begins 6 msec after the 
velocity peak of a glissade, since this is when participants 
start detecting a display change (switching from a low- 
to a high-resolution version of an image). The changes 
were not robustly detected until 32 msec after the peak, 
however, suggesting that a complete visual intake is not 
reached until then. Moreover, glissades typically do not 
occur in both eyes simultaneously (according to Kapoula 

Figure 11 shows histograms of glissade durations. Note 
how the left-skewed distribution of glissades resembles 
that of saccades (and fixations). Interestingly, Kapoula 
et al. (1986) argued that glissades have all the features 
of saccades; they follow the main sequence (a systematic 
relationship between peak velocity and amplitude) and are 
triggered by bursts in neural activity in the same regions 
as saccades. The data analyzed in this article indicate that 
glissades lay on the main sequence; Figure 12 shows how 
glissades extend the peak-velocity–amplitude relationship 
of saccades.

If, in addition, the visual intake was closed, as it is 
under saccades, glissades could be argued to be a vari-
ety of saccades. Deubel and Bridgeman (1995) showed 
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between saccades and fixations. From the viewpoint of 
the event detection algorithms and their output, it matters 
whether we assign glissades to the fixation or to the sac-
cade. Figures 14A and 14B show how saccade duration 
is affected when glissades are added to the saccade and 
when they are not. With glissades, saccade duration in-
creases by 5–15 msec. On average, glissades during read-
ing and scene perception were found to add 24.5% and 
31.3%, respectively, to the saccade duration and, if instead 
added to fixations, 5.4% and 5.6%, respectively, to the 
fixation duration.

Kapoula et al. (1986) observed, by testing 3 partici-
pants with jumping dot stimuli, that glissades are more 
common for small saccades than for large saccades. In 
our larger data from reading and scene perception (see 
Figures 15A and 15B), we found no support for a simi-

et al., 1986), but one eye is still and could therefore take in 
visual information while the other eye is glissading.

Kapoula et al. (1986) reported that glissade amplitude 
increases with saccade size (but only moderately), using 
data where participants made saccades toward jumping 
dot-like targets. Figure 13 shows the same relationship 
for our reading and scene perception data. Figures 13A 
and 13C illustrate this relationship for glissades with 
small amplitude (as defined in Figure 9), whereas Fig-
ures 13B and 13D consider only glissades with a peak 
velocity larger than the saccade detection threshold. There 
was no significant correlation between glissade and sac-
cade durations in either of the cases.

Although it is still unclear whether glissades are a va-
riety of saccades or should be part of the following fixa-
tions, glissades occupy a significant portion of time in 
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Figure 14. Influence of saccade duration depending on whether the glissades are included in the saccade or not. 
(A) Reading. (B) Scene perception.
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lar trend in reading and scene perception. Interestingly, 
however, in the reading data, the long (return sweep) sac-
cades have a much higher percentage of glissades than 
do equally long saccades during scene perception. Could 
this be evidence that the oculomotor system adapts the 
saccadic retardation to the velocities of the short sac cades 
of a line and then fails to increase retardation to the much 
higher velocity of the return sweep? In scene percep-
tion, where saccadic velocities are not bimodally distrib-
uted and are much more random, the effect is rather the 
reverse.

CONCLUSIONS

We have developed a new event detection algorithm 
to overcome some limitations of current velocity-based 
algorithms. It has two major components. First, the new 
algorithm is endowed with a noise-dependent velocity 
threshold that is adaptive with respect to different view-
ers, different recording situations, and/or varying levels 
of noise during a whole experiment or a single trial. The 
automatic adaption of velocity threshold makes our algo-
rithm settings-free for users. In most current algorithms, 
the variable level of noise is disregarded and not auto-
matically adjusted for. Instead, the end user must make 
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velocity threshold, using his/her subjective judgment or 
just trusting the default settings of the analysis software.

Second, the new algorithm was designed with the ex-
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and less comparable. Glissades were found to occur fre-
quently (in over half of all the saccades) and had an aver-
age duration of about 24 msec. This would add more than 
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data analysis. In addition, acknowledging and studying 
glissades as a separate class of eye movements has the 
potential of opening up new insights on oculomotor con-
trol and perception, and data on glissades may be linked 
to fatigue and neurological disorders (see, e.g., Cuiffreda 
& Tannen, 1995, p. 39).

One limitation of this article is that the proposed algo-
rithm has not been tested against the SR EyeLink detection 
algorithm, which—according to the algorithm description 
in their manual and to Stampe (1993)—may be less in-
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ing a saccade (this situation is, however, rarely found in 
the data). Finally, the algorithm does not detect smooth 
pursuit as a separate class of eye movements.
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NOTES

1. The latter will henceforth be referred to as the velocity algorithm.
2. To cope with saccades with dual velocity peaks, the search is not 

initiated from the central saccade sample.
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